Predation by Introduced Cats Felis Catus on Australian Frogs: Compilation of Species Records and Estimation of Numbers Killed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency. -
2.07 Frogs and Wetlands
Chapter 2.7 — Frogs and wetlands • 161 2.7 Frogs and wetlands Dr Arthur White Biosphere Environmental Consultants Pty Ltd Australia Abstract Australian frogs are remarkably diverse in their life styles and their use of wetlands. Our understanding of the ecological needs of frogs is incomplete but we do know some of the major requirements for survival, such as the need for clean water, the need for safe foraging areas, the need for shelter from predators and adverse weather conditions, the need for minimal habitat stress (as this increases the susceptibility of frogs to disease). The design of wetlands must take into account these over-riding requirements, plus the specific requirements that are unique to each frog species. In this paper, I refer to the management of the Green and Golden Bell Frog during the establishment of the Sydney Olympic site as an example of sorts of considerations that are required in managing frogs and wetlands. Chapter 2.7 — Frogs and wetlands • 162 Australian Frogs 2. Air pollution: massive amounts of Sulphur Dioxide and Nitrogen Dioxide (and There are about 250 described frog species in other gases) have been released into the Australia (Anstis 2013). This is a surprisingly high atmosphere since the Industrial Revolution. number of frog species for such an arid continent. These gases combine with moisture in the Australian frogs have had to adapt of the vagaries air and create toxic substances that kill frogs, of Australia’s climate and can survive in areas where other animals and plants. In the northern you would not expect them to be. -
Amphibian Neuropeptides: Isolation, Sequence Determination and Bioactivity
Amphibian Neuropeptides: Isolation, Sequence Determination and Bioactivity A Thesis submitted for the Degree of Doctor of Philosophy in the Department of Chemistry by Vita Marie Maselli B.Sc. (Hons) July 2006 Preface ___________________________________________________________________________________________ Contents Abstract viii Statement of Originality x Acknowledgements xi List of Figures xii List of Tables xv The 20 Common Amino Acids xvi Chapter 1- Amphibians and their Peptides 1 1.1 Amphibian Peptides 1 1.1a Amphibians 1 1.1b The Role of Anuran Peptides 2 1.2 The Pharmacology of Peptides 4 1.2a Neuropeptides 5 1.2b Hormonal Peptides 7 1.2c Antibacterial Peptides 8 1.2d Anticancer Agents 9 1.2e Antifungal Peptides 9 1.2f Antimalarial Peptides 9 1.2g Pheromones 10 1.2h Miscellaneous Peptides 10 1.3 Peptide Biosynthesis 11 1.4 Methodology 12 1.4a Collection of Frog Secretions 12 1.4b Analysis by High Performance Liquid Chromatography 13 1.4c Mass Spectrometry 14 1.4d Q-TOF 2 Hybrid Quadrupole Time of Flight Mass Spectrometer 15 ii Preface ___________________________________________________________________________________________ 1.5 Peptide Sequencing 18 1.5a Positive and Negative Ion Mass Spectrometry 18 1.5b Automated Edman Sequencing 21 1.5c Enzyme Digestion 22 1.5d Determination of the C-terminal End Group 23 1.6 Bioactivity Testing 24 Chapter 2- Studies of Skin Secretions from the Crinia genus 2.1 Introduction 25 2.1a General 25 2.1b Cyclic Peptides 29 2.2 Host-Defence Compounds from Crinia riparia 30 2.2a Results 30 2.2.1a Isolation -
Draft Animal Keepers Species List
Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290, -
White-Bellied and Orange-Bellied Frogs Geocrinia Species
White-bellied and Orange-bellied Frogs Geocrinia species Conservation Status: Critically Endangered and Vulnerable Identification The white-bellied frog Geocrinia alba and orange-bellied frog Geocrinia vitellina are two small species of frogs that are endemic to Western Australia and are both restricted to small areas in the lower southwest. There are also two other Geocrinia species found in the similar habitats in the southwest. The white-bellied frog has a light brown to grey back with two parallel rows of darker brown wart-like spots along the body. The belly is white, with or without a very faint yellow wash. Toes are short and unwebbed. The males make a mating call that is a series of 11-18 rapid pulses repeated irregularly. White-bellied frog. Photo: Perth Zoo You can listen to a recording of the call on the Western Australian Museum’s website. White-bellied Length: 2.0-2.4cm (males) and 1.7cm (females) The orange-bellied frog is similar-looking to the white-bellied frog, except that it has a bright orange or egg-yolk yellow coloured belly. The males making a mating call that is a series of 9-15 slow pulses repeated irregularly. You can listen to a recording of the call on the Western Australian Museum’s website. Orange-bellied Length 2.1-2.5cm (males) 1.8cm (females) Taxonomy Orange-bellied frog. Photo: Perth Zoo Family: Myobatrachidae Genus: Geocrinia Species (white-bellied): alba Species (orange-bellied): vitellina Other common names: the orange-bellied frog is also sometimes referred to as the yellow-bellied frog, because some have a bright yellow belly rather than a bright orange belly. -
Vertebrate Fauna in the Southern Forests of Western Australia
tssN 0085-8129 ODC151:146 VertebrateFauna in The SouthernForests of WesternAustralia A Survey P. CHRISTENSEN,A. ANNELS, G. LIDDELOW AND P. SKINNER FORESTS DEPARTMENT OF WESTERN AUSTRALIA BULLETIN94, 1985 T:- VertebrateFauna in The SouthernForests of WesternAustralia A Survey By P. CHRISTENSEN, A. ANNELS, G. LIDDELOW AND P. SKINNER Edited by Liana ChristensenM.A. (w.A.I.T.) Preparedfor Publicationby Andrew C.A. Cribb B.A. (U.W.A.) P.J. McNamara Acting Conservator of Forcsts 1985 I I r FRONT COVER The Bush R.at (Rattus fuscipes): the most abundantof the native mammals recordedby the surueyteams in WesternAustralia's southernforests. Coverphotograph: B. A. & A. C. WELLS Printed in WesternAustralia Publishedby the ForestsDepartmeDt of WesternAustralia Editor MarianneR.L. Lewis AssistantEditor Andrew C.A. Cribb DesignTrish Ryder CPl9425/7/85- Bf Atthority WILLIAM BENBOW,Aciing Cov€mmenaPrinter, Wesrern Ausrralia + Contents Page SUMMARY SECTION I-INTRODUCTION HistoricalBackground. Recent Perspectives SECTION II-DESCRIPTION OF SURVEY AREA Boundariesand PhysicalFeatures 3 Geology 3 Soils 3 Climate 6 Vegetation 6 VegetationTypes. 8 SECTION III-SURVEY METHODS 13 SECTION IV-SURVEY RESULTSAND LIST OF SPECIES. l6 (A) MAMMALS Discussionof Findings. l6 List of Species (i) IndigenousSpecies .17 (ii) IntroducedSpecies .30 (B) BIRDS Discussionof Findings List of Species .34 (C) REPTILES Discussionof Findings. List of Species. .49 (D) AMPHIBIANS Discussionof Findings. 55 List of Species. 55 (E) FRESHWATER FISH Discussionof Findings. .59 List of Species (i) IndigenousSpecies 59 (ii) IntroducedSpecies 6l SECTION V-GENERALDISCUSSION 63 ACKNOWLEDGEMENTS 68 REFERENCES 69 APPENDICES I-Results from Fauna Surveys 1912-t982 72 II-Results from Other ResearchStudies '74 Within The SurveyArea 1970-1982. -
Distribution and Calling Phenology of Generalist Frog Species Along a Climate Gradient
Distribution and calling phenology of generalist frog species along a climate gradient Amelia Walcott A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Charles Sturt University Faculty of Science School of Environmental Sciences Albury, NSW 2640 Australia January 2017 i ii iii iv TABLE OF CONTENTS List of Figures ......................................................................................................................................... x List of Tables....................................................................................................................................... xiii List of Plates ........................................................................................................................................ xiv Certificate of Authorship ................................................................................................................ xv Acknowledgements ......................................................................................................................... xvii Abstract ................................................................................................................................................ xix Chapter 1 General introduction: Environmental drivers of amphibian distribution and resource use in modified temperate ecosystems ........................................................... 1 1.1 Wetland and amphibian decline ....................................................................................... -
Status Review, Disease Risk Analysis and Conservation Action Plan for The
Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW). -
North Central Waterwatch Frogs Field Guide
North Central Waterwatch Frogs Field Guide “This guide is an excellent publication. It strikes just the right balance, providing enough information in a format that is easy to use for identifying our locally occurring frogs, while still being attractive and interesting to read by people of all ages.” Rodney Orr, Bendigo Field Naturalists Club Inc. 1 The North Central CMA Region Swan Hill River Murray Kerang Cohuna Quambatook Loddon River Pyramid Hill Wycheproof Boort Loddon/Campaspe Echuca Watchem Irrigation Area Charlton Mitiamo Donald Rochester Avoca River Serpentine Avoca/Avon-Richardson Wedderburn Elmore Catchment Area Richardson River Bridgewater Campaspe River St Arnaud Marnoo Huntly Bendigo Avon River Bealiba Dunolly Loddon/Campaspe Dryland Area Heathcote Maryborough Castlemaine Avoca Loddon River Kyneton Lexton Clunes Daylesford Woodend Creswick Acknowledgement Of Country The North Central Catchment Management Authority (CMA) acknowledges Aboriginal Traditional Owners within the North Central CMA region, their rich culture and their spiritual connection to Country. We also recognise and acknowledge the contribution and interests of Aboriginal people and organisations in the management of land and natural resources. Acknowledgements North Central Waterwatch would like to acknowledge the contribution and support from the following organisations and individuals during the development of this publication: Britt Gregory from North Central CMA for her invaluable efforts in the production of this document, Goulburn Broken Catchment Management Authority for allowing use of their draft field guide, Lydia Fucsko, Adrian Martins, David Kleinert, Leigh Mitchell, Peter Robertson and Nick Layne for use of their wonderful photos and Mallee Catchment Management Authority for their design support and a special thanks to Ray Draper for his support and guidance in the development of the Frogs Field Guide 2012. -
ARAZPA Amphibian Action Plan
Appendix 1 to Murray, K., Skerratt, L., Marantelli, G., Berger, L., Hunter, D., Mahony, M. and Hines, H. 2011. Guidelines for minimising disease risks associated with captive breeding, raising and restocking programs for Australian frogs. A report for the Australian Government Department of Sustainability, Environment, Water, Population and Communities. ARAZPA Amphibian Action Plan Compiled by: Graeme Gillespie, Director Wildlife Conservation and Science, Zoos Victoria; Russel Traher, Amphibian TAG Convenor, Curator Healesville Sanctuary Chris Banks, Wildlife Conservation and Science, Zoos Victoria. February 2007 1 1. Background Amphibian species across the world have declined at an alarming rate in recent decades. According to the IUCN at least 122 species have gone extinct since 1980 and nearly one third of the world’s near 6,000 amphibian species are classified as threatened with extinction, placing the entire class at the core of the current biodiversity crisis (IUCN, 2006). Australasia too has experienced significant declines; several Australian species are considered extinct and nearly 25% of the remainder are threatened with extinction, while all four species native to New Zealand are threatened. Conventional causes of biodiversity loss, habitat destruction and invasive species, are playing a major role in these declines. However, emergent disease and climate change are strongly implicated in many declines and extinctions. These factors are now acting globally, rapidly and, most disturbingly, in protected and near pristine areas. Whilst habitat conservation and mitigation of threats in situ are essential, for many taxa the requirement for some sort of ex situ intervention is mounting. In response to this crisis there have been a series of meetings organised by the IUCN (World Conservation Union), WAZA (World Association of Zoos & Aquariums) and CBSG (Conservation Breeding Specialist Group, of the IUCN Species Survival Commission) around the world to discuss how the zoo community can and should respond. -
(Geocrinia Alba and Geocrinia Vitellina) Recovery Plan
White-bellied and Orange-bellied Frogs (Geocrinia alba and Geocrinia vitellina) Recovery Plan Geocrinia alba Geocrinia vitellina Western Australian Wildlife Management Program No. 59 Department of Parks and Wildlife August 2014 Western Australian Wildlife Management Program No. 59 White-bellied and Orange-bellied Frogs (Geocrinia alba and Geocrinia vitellina) Recovery Plan August 2014 Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre WA 6983 Foreword Recovery Plans are developed within the framework laid down in Department of Parks and Wildlife Policy Statements Nos 44 and 50 (CALM 1992; CALM 1994), and the Australian Government Department of the Environment’s Recovery Planning Compliance Checklist for Legislative and Process Requirements (DEWHA 2008). Recovery Plans delineate, justify and schedule management actions necessary to support the recovery of threatened species and ecological communities. Recovery plans are a partnership between the Department of the Environment and the Department of Parks and Wildlife. The Department of Parks and Wildlife acknowledges the role of the Environment Protection and Biodiversity Conservation Act 1999 and the Department of the Environment in guiding the implementation of this recovery plan. The attainment of objectives and the provision of funds necessary to implement actions are subject to budgetary and other constraints affecting the parties involved, as well as the need to address a range of priorities. Recovery Plans do not necessarily represent the views or the official position of individuals or organisations represented on the Recovery Team. This Recovery Plan was approved by the Department of Parks and Wildlife, Western Australia. Approved Recovery Plans are subject to modification as dictated by new findings, changes in status of the taxon or ecological community and the completion of recovery actions.