Populus Phenylpropanoid Metabolism Across Biological Scales

Total Page:16

File Type:pdf, Size:1020Kb

Populus Phenylpropanoid Metabolism Across Biological Scales POPULUS PHENYLPROPANOID METABOLISM ACROSS BIOLOGICAL SCALES: PHYLOGENOMICS, MOLECULAR PHYSIOLOGY, AND ECOSYSTEM MODELING by LINDSEY KAY TUOMINEN (Under the Direction of Chung-Jui Tsai) ABSTRACT Phenylpropanoid metabolism is a major contributor to plant biotic and abiotic stress responses while also influencing ecosystem-level processes such as nitrogen cycling. Populus in particular is characterized by its rich diversity of phenylpropanoids, varying both qualitatively and quantitatively within and across species. This dissertation develops a cross-scale view of Populus secondary metabolism to consider (1) the genetic basis of metabolic diversity within the genus, (2) influences of phenylpropanoid homeostasis on cellular metabolism, and (3) theoretical ecosystem-level effects of altered Populus phenylpropanoid levels. I first characterized the Populus BAHD acyltransferase family, due to its likely contributions to phenylpropanoid diversity in the taxon, using a phylogenomic approach. The one hundred putative full-length BAHD genes in Populus arose through genome-wide and local duplication events, and possibly through retrotransposition. Correlation of phylogenetic and gene expression data suggests that some recent duplicates have undergone functional divergence. To study the cellular-level effects of phenylpropanoid metabolism in Populus , I analyzed metabolite and gene expression profiles of cell cultures fed phenylpropanoid enzyme inhibitors and/or the elicitor methyl jasmonate. Results suggest that the effects of enzyme inhibitors manifest primarily at the metabolic level, in contrast to the transcriptionally-driven changes under methyl jasmonate elicitation. Links between core phenylpropanoid metabolism and phenylpropanoid derivatives, glycosylation, amino acid metabolism, and the Krebs cycle became evident under metabolic perturbation. To consider possible ecological effects of manipulating phenylpropanoid metabolism in Populus , I developed ecosystem models for probing indirect effects of Populus phenotypes exhibiting increased growth and reduced secondary metabolism. Such phenotypes would be consistent with metabolic engineering goals for trees to be used as biofuels. Initial simulations indicated shifts in biomass of ecosystem components not directly interacting with Populus and generated hypotheses for future field research. The results support the potential of ecological modeling as a research and decision-making tool prior to design and field release of novel tree genotypes. This research advances knowledge of Populus phenylpropanoid metabolism in a coordinated manner across biological scales and subdisciplines, that should be complementary to more traditional, single-discipline oriented research. INDEX WORDS: Populus , secondary metabolism, phenylpropanoids, phylogenomics, metabolic profiling, transcriptomics, plant cell culture, systems ecology, transgenic risk assessment, indirect effects, cross-scale approach. POPULUS PHENYLPROPANOID METABOLISM ACROSS BIOLOGICAL SCALES: PHYLOGENOMICS, MOLECULAR PHYSIOLOGY, AND ECOSYSTEM MODELING by LINDSEY KAY TUOMINEN B.A., Macalester College, 2001 M.S., University of Massachusetts Amherst, 2003 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2012 © 2012 Lindsey Kay Tuominen All Rights Reserved POPULUS PHENYLPROPANOID METABOLISM ACROSS BIOLOGICAL SCALES: PHYLOGENOMICS, MOLECULAR PHYSIOLOGY, AND ECOSYSTEM MODELING by LINDSEY KAY TUOMINEN Major Professor: Chung-Jui Tsai Committee: Jeffrey F.D. Dean Robert O. Teskey James H. Leebens-Mack Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2012 DEDICATION For my parents, who raised me to see that the natural world matters, have allowed me the freedom to choose my own way, and still help me dust myself off every time I realize I’ve dug myself into a hole. For the Blasiaks, who provided me with more encouragement, inspiration, and advice than any doctoral student should ever require, particularly given the circumstances under which I asked for them. Mary will be greatly missed, and her words will not be forgotten. For Gwen, who stuck with me tenaciously from the snowiest winters to the stickiest summers. I know you made sacrifices for my ambition. I still hope to help your own dreams become real in some small way, even if my ability to do so is more limited than we imagined. Last, but not least, for the plants, from whom I have taken much and to whom I have given precious little, except perhaps some alternative pronouns in the places where I can indulge such extravagance. Our species is forever beholden to their kingdom. iv ACKNOWLEDGEMENTS I owe a particular debt of gratitude to my advisor, Dr. Chung-Jui Tsai, who invited me to join her laboratory nine months earlier than I had originally planned to start my doctoral studies. She has been an incredible teacher, providing regular and reliable opportunities to check in, give me feedback, and allow time for questions. She has displayed infinite patience when faced with my own diverse and wandering interests, and she held me back at just the right moment when I was about to walk off a metaphorical cliff, planning to defend a dissertation two-thirds finished. Her generous financial support, supplemented by my own efforts to secure assistantship and travel funding through the Graduate School, helped to sustain my home life through the worst economic downturn in my lifetime. My dissertation committee members, Drs. Leebens-Mack, Dean, and Teskey have each provided helpful research advice along the way. Dr. Leebens-Mack’s comments on an earlier draft of the work presented in Chapter 2 were extremely beneficial and gave me some much- needed confidence that the work as it stood was reasonably competent from the perspective of a molecular phylogeneticist. Dr. Teskey acted as a Capstone Reader for the version of Chapter 4 originally turned in for the Environmental Ethics Graduate Certificate Program, and he has provided me with a wealth of advice for future work to grow that seed into something sturdy enough to withstand the winds of peer review. Dr. Dean provided an array of ideas for new experiments to build on the work in Chapter 3, many of which I failed to fully appreciate until months afterwards. He can rest assured that I’ll be tapping his shoulder for more detailed v editorial advice as the work presented in Chapter 3 is advanced to peer-reviewed publication in the near future. Dr. Scott Harding, the Senior Research Scientist and Co-PI in the Tsai lab, has greatly assisted me by applying his depth of technical expertise and metabolic knowledge both in the laboratory and in the form of substantial editorial advice on the work presented in Chapter 3. Although not officially a member of my advisory committee, he has easily provided me enough help to qualify as an honorary member. I have also benefitted from the advice, collaboration, and expertise of our Assistant Research Scientist, Dr. Chris Frost, and of our postdoctoral researchers, most prominently Drs. Hong-Qiang (Horace) Wang, Batbayar (Baggi) Nyamdari, Ben Babst, Keming Luo, and Yinan Yuan. Our lab managers Hwee Chi (Kate) Tay and Vanessa Michelizzi have been impressively helpful in their detailed knowledge of the logistics of the Tsai lab, and their assistance in scheduling and training undergraduate student workers – along with the direct assistance of the undergraduates themselves -- greatly enhanced my workflow. The Tsai lab computational ninja Ed Johnson has provided cheerful assistance in a wide range of scientific and technical areas of my work relating to bioinformatics and computation, particularly in Chapter 2. Finally, my fellow graduate students have always helped me keep moving when the work was difficult. I particularly thank Raja Payyavula for laying the experimental groundwork for the analyses I carried out in Chapter 3 and for assisting with some early RNAi construct development, Mark Wilson for his ongoing work developing the lab’s custom metabolic profiling database and heroic attempts to translate chemical and biological technical needs into a computational framework, Lei (Eric) Du for applying the SLIM analysis to the microarray data in Chapter 3, Han-Yi Chen for providing refresher training in HPLC-MS and vi introducing me to the peculiarities of data extraction from the Tsai lab instrument, and Michael Bordeaux in the Dean lab for a healthy sense of perspective whenever I was mired in frustration. In a “second life” I have lived outside of the Tsai lab, Dr. Bernie Patten introduced me to the fascinating world of systems ecology. He has been an additional source of inspiration to me throughout my time at UGA, finally confirming for me a suspicion I have long held about the importance of mathematics for biology as a whole and for ecology in particular. Dr. Patten was a Capstone Reader for the work presented in Chapter 4, but his contributions to my thinking in Chapter 3 should not be underestimated. My understanding of metabolic pathways was deepened substantially by my interactions with him and the rest of the faculty, postdoctoral researchers, and graduate students in the Systems Ecology and Engineering group. My doctoral work actually started well over a year before my arrival at UGA, so I also wish to acknowledge the help, inspiration, and advice I received from my committee members at Michigan Technological University prior to
Recommended publications
  • Ethnomedicinal Profile of Flora of District Sialkot, Punjab, Pakistan
    ISSN: 2717-8161 RESEARCH ARTICLE New Trend Med Sci 2020; 1(2): 65-83. https://dergipark.org.tr/tr/pub/ntms Ethnomedicinal Profile of Flora of District Sialkot, Punjab, Pakistan Fozia Noreen1*, Mishal Choudri2, Shazia Noureen3, Muhammad Adil4, Madeeha Yaqoob4, Asma Kiran4, Fizza Cheema4, Faiza Sajjad4, Usman Muhaq4 1Department of Chemistry, Faculty of Natural Sciences, University of Sialkot, Punjab, Pakistan 2Department of Statistics, Faculty of Natural Sciences, University of Sialkot, Punjab, Pakistan 3Governament Degree College for Women, Malakwal, District Mandi Bahauddin, Punjab, Pakistan 4Department of Chemistry, Faculty of Natural Sciences, University of Gujrat Sialkot Subcampus, Punjab, Pakistan Article History Abstract: An ethnomedicinal profile of 112 species of remedial Received 30 May 2020 herbs, shrubs, and trees of 61 families with significant Accepted 01 June 2020 Published Online 30 Sep 2020 gastrointestinal, antimicrobial, cardiovascular, herpetological, renal, dermatological, hormonal, analgesic and antipyretic applications *Corresponding Author have been explored systematically by circulating semi-structured Fozia Noreen and unstructured questionnaires and open ended interviews from 40- Department of Chemistry, Faculty of Natural Sciences, 74 years old mature local medicine men having considerable University of Sialkot, professional experience of 10-50 years in all the four geographically Punjab, Pakistan diversified subdivisions i.e. Sialkot, Daska, Sambrial and Pasrur of E-mail: [email protected] district Sialkot with a total area of 3106 square kilometres with ORCID:http://orcid.org/0000-0001-6096-2568 population density of 1259/km2, in order to unveil botanical flora for world. Family Fabaceae is found to be the most frequent and dominant family of the region. © 2020 NTMS.
    [Show full text]
  • Plants-Derived Biomolecules As Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences Against Coronaviruses
    plants Review Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses Arif Jamal Siddiqui 1,* , Corina Danciu 2,*, Syed Amir Ashraf 3 , Afrasim Moin 4 , Ritu Singh 5 , Mousa Alreshidi 1, Mitesh Patel 6 , Sadaf Jahan 7 , Sanjeev Kumar 8, Mulfi I. M. Alkhinjar 9, Riadh Badraoui 1,10,11 , Mejdi Snoussi 1,12 and Mohd Adnan 1 1 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (M.A.); [email protected] (R.B.); [email protected] (M.S.); [email protected] (M.A.) 2 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania 3 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 5 Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India; [email protected] 6 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; [email protected] 7 Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia; [email protected] 8 Department of Environmental Sciences, Central University of Jharkhand,
    [Show full text]
  • Extraction, Quantification, and Cytokine Inhibitory Response Of
    separations Article Extraction, Quantification, and Cytokine Inhibitory Response of Bakuchiol in Psoralea coryfolia Linn. Deepak Khuranna 1, Sanchit Sharma 1, Showkat Rasool Mir 1, Mohd Aqil 2, Ajaz Ahmad 3, Muneeb U Rehman 3, Parvaiz Ahmad 4 , Mona S. Alwahibi 4, Mohamed Soliman Elshikh 4 and Mohd Mujeeb 1,* 1 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; [email protected] (D.K.); [email protected] (S.S.); [email protected] (S.R.M.) 2 Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; [email protected] 3 Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (A.A.); [email protected] (M.U.R.) 4 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (P.A.); [email protected] (M.S.A.); [email protected] (M.S.E.) * Correspondence: [email protected] Received: 18 August 2020; Accepted: 31 August 2020; Published: 11 September 2020 Abstract: (1) Background: The present investigation studies the optimization of extraction, quantification, and cytokine inhibitory effects bakuchiol (BKL) in Psoralea coryfolia Linn. (2) Methods: The seeds of Psoralea coryfolia cleaned, dried, and powdered. Different separation methods maceration, reflux, Soxhlet, and ultrasonic assisted extraction (UAE) were employed for the isolation of BKL by five pure solvents. The quantity of BKL was measured by high-performance liquid chromatography (HPLC) method to determine the highest yield percentage. The effect of optimized BKL was then tested in an animal model of sepsis induced by lipopolysaccharides (LPS).
    [Show full text]
  • View PDF for This Newsletter
    Newsletter No. 160 September 2014 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Bill Barker Mike Bayly State Herbarium of South Australia School of Botany PO Box 2732, Kent Town, SA 5071 University of Melbourne, Vic. 3010 Australia Australia Tel: (+61)/(0) 427 427 538 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Secretary Treasurer Frank Zich John Clarkson Australian Tropical Herbarium Queensland Parks and Wildlife Service E2 Building, J.C.U. Cairns Campus PO Box 156 PO Box 6811 Mareeba, Qld 4880 Cairns, Qld 4870 Australia Australia Tel: (+61)/(0) 7 4048 4745 Tel: (+61)/(0) 7 4059 5014 Mobile: (+61)/(0) 437 732 487 Fax: (+61)/(0) 7 4232 1842 Fax: (+61)/(0) 7 4092 2366 Email: [email protected] Email: [email protected] Councillor Councillor Ilse Breitwieser Leon Perrie Allan Herbarium Museum of New Zealand Te Papa Tongarewa Landcare Research New Zealand Ltd PO Box 467 PO Box 69040 Wellington 6011 Lincoln 7640 New Zealand New Zealand Tel: (+64)/(0) 4 381 7261 Tel: (+64)/(0) 3 321 9621 Fax: (+64)/(0) 4 381 7070 Fax: (+64)/(0) 3 321 9998 Email: [email protected] Email: [email protected] Other Constitutional Bodies Public Officer Affiliate Society Anna Monro Papua New Guinea Botanical Society Australian National Botanic Gardens GPO Box 1777 Canberra, ACT 2601 Australia Hansjörg Eichler Research Committee Tel: +61 (0)2 6250 9530 Philip Garnock-Jones Email: [email protected] David Glenny Betsy Jackes Greg Leach ASBS Website Nathalie Nagalingum www.asbs.org.au Christopher Quinn Chair: Mike Bayly, Vice President Webmasters Grant application closing dates: Anna Monro Hansjörg Eichler Research Fund: Australian National Botanic Gardens on March 14th and September 14th each year.
    [Show full text]
  • 12.2% 116000 120M Top 1% 154 3800
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 8 Potential Applications of Euphorbia hirta in Pharmacology Mei Fen Shih1 and Jong Yuh Cherng2* 1Department of Pharmacy, Chia-Nan University of Pharmacy & Science, Tainan, 2Department of Chemistry & Biochemistry, National Chung Cheng University, Chia-Yi, Taiwan 1. Introduction Euphorbia is a genus of plants belonging to the family Euphorbiaceae. Botanist and taxonomist Carl Linnaeus assigned the name Euphorbia to the entire genus in the physician's honor. Euphorbia hirta is a very popular herb amongst practitioners of traditional herb medicine, widely used as a decoction or infusion to treat various ailments including intestinal parasites, diarrhoea, peptic ulcers, heartburn, vomiting, amoebic dysentery, asthma, bronchitis, hay fever, laryngeal spasms, emphysema, coughs, colds, kidney stones, menstrual problems, sterility and venereal diseases. Moreover, the plant is also used to treat affections of the skin. In this chapter we explore those investigations related to their pharmacological activities (see the section 2.2). 2. Euphorbia hirta 2.1 Chemical Composition of Euphorbia hirta Phytochemical analysis of Euphorbia hirta (E. hirta) revealed the presence of reducing sugar, alkaloids, flavonoids, sterols, tannins and triterpenoids in the whole plant.
    [Show full text]
  • Comparison of Seed and Ovule Development in Representative Taxa of the Tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Rugenstein, Seanna Reilly, "Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) " (1983). Retrospective Theses and Dissertations. 8435. https://lib.dr.iastate.edu/rtd/8435 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • Insights from a Rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis Lanceolata Michx.)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2010 Conservation While Under Invasion: Insights from a rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis lanceolata Michx.) Sydne Record University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Plant Biology Commons Recommended Citation Record, Sydne, "Conservation While Under Invasion: Insights from a rare Hemiparasitic Plant, Swamp Lousewort (Pedicularis lanceolata Michx.)" (2010). Open Access Dissertations. 317. https://scholarworks.umass.edu/open_access_dissertations/317 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CONSERVATION WHILE UNDER INVASION: INSIGHTS FROM A RARE HEMIPARASITIC PLANT, SWAMP LOUSEWORT (Pedicularis lanceolata Michx.) A Dissertation Presented by SYDNE RECORD Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2010 Plant Biology Graduate Program © Copyright by Sydne Record 2010 All Rights Reserved CONSERVATION WHILE UNDER INVASION: INSIGHTS FROM A RARE HEMIPARASITIC PLANT, SWAMP LOUSEWORT (Pedicularis lanceolata Michx.) A Dissertation Presented by
    [Show full text]
  • Isoprenoid Emission in Hygrophyte and Xerophyte European Woody Flora: Ecological and Evolutionary Implications
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2014) 23, 334–345 bs_bs_banner RESEARCH Isoprenoid emission in hygrophyte and PAPER xerophyte European woody flora: ecological and evolutionary implications Francesco Loreto1*, Francesca Bagnoli2, Carlo Calfapietra3,4, Donata Cafasso5, Manuela De Lillis1, Goffredo Filibeck6, Silvia Fineschi2, Gabriele Guidolotti7, Gábor Sramkó8, Jácint Tökölyi9 and Carlo Ricotta10 1Dipartimento di Scienze Bio-Agroalimentari, ABSTRACT Consiglio Nazionale delle Ricerche, Piazzale Aim The relationship between isoprenoid emission and hygrophily was investi- Aldo Moro 7, 00185 Roma, Italy, 2Istituto per la Protezione delle Piante, Consiglio Nazionale gated in woody plants of the Italian flora, which is representative of European delle Ricerche, Via Madonna del Piano 10, diversity. 50019 Sesto Fiorentino (Firenze), Italy, Methods Volatile isoprenoids (isoprene and monoterpenes) were measured, or 3 Istituto di Biologia Agroambientale e data collected from the literature, for 154 species native or endemic to the Medi- Forestale, Consiglio Nazionale delle Ricerche, terranean. The Ellenberg indicator value for moisture (EIVM) was used to describe Via Marconi 3, Porano (Terni), Italy, plant hygrophily. Phylogenetic analysis was carried out at a broader taxonomic scale 4Global Change Research Centre – CzechGlobe, on 128 species, and then refined on strong isoprene emitters (Salix and Populus Belidla 4a, 603 00 Brno, Czech Republic, species) based on isoprene synthase gene sequences (IspS). 5Dipartimento di Biologia, Università degli Studi di Napoli ‘Federico II, Complesso Results Isoprene emitters were significantly more common and isoprene emis- Universitario di Monte S. Angelo, Via Cinthia, sion was higher in hygrophilous EIVM classes, whereas monoterpene emitters were 80126 Napoli, Italy, 6Dipartimento di Scienze more widespread and monoterpene emission was higher in xeric classes.
    [Show full text]
  • Herbal Therapy What Every Facial Plastic Surgeon Must Know
    ORIGINAL ARTICLE Herbal Therapy What Every Facial Plastic Surgeon Must Know Edmund deAzevedo Pribitkin, MD; Gregory Boger, MD erbal medicine (phytomedicine) uses remedies possessing significant pharmacologi- cal activity and, consequently, potential adverse effects and drug interactions. The explosion in sales of herbal therapies has brought many products to the marketplace that do not conform to the standards of safety and efficacy that physicians and pa- Htients expect. Unfortunately, few surgeons question patients regarding their use of herbal medi- cines, and 70% of patients do not reveal their use of herbal medicines to their physicians and phar- macists. All surgeons should question patients about the use of the following common herbal remedies, which may increase the risk of bleeding during surgical procedures: feverfew, garlic, ginger, ginkgo, and Asian ginseng. Physicians should exercise caution in prescribing retinoids or advising skin resurfacing in patients using St John’s wort, which poses a risk of photosensitivity reaction. Sev- eral herbal medicines, such as aloe vera gel, contain pharmacologically active ingredients that may aid in wound healing. Practitioners who wish to recommend herbal medicines to patients should counsel them that products labeled as supplements have not been evaluated by the US Food and Drug Administration and that no guarantee of product quality can be made. Arch Facial Plast Surg. 2001;3:127-132 The use of herbal medicine is widespread display space and marketing dollars to and growing. The actual and perceived high-profit herbal remedies. Naturally, re- relative safety of natural products is a ma- ports have begun to surface from poison jor reason for their popularity with the gen- control centers in various states detailing eral public.
    [Show full text]
  • Pharmacological Significance of Plants and Herbs Used in Islamic Medicine
    Pharmacological Significance of Plants and Herbs Used in Islamic Medicine Pages with reference to book, From 28 To 34 Muhammad Shoaib Akhtar ( Department of Physiology and Pharmacology, University of Agriculture, Faisalabad. ) Abstract This paper enlists some selected plants and herbs whose curative effects have already been proved by the modern researches and/or their active principles have been isolated. This shows correlation between empirical application and scientific use of medicinal plants for the treatment of certain diseases. In the end, some recent pharmacological screenings of medicinal plants carried out in our laboratories have been briefly described. (J.P.M.A. 35 28, 1985). Introduction Man’s health and well-being has been a subject of his primary concern from time irnmemorial. Centuries of observations, trials and error and the innate sense of curiosity has equipped mankind with a great deal of knowledge and wisdom that it has today in the field of modern medicine. The knowledge of drugs goes back to prehistoric times as man has always continued to find remedies to his maladies through the materials available in his environment. Sometimes, this purpose was achieved through eating a particular animals flesh or through a ritual but mostly it was through the use of plants and herbs growing in his environment. Continued observations on trial and error basis particularly regarding the use of herbs and plants for the treatment of ailments finally enabled man to establish various systems of medicine. They have probably the longest history of serving humanity. The system so called Islamic medicine includes infact all developments which have been made in different countries of the world by different nations and the new edifice that was, thereafter, erected by the Muslim scholars and physicians on the foundations unearthed by them.
    [Show full text]
  • I INDIVIDUALISTIC and PHYLOGENETIC PERSPECTIVES ON
    INDIVIDUALISTIC AND PHYLOGENETIC PERSPECTIVES ON PLANT COMMUNITY PATTERNS Jeffrey E. Ott A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology Chapel Hill 2010 Approved by: Robert K. Peet Peter S. White Todd J. Vision Aaron Moody Paul S. Manos i ©2010 Jeffrey E. Ott ALL RIGHTS RESERVED ii ABSTRACT Jeffrey E. Ott Individualistic and Phylogenetic Perspectives on Plant Community Patterns (Under the direction of Robert K. Peet) Plant communities have traditionally been viewed as spatially discrete units structured by dominant species, and methods for characterizing community patterns have reflected this perspective. In this dissertation, I adopt an an alternative, individualistic community characterization approach that does not assume discreteness or dominant species importance a priori (Chapter 2). This approach was used to characterize plant community patterns and their relationship with environmental variables at Zion National Park, Utah, providing details and insights that were missed or obscure in previous vegetation characterizations of the area. I also examined community patterns at Zion National Park from a phylogenetic perspective (Chapter 3), under the assumption that species sharing common ancestry should be ecologically similar and hence be co-distributed in predictable ways. I predicted that related species would be aggregated into similar habitats because of phylogenetically-conserved niche affinities, yet segregated into different plots because of competitive interactions. However, I also suspected that these patterns would vary between different lineages and at different levels of the phylogenetic hierarchy (phylogenetic scales). I examined aggregation and segregation in relation to null models for each pair of species within genera and each sister pair of a genus-level vascular plant iii supertree.
    [Show full text]