Do Temperature and Social Environment Interact to Affect Call Rate in Frogs (Crinia Signifera)?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
Status Review, Disease Risk Analysis and Conservation Action Plan for The
Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW). -
Modeling Amphibian Breeding Phenology
Open Research Online The Open University’s repository of research publications and other research outputs The effect of environmental variables on amphibian breeding phenology Thesis How to cite: Grant, Rachel Anne (2012). The effect of environmental variables on amphibian breeding phenology. PhD thesis The Open University. For guidance on citations see FAQs. c 2012 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000ee36 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk UNiZ(Sl RIC1ED' THE EFFECT OF ENVIRONMENTAL VARIABLES ON AMPHIBIAN BREEDING PHENOLOGY A thesis submitted in accordance with the requirements of the Open University for the degree of Doctor of Philosophy In the discipline of Life Sciences by Rachel Anne Grant (BSc. Hons, PG Dip) Submitted on 31/10/11 Supervisors: Prof. Tim Halliday, Dr Franco Andreone and Dr Mandy Dyson 1 Do..,te ~ SLlbn,u05w,,<: 2'6 Od.obc( 2011 'Dcu~ ~ 1\\\10C6.·: 2 Ct M.0(( '\. J_ 0\2. _ APPENDIX NOT COPIED ON INSTRUCTION FROM UNIVERSITY Abstract Amphibian breeding phenology has generally been associated with temperature and rainfall, but these variables are not able to explain all of the variation in the timing of amphibian migrations, mating and spawning. This thesis examines some additional, previously under-acknowledged geophysical variables that may affect amphibian breeding phenology: lunar phase and the K-index of geomagnetic activity. -
Predation by Introduced Cats Felis Catus on Australian Frogs: Compilation of Species Records and Estimation of Numbers Killed
Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed J. C. Z. WoinarskiA,M, S. M. LeggeB,C, L. A. WoolleyA,L, R. PalmerD, C. R. DickmanE, J. AugusteynF, T. S. DohertyG, G. EdwardsH, H. GeyleA, H. McGregorI, J. RileyJ, J. TurpinK and B. P. MurphyA ANESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia. BNESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Research, University of Queensland, St Lucia, Qld 4072, Australia. CFenner School of the Environment and Society, Linnaeus Way, The Australian National University, Canberra, ACT 2602, Australia. DWestern Australian Department of Biodiversity, Conservation and Attractions, Bentley, WA 6983, Australia. ENESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. FQueensland Parks and Wildlife Service, Red Hill, Qld 4701, Australia. GCentre for Integrative Ecology, School of Life and Environmental Sciences (Burwood campus), Deakin University, Geelong, Vic. 3216, Australia. HNorthern Territory Department of Land Resource Management, PO Box 1120, Alice Springs, NT 0871, Australia. INESP Threatened Species Recovery Hub, School of Biological Sciences, University of Tasmania, Hobart, Tas. 7001, Australia. JSchool of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom. KDepartment of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia. LPresent address: WWF-Australia, 3 Broome Lotteries House, Cable Beach Road, Broome, WA 6276, Australia. MCorresponding author. Email: [email protected] Table S1. Data sources used in compilation of cat predation on frogs. -
ARAZPA YOTF Infopack.Pdf
ARAZPA 2008 Year of the Frog Campaign Information pack ARAZPA 2008 Year of the Frog Campaign Printing: The ARAZPA 2008 Year of the Frog Campaign pack was generously supported by Madman Printing Phone: +61 3 9244 0100 Email: [email protected] Front cover design: Patrick Crawley, www.creepycrawleycartoons.com Mobile: 0401 316 827 Email: [email protected] Front cover photo: Pseudophryne pengilleyi, Northern Corroboree Frog. Photo courtesy of Lydia Fucsko. Printed on 100% recycled stock 2 ARAZPA 2008 Year of the Frog Campaign Contents Foreword.........................................................................................................................................5 Foreword part II ………………………………………………………………………………………… ...6 Introduction.....................................................................................................................................9 Section 1: Why A Campaign?....................................................................................................11 The Connection Between Man and Nature........................................................................11 Man’s Effect on Nature ......................................................................................................11 Frogs Matter ......................................................................................................................11 The Problem ......................................................................................................................12 The Reason -
Sperm Traits in the Quacking Frog (Crinia Georgiana), a Species with Plastic Alternative Mating Tactics
Behav Ecol Sociobiol (2007) 61:1303–1310 DOI 10.1007/s00265-007-0361-y ORIGINAL PAPER Sperm traits in the quacking frog (Crinia georgiana), a species with plastic alternative mating tactics Attila Hettyey & J. Dale Roberts Received: 2 February 2006 /Revised: 12 October 2006 /Accepted: 12 January 2007 / Published online: 30 January 2007 # Springer-Verlag 2007 Abstract In species where males use alternative reproduc- competition game played by C. georgiana males could tive tactics and male phenotypes are confronted with also explain the observed patterns in sperm traits. Future different risks of sperm competition, theory predicts that investigations determining the parameters responsible for between-male-type differences in sperm expenditure may the deviation from theoretical predictions in this system will evolve. In the frog Crinia georgiana big males can test the degree to which current theoretical models can monopolize females, whereas small males often engage in indeed be applied to species with plastic reproductive polyandrous matings. Consequently, big males may expe- tactics. rience a lower risk of sperm competition than do small males. We tested if the predictions from theoretical models Keywords Behavioral plasticity. External fertilization . can be applied to the mating system of C. georgiana. Our Mating tactic . Sperm characteristics . Sperm competition results showed that small males do not have larger testes relative to their body size compared to their larger counter- parts and that the efficiency with which sperm number, size, Introduction motility, and longevity are produced by the testes does not differ between small and large males in the predicted way. Sperm competition occurs whenever the sperm of two or These results are not in alignment with predictions from a more males compete for a given set of ova (Parker 1970). -
Edith Cowan University, South West Campus, Bunbury Fauna Assessment
EDITH COWAN UNIVERSITY, SOUTH WEST CAMPUS, BUNBURY FAUNA ASSESSMENT Prepared for EDITH COWAN UNIVERSITY Job: 07.154 Report: RP001 EDITH COWAN UNIVERISTY - Edith Cowan University, South West Campus, Bunbury, Fauna Assessment EDITH COWAN UNIVERSITY, SOUTH WEST CAMPUS, BUNBURY FAUNA ASSESSMENT Prepared for EDITH COWAN UNIVERSITY Prepared by ENV.Australia Pty Ltd Level 7, 182 St Georges Terrace PERTH WA 6000 Phone: (08) 9289 8360 Fax: (08) 9322 4251 Email: [email protected] Prepared by: Greg Harewood Status: Final QA Review: Dr Mike Brewis Technical Review: Dr Mitchell Ladyman Content Review: Mr Matthew Love Date: 19 February 2008 07.154 RP001 Final V3 (19-2-2008).doc EDITH COWAN UNIVERISTY - Edith Cowan University, South West Campus, Bunbury, Fauna Assessment TABLE OF CONTENTS EXECUTIVE SUMMARY .........................................................................................III 1 INTRODUCTION............................................................................................1 1.1 THE PROJECT ....................................................................................................................................... 1 1.1.1 Objectives................................................................................................................................................ 1 1.1.2 Location................................................................................................................................................... 2 1.1.3 Previous Biological Studies.................................................................................................................... -
Threatened Species Scientific Committee's Advice for the Wetlands and Inner Floodplains of the Macquarie Marshes
Threatened Species Scientific Committee’s Advice for the Wetlands and inner floodplains of the Macquarie Marshes 1. The Threatened Species Scientific Committee (the Committee) was established under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) and has obligations to present advice to the Minister for the Environment, Heritage and Water (the Minister) in relation to the listing and conservation of threatened ecological communities, including under sections 189, 194N and 266B of the EPBC Act. 2. The Committee provided this advice on the Wetlands and inner floodplains of the Macquarie Marshes ecological community to the Minister in June 2013. 3. A copy of the draft advice for this ecological community was made available for expert and public comment for a minimum of 30 business days. The Committee and Minister had regard to all public and expert comment that was relevant to the consideration of the ecological community. 4. This advice has been developed based on the best available information at the time it was assessed: this includes scientific literature, government reports, extensive advice from consultations with experts, and existing plans, records or management prescriptions for this ecological community. 5. This ecological community was listed as critically enadangered from 13 August 2013 to 11 December 2013. The listing was disallowed on 11 December 2013. It is no longer a matter of National Environmental Significance under the EPBC Act. Page 1 of 99 Threatened Species Scientific Committee’s Advice: -
Natural Values of the TWWH 2013 Extension
Natural Values of the Tasmanian Wilderness World Heritage Area 2013 Extension - Central North Sector Nature Conservation Report 20/3 DeparNaturalt mentand Cultural of Heritage PrDepartmentimaryNatural Industr of Values Primaryies, PaSurveyrk Industries,s, W• 2013ater TWWHA Parks,and En Water vExtensionironmen And Area, tEnvironment Central North Sector 1 Natural Values of the TWWHA Extension - Central North Sector Edited by Elise Dewar Document design by Land Tasmania Design Unit © Department of Primary Industries, Parks, Water and Environment This report was prepared under the direction of the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (Tasmanian Wilderness World Heritage Program). Australian Government funds contributed to the project. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Australian Governments. ISSN: 1838-7403 (electronic) Front cover photograph by Micah Visoiu; overlooking the headwaters of Brumby Creek in the TWWHA Cite as: DPIPWE (2020). Natural values of the Tasmanian Wilderness World Heritage Area 2013 Extension – Central North Sector. Nature Conservation Report 20/3, Department of Primary Industries, Parks, Water and Environment, Hobart Natural Values Survey • 2013 TWWHA Extension Area, Central North Sector 2 KEY FINDINGS In 2013, an area of 172,276 ha was added to the Tasmanian Wilderness World Heritage Area (TWWHA). A review of the known natural values for this extension and the threats to those values highlighted significant knowledge gaps (Balmeret al., 2017). To redress these knowedge gaps, at least partially, a multi-disciplinary survey was undertaken in November 2019 to document flora, fauna and geodiversity values in part of the extension area known as the Central North Sector (CNS). -
Targeted Fauna Assessment.Pdf
APPENDIX H BORR North and Central Section Targeted Fauna Assessment (Biota, 2019) Bunbury Outer Ring Road Northern and Central Section Targeted Fauna Assessment Prepared for GHD December 2019 BORR Northern and Central Section Fauna © Biota Environmental Sciences Pty Ltd 2020 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 1463 Prepared by: V. Ford, R. Teale J. Keen, J. King Document Quality Checking History Version: Rev A Peer review: S. Ford Director review: M. Maier Format review: S. Schmidt, M. Maier Approved for issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx 3 BORR Northern and Central Section Fauna 4 Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx BORR Northern and Central Section Fauna BORR Northern and Central Section Fauna Contents 1.0 Executive Summary 9 1.1 Introduction 9 1.2 Methods -
Attracting Frogs to Your Garden @Sustainablegardeningaustralia #Sustainablegardeningaustralia
Sustainable Gardening Australia www.sgaonline.org.au [email protected] Attracting Frogs to your Garden @sustainablegardeningaustralia #sustainablegardeningaustralia • Froggy Facts Frogs are carnivorous and will eat anything that fits in their mouths but mainly eating insects; Frogs are the only living native amphibian in Australia; Over 240 species of native frog in Australia; 21 new species have been discovered over the past decade; Undergo metamorphosis from a tadpole to a frog; Each frog species has a unique call; Four ways of breathing 1)Gills (tadpoles); 2) Skin (in water and on land) 3) Lining of the mouth cavity; 4) Lungs As frogs can absorb water and breath through their skin, they are very susceptible to chemicals, including garden chemicals; An abundance and diversity of frogs is an indication of a healthy eco-system / garden • Threats to Frogs Highly sensitive to changes in the environment; Populations in decline around the world and in; Australia ; Contributing factors - Habitat loss; Introduced predator animals; Pollution and chemicals; Salinity; Climate change Chytrid fungus - First detected in Australia in 1978; 43 Australian species have declined; 7 extinctions; 6 species at high risk of extinction • A Gardeners’ Response 1. Stop using harsh garden chemicals 2. Use natural solutions to garden challenges 3. Be a responsible pet owner 4. Build a frog friendly garden 5. Contribute to scientific research via citizen science activities 6. Learn about your local frogs • Stop Using Garden Chemicals Frogs absorb moisture and breath through their skin and can easily absorb herbicides, pesticides and fertilisers; Pesticides kill a frog’s food source; Insects that have been sprayed can be harmful to frogs that eat them; Low levels of nitrates (e.g. -
Supplementary Methods S1
1 Validation methods for trophic niche models 2 3 To assign links between nodes (species), we used trophic niche-space models (e.g., [1]). 4 Each of these models has two quantile regressions that define the prey-size range a 5 predator of a given size is predicted to consume. Species whose body mass is within the 6 range of a predator’s prey size, as identified by the trophic niche-space model, are predicted 7 to be prey, while those outside the range are predicted not to be eaten. 8 9 The broad taxonomy of a predator helps to predict predation interactions [2]. To optimize 10 our trophic niche-space model, we therefore tested whether including taxonomic class of 11 predators improved the fit of quantile regressions. Using trophic (to identify which species 12 were predators), body mass, and taxonomic data, we fitted and compared five quantile 13 regression models (including a null model) to the GloBI data. In each model, we log10- 14 transformed the dependent variable prey body mass, and included for the independent 15 variables different combinations of log10-transformed predator body mass, predator class, 16 and the interaction between these variables (Supplementary Table S4). We log10- 17 transformed both predator and prey body mass to linearize the relationship between these 18 variables. We fit the five quantile regressions to the upper and lower 5% of prey body mass, 19 and compared model fits using the Bayesian information criterion (BIC). The predator body 20 mass*predator class model fit the 95th quantile data best, whereas the predator body mass 21 + predator class model fit the 5th quantile data marginally better than the aforementioned 22 interaction model (Supplementary Figure S2, Supplementary Table S4).