Spring Frog Survey Summary 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Status Review, Disease Risk Analysis and Conservation Action Plan for The
Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW). -
Predation by Introduced Cats Felis Catus on Australian Frogs: Compilation of Species Records and Estimation of Numbers Killed
Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed J. C. Z. WoinarskiA,M, S. M. LeggeB,C, L. A. WoolleyA,L, R. PalmerD, C. R. DickmanE, J. AugusteynF, T. S. DohertyG, G. EdwardsH, H. GeyleA, H. McGregorI, J. RileyJ, J. TurpinK and B. P. MurphyA ANESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia. BNESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Research, University of Queensland, St Lucia, Qld 4072, Australia. CFenner School of the Environment and Society, Linnaeus Way, The Australian National University, Canberra, ACT 2602, Australia. DWestern Australian Department of Biodiversity, Conservation and Attractions, Bentley, WA 6983, Australia. ENESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. FQueensland Parks and Wildlife Service, Red Hill, Qld 4701, Australia. GCentre for Integrative Ecology, School of Life and Environmental Sciences (Burwood campus), Deakin University, Geelong, Vic. 3216, Australia. HNorthern Territory Department of Land Resource Management, PO Box 1120, Alice Springs, NT 0871, Australia. INESP Threatened Species Recovery Hub, School of Biological Sciences, University of Tasmania, Hobart, Tas. 7001, Australia. JSchool of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom. KDepartment of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia. LPresent address: WWF-Australia, 3 Broome Lotteries House, Cable Beach Road, Broome, WA 6276, Australia. MCorresponding author. Email: [email protected] Table S1. Data sources used in compilation of cat predation on frogs. -
Natural Values of the TWWH 2013 Extension
Natural Values of the Tasmanian Wilderness World Heritage Area 2013 Extension - Central North Sector Nature Conservation Report 20/3 DeparNaturalt mentand Cultural of Heritage PrDepartmentimaryNatural Industr of Values Primaryies, PaSurveyrk Industries,s, W• 2013ater TWWHA Parks,and En Water vExtensionironmen And Area, tEnvironment Central North Sector 1 Natural Values of the TWWHA Extension - Central North Sector Edited by Elise Dewar Document design by Land Tasmania Design Unit © Department of Primary Industries, Parks, Water and Environment This report was prepared under the direction of the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (Tasmanian Wilderness World Heritage Program). Australian Government funds contributed to the project. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Australian Governments. ISSN: 1838-7403 (electronic) Front cover photograph by Micah Visoiu; overlooking the headwaters of Brumby Creek in the TWWHA Cite as: DPIPWE (2020). Natural values of the Tasmanian Wilderness World Heritage Area 2013 Extension – Central North Sector. Nature Conservation Report 20/3, Department of Primary Industries, Parks, Water and Environment, Hobart Natural Values Survey • 2013 TWWHA Extension Area, Central North Sector 2 KEY FINDINGS In 2013, an area of 172,276 ha was added to the Tasmanian Wilderness World Heritage Area (TWWHA). A review of the known natural values for this extension and the threats to those values highlighted significant knowledge gaps (Balmeret al., 2017). To redress these knowedge gaps, at least partially, a multi-disciplinary survey was undertaken in November 2019 to document flora, fauna and geodiversity values in part of the extension area known as the Central North Sector (CNS). -
Attracting Frogs to Your Garden @Sustainablegardeningaustralia #Sustainablegardeningaustralia
Sustainable Gardening Australia www.sgaonline.org.au [email protected] Attracting Frogs to your Garden @sustainablegardeningaustralia #sustainablegardeningaustralia • Froggy Facts Frogs are carnivorous and will eat anything that fits in their mouths but mainly eating insects; Frogs are the only living native amphibian in Australia; Over 240 species of native frog in Australia; 21 new species have been discovered over the past decade; Undergo metamorphosis from a tadpole to a frog; Each frog species has a unique call; Four ways of breathing 1)Gills (tadpoles); 2) Skin (in water and on land) 3) Lining of the mouth cavity; 4) Lungs As frogs can absorb water and breath through their skin, they are very susceptible to chemicals, including garden chemicals; An abundance and diversity of frogs is an indication of a healthy eco-system / garden • Threats to Frogs Highly sensitive to changes in the environment; Populations in decline around the world and in; Australia ; Contributing factors - Habitat loss; Introduced predator animals; Pollution and chemicals; Salinity; Climate change Chytrid fungus - First detected in Australia in 1978; 43 Australian species have declined; 7 extinctions; 6 species at high risk of extinction • A Gardeners’ Response 1. Stop using harsh garden chemicals 2. Use natural solutions to garden challenges 3. Be a responsible pet owner 4. Build a frog friendly garden 5. Contribute to scientific research via citizen science activities 6. Learn about your local frogs • Stop Using Garden Chemicals Frogs absorb moisture and breath through their skin and can easily absorb herbicides, pesticides and fertilisers; Pesticides kill a frog’s food source; Insects that have been sprayed can be harmful to frogs that eat them; Low levels of nitrates (e.g. -
Supplementary Methods S1
1 Validation methods for trophic niche models 2 3 To assign links between nodes (species), we used trophic niche-space models (e.g., [1]). 4 Each of these models has two quantile regressions that define the prey-size range a 5 predator of a given size is predicted to consume. Species whose body mass is within the 6 range of a predator’s prey size, as identified by the trophic niche-space model, are predicted 7 to be prey, while those outside the range are predicted not to be eaten. 8 9 The broad taxonomy of a predator helps to predict predation interactions [2]. To optimize 10 our trophic niche-space model, we therefore tested whether including taxonomic class of 11 predators improved the fit of quantile regressions. Using trophic (to identify which species 12 were predators), body mass, and taxonomic data, we fitted and compared five quantile 13 regression models (including a null model) to the GloBI data. In each model, we log10- 14 transformed the dependent variable prey body mass, and included for the independent 15 variables different combinations of log10-transformed predator body mass, predator class, 16 and the interaction between these variables (Supplementary Table S4). We log10- 17 transformed both predator and prey body mass to linearize the relationship between these 18 variables. We fit the five quantile regressions to the upper and lower 5% of prey body mass, 19 and compared model fits using the Bayesian information criterion (BIC). The predator body 20 mass*predator class model fit the 95th quantile data best, whereas the predator body mass 21 + predator class model fit the 5th quantile data marginally better than the aforementioned 22 interaction model (Supplementary Figure S2, Supplementary Table S4). -
Woinarski J. C. Z., Legge S. M., Woolley L. A., Palmer R., Dickman C
Woinarski J. C. Z., Legge S. M., Woolley L. A., Palmer R., Dickman C. R., Augusteyn J., Doherty T. S., Edwards G., Geyle H., McGregor H., Riley J., Turpin J., Murphy B.P. (2020) Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed. Wildlife Research, Vol. 47, Iss. 8, Pp 580-588. DOI: https://doi.org/10.1071/WR19182 1 2 3 Predation by introduced cats Felis catus on Australian frogs: compilation of species’ 4 records and estimation of numbers killed. 5 6 7 J.C.Z. Woinarskia*, S.M. Leggeb, L.A. Woolleya,k, R. Palmerc, C.R. Dickmand, J. Augusteyne, T.S. Dohertyf, 8 G. Edwardsg, H. Geylea, H. McGregorh, J. Rileyi, J. Turpinj, and B.P. Murphya 9 10 a NESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, 11 Charles Darwin University, Darwin, NT 0909, Australia 12 b NESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Research, 13 University of Queensland, St Lucia, QLD 4072, Australia; AND Fenner School of the Environment and 14 Society, The Australian National University, Canberra, ACT 2602, Australia 15 c Western Australian Department of Biodiversity, Conservation and Attractions, Bentley, WA 6983, 16 Australia 17 d NESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and 18 Environmental Sciences, University of Sydney, NSW 2006, Australia 19 e Queensland Parks and Wildlife Service, Red Hill, QLD 4701, Australia 20 f Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood campus), Deakin 21 University, Geelong, VIC 3216, Australia 22 g Northern Territory Department of Land Resource Management, PO Box 1120, Alice Springs, NT 0871, 23 Australia 24 h NESP Threatened Species Recovery Hub, School of Biological Sciences, University of Tasmania, 25 Hobart, TAS 7001, Australia i School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom. -
Do Temperature and Social Environment Interact to Affect Call Rate in Frogs (Crinia Signifera)?
Austral Ecology (2004) 29, 209–214 Do temperature and social environment interact to affect call rate in frogs (Crinia signifera)? BOB B. M. WONG,1* A. N. N. COWLING,2 ROSS B. CUNNINGHAM,2† CHRISTINE F. DONNELLY2 AND PAUL D. COOPER1 1School of Botany and Zoology, and 2Statistical Consulting Unit of the Graduate School, Australian National University, Canberra, Australian Capital Territory, Australia Abstract Acoustic displays are pervasive and conspicuous forms of sexual advertisement used by animals to attract mates. Evidence suggests that individuals may use environmental cues and/or the presence of other displaying animals to select the best times for display to optimize the chances of mating. Less well-known is how the physical and social environment might interact to affect the actual content of the display itself. We examined the effects of social environment and temperature on calling rate in a frog Crinia signifera. We found that both variables interacted to affect call rate but only among continuous callers. Call rate increased with temperature in individuals calling continuously on their own but no relationship was found in frogs calling continuously in the presence of others, either in a duet or in a group calling situation. We suggest that the temperature sensitivity of calling rate in frogs could depend on the social environment of the caller. As such, we suggest caution in generalizing about the way temperature affects calling rates in frogs and encourage greater consideration of how physical and social environ- ments might interact to influence the signal content of acoustic displays. Key words: male–male competition, Myobatrachidae, social environment, temperature. -
Frog Species of the ACT and Region
SOME FROG FACTS! Frogs are members of a class of animals with backbones (vertebrates) which evolved almost 400 million years ago. They are split up into three Orders or main groups: • The Caudata, or salamanders and newts, with 400 known species; • The Anura or frogs and toads, with 3500 species; and • The Gymnophonia, or worm-like amphibians, with 150 species. Amphibians are specialised in two ways: • Most have 2 distinct body phases in their life. They start as an aquatic tadpole living in water. Then they undergo a period of change, or metamorphosis, which leaves them as land living animals, with internal gills. • Their skin is very thin and moist. This lets them absorb oxygen and water through their skin, with a large network of blood vessels (capillaries) under the skin to transport gases and moisture. Frogs depend on water to breed, with most frogs breeding in shallow ponds, marshes and streams. However, some species live in areas where water is scarce or far away, for example tree frogs in tropical rainforests. These frogs lay their eggs in tree hollows or in the cup-like bases of certain plants (like bromeliads) where water collects. The eggs hatch in the watery pools and often the female frog comes back to lay feeder eggs to nourish the tadpoles as they grow. Some frogs can live in very dry areas, such as arid places and deserts. They take advantage of rain as it falls and can survive dry periods by storing water in their bodies and secreting mucus to waterproof their skin. Buried in the sand like this, they can survive until the next rains. -
Amphibians 26 November to 3 December 2018 Submitted: 1 April 2019 Dr Jodi Rowley and Christopher Portway
Bush Blitz – A.C.T. 26 November to 3 December 2018 A.C.T. Bush Blitz Amphibians 26 November to 3 December 2018 Submitted: 1 April 2019 Dr Jodi Rowley and Christopher Portway Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 7 Bush Blitz – A.C.T. 26 November to 3 December 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 3 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 4 2.1 Site selection ............................................................................................................. 4 2.2 Survey techniques ..................................................................................................... 4 2.2.1 Methods used at standard survey sites ................................................................... 4 2.3 Identifying the collections ......................................................................................... -
Peron's Tree Frog
mallee frogs field guide Mallee CMA Region Mallee CMA RegionMCMA MCMA Wentworth REGION Wentworth REGION Mildura Mildura Merbein Merbein VICTORIA VICTORIA Irymple Irymple Cullulleraine Cullulleraine Red Cliffs Red Cliffs MCMA MCMA Wentworth REGION Wentworth REGION Mildura Mildura Merbein Merbein Robinvale VICTORIA Robinvale VICTORIA Irymple Irymple Cullulleraine Cullulleraine Red Cliffs Red Cliffs Robinvale Robinvale Ouyen Ouyen Manangatang Manangatang Underbool Underbool Nyah Nyah Murrayville Murrayville Ouyen Ouyen Lake Lake Tyrell Manangatang Tyrell Manangatang UnderboolSea Lake UnderbooSea Lakel Nyah Nyah Murrayville Murrayville Woomelang Woomelang Hopetoun Lake Hopetoun Lake Tyrell Tyrell Sea Lake Sea Lake Rainbow Rainbow Beulah Beulah Birchip Birchip Woomelang Woomelang Hopetoun Hopetoun Rainbow Rainbow Beulah Beulah Birchip Birchip Acknowledgements The Mallee Catchment Management Authority would like to acknowledge the support of the Mallee community who assisted in development Acknowledgementsof this field guide. The Mallee Catchment Management Authority would like to acknowledge the Photography support of the Mallee community who Photographs are acknowledgedassisted in development of this field guide. within the guide. Front Cover Photos Photography ISBN: 978-1-920777-20-3 Peter Robertson and Photographs are acknowledged Wildlife Profiles Pty Ltd.within the guide. © Mallee CMA 2009 This publication is not for Litoria ewingii Front Cover Photos sale, copies are availableISBN: 978-1-920777-20-3 (Southern Brown Tree Frog)Peter Robertson -
August 2006 Issue 84
FATS MEETING 2 JUNE 2006 Pseudophryne is a genus of frogs that is susceptible to hybridisation for the following reasons: rthur White welcomed first timers and regular Aattendees. There’s nothing too peculiar about FATS 1 They are small frogs that do not move great distances people. We like frogs, have webbed toes and many of our 2 They have relatively undifferentiated mating calls members are absolute novices about amphibians. We meet 3 Some evidence suggests females may not hear well to answer and discuss frog related issues. If we don’t know (Pengilley) (although this is controversial) the answers as a collective, we will try to find out. 4 Numerous studies show hybrid zones for many Pseud Arthur spoke about Life as a Wallum Froglet. These little species where population ranges abut or overlap teeny tiny frogs, that no-one wants to talk about, measure (eg Woodruff 1978; Dennington 1990 etc). about 20mm, are cryptic, mud coloured frogs that like to hide Hybrids of P. australis and P. bibronii have been recorded in mud. You can hear them but don’t always see them. They in the past in other areas of the Greater Sydney region, but are listed as a threatened species in Queensland and NSW and the majority of these hybrid zones appear to have been lost. only occur within 2 k of the coast. These tiny frogs are easily The frogs found during this trip are currently at the museum confused with others because of their patterning variations having their DNA analysed to see if in fact they are hybrids and this has resulted in areas where Wallum Froglet occur or just very strange P. -
Regional Focus North and Central America and the Caribbean Edition Regional Updates and Latests Research
May 2011 Vol. 96 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus North and Central America and the Caribbean Edition Regional updates and latests research. New regional format for FrogLog. INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Eleutherodactylus portoricensis. Photo: R. L. Joglar. Who’s Chairing Salamanders Your Local ASG? Diversity in Find out who the regional chair is Guatemala for your country and help develop New species and rediscoveries the ASG FrogLog Vol. 96 | May 2011 | 1 FrogLog CONTENTS 3 Editorial NEWS FROM THE ASG 4 Your ASG questions answered Ranitomeya variabilis. 8 Haiti: An unlikely haven for amphibians Photo: J.L. Brown REGIONAL UPDATE 10 News from Regional 17 A new guide to the 26 Climbing for Chytrid: An Groups. identifi cation of Cuban frogs and Aerial Pursuit for Answers in toads Honduras 12 Amphibian Conservation Needs Assessment Workshop for 19 Protecting the Cuban Long 28 Searching for lost frogs of the Caribbean Nosed Toad the Craugastor rugulosus group: Understanding their 13 IUCN Red List Assessment 19 Results of the Cuban dissapearence and assesing their workshop for Amphibians of amphibians Red List Assessment current population status. Jamaica and Hispaniola 20 Anthropogenic Noise: Yet 29 Forensic Taxonomy and 14 New Hope for Dominican Another Fight for Frogs? the “new fossils” in Amphibian Frogs: PROYECTO RANA RD. Biology 22 Guatemalan Salamander 16 Puerto Rico: An island rich Diversity 30 Scaling a Global