Phylogenetic Distribution and Identification of Fin-Winged Fruits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards an Understanding of the Evolution of Violaceae from an Anatomical and Morphological Perspective Saul Ernesto Hoyos University of Missouri-St
University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 8-7-2011 Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective Saul Ernesto Hoyos University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Hoyos, Saul Ernesto, "Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective" (2011). Theses. 50. http://irl.umsl.edu/thesis/50 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Saul E. Hoyos Gomez MSc. Ecology, Evolution and Systematics, University of Missouri-Saint Louis, 2011 Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Science July 2011 Advisory Committee Peter Stevens, Ph.D. Chairperson Peter Jorgensen, Ph.D. Richard Keating, Ph.D. TOWARDS AN UNDERSTANDING OF THE BASAL EVOLUTION OF VIOLACEAE FROM AN ANATOMICAL AND MORPHOLOGICAL PERSPECTIVE Saul Hoyos Introduction The violet family, Violaceae, are predominantly tropical and contains 23 genera and upwards of 900 species (Feng 2005, Tukuoka 2008, Wahlert and Ballard 2010 in press). The family is monophyletic (Feng 2005, Tukuoka 2008, Wahlert & Ballard 2010 in press), even though phylogenetic relationships within Violaceae are still unclear (Feng 2005, Tukuoka 2008). The family embrace a great diversity of vegetative and floral morphologies. Members are herbs, lianas or trees, with flowers ranging from strongly spurred to unspurred. -
Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration -
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level. -
Dipterocarps
1682 TROPICAL ECOSYSTEMS / Dipterocarps Dipterocarps B Krishnapillay, Forest Research Institute Malaysia, Kepong, Malaysia & 2004, Elsevier Ltd. All Rights Reserved. Introduction The dipterocarp forests of Southeast Asia constitute a dominant and particularly valuable component of the world’s tropical rainforest. As a family of plants, Dipterocarpaceae may perhaps hold the distinction of being the best-known trees in the tropics. Their ecosystems are extremely diverse. They are uneven in their age and multilayered. They grow all the year round under warm temperatures and on sites where there is a large amount of rainfall. However, those growing in the seasonal forest are generally medium sized with the tallest trees being around 20 m with a maximum diameter of about 50 cm. Generally dipterocarps have been observed to occur on soils with very low fertility. Currently the dipterocarps dominate the international tropical timber market, and therefore play an important role in the economy of many Southeast Asian countries. In addition to Figure 1 Phytogeographical distribution of the family Diptero- timber, this family of trees also produces other non- carpaceae worldwide. timber products like resins and oleoresins. 3. South Asia, which constitutes India, the Andaman Distribution Islands, Bangladesh, and Nepal. The present distribution patterns of dipterocarps are 4. Sri Lanka. thought to reflect routes of colonization and past 5. The Seychelles. climatic conditions. They are distributed over the 6. Africa, which constitutes Madagascar, a narrow tropical belts of three continents of Asia, Africa, and strip from Mali to Sudan in the northern hemi- South America (Figure 1). They occupy several phyto- sphere, and Congo. -
US Fish and Wildlife Service
BARNEBY REED-MUSTARD (S. barnebyi ) CLAY REED-MUSTARD SHRUBBY REED-MUSTARD (S,arguillacea) (S. suffrutescens) .-~ U.S. Fish and Wildlife Service UTAH REED—MUSTARDS: CLAY REED-MUSTARD (SCHOENOCRAMBE ARGILLACEA) BARNEBY REED—MUSTARD (SCHOENOCRAMBE BARNEBYI) SI-IRUBBY REED-MUSTARD (SCHOENOCRAMBE SUFFRUTESCENS) RECOVERY PLAN Prepared by Region 6, U.S. Fish and Wildlife Service Approved: Date: (~19~- Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect the species. Plans are prepared by the U.S. Fish and Wildlife Service, sometimes with the assistance of recovery teams, contractors, State agencies, and others. Objectives will only be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Recovery plans do not necessarily represent the views or the official positions or approvals of any individuals or agencies, other than the U.S. Fish and Wildlife Service, involved in the plan formulation. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as an~roved Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature Citation should read as follows: U.S. Fish and Wildlife Service. 1994. Utah reed—mustards: clay reed—mustard (Schoenocrambe argillacea), Barneby reed-mustard (Schoenocrambe barnebyl), shrubby reed—mustard (Schoenacranibe suffrutescens) recovery plan. Denver, Colorado. 22 pp. Additional copies may be purchased from: Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301/492—6403 or 1—800—582—3421 The fee for the plan varies depending on the number of pages of the plan. -
Anogeissus Acuminata (Roxb) Wall Ex Bedd in Vitro
International Journal of Complementary & Alternative Medicine Review Article Open Access Detection of free radical scavenging activity of dhaura, anogeissus acuminata (roxb) wall ex bedd in vitro Abstract Volume 12 Issue 4 - 2019 The free radical inhibitory activity of Dhaura, Anogeissus acuminata extracted in chloroform, ethanol and water was investigated in vitro. The DPPH inhibition by the Ganesh Chandra Jagetia, Zairempuii different stem extract depended on the concentration and the ethanol extract was found Department of Zoology, Mizoram University, India to be the most potent as the lower concentration of it was most effective in scavenging Correspondence: Ganesh Chandra Jagetia, Department of different free radicals. The analysis of superoxide radical scavenging activity showed that Zoology, Mizoram University, India, Email the aqueous extract was most effective when compared to chloroform and ethanol extracts. The different extracts of Dhaura also inhibited the generation of nitric oxide radical Received: August 5, 2019 | Published: August 27, 2019 depending on its concentration and maximum effect was observed at 200μg/ml. Our study indicates that free radical scavenging activity of Dhaura affirms the medicinal use by the practitioners of folklore medicine. Keywords: anogeissus acuminata, DPPH, superoxide, nitric oxide, endoplasmic reticulum, peroxisomes, mitochondria Abbreviations: EDTA, ethylenediaminetetraacetic acid; enlargement of spleen cold, dysuria, cough, excessive perspiration, 15 NBT, nitrobluetetrazolium; TCA, trichloroacetic acid; NED, N–(1– cholera, urinary disorders, snake bite and in scorpion sting. The Naphthyl)ethylenediamine dihydrochloride gum produced by Dhaura is called Ghatti or Indian gum and is used as a tonic after delivery.15,16 The preclinical studies have shown the Introduction alleviation of alloxan–induced diabetes in rats.17. -
The Phylogenetic Significance of Fruit Structural Variation in the Tribe Heteromorpheae (Apiaceae)
Pak. J. Bot., 48(1): 201-210, 2016. THE PHYLOGENETIC SIGNIFICANCE OF FRUIT STRUCTURAL VARIATION IN THE TRIBE HETEROMORPHEAE (APIACEAE) MEI LIU1*, BEN-ERIK VAN WYK2, PATRICIA M. TILNEY2, GREGORY M. PLUNKETT3 AND PORTER P. LOWRY II4,5 AND ANTHONY R. MAGEE6 1Department of Biology, Harbin Normal University, Harbin, People’s Republic of China 2Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, South Africa 3Cullman Program for Molecular Systematics, The New York Botanical Garden, Bronx, New York, United States of America 4Missouri Botanical Garden, Saint Louis, Missouri, United States of America 5Département Systématique et Evolution (UMR 7205) Muséum National d’Histoire Naturelle, CP 39, 57 rue Cuvier, 75213 Paris CEDEX 05, France 6South African National Biodiversity Institute, Compton Herbarium, Private Bag X7, Claremont 7735, South Africa *Correspondence author’s e-mail: [email protected]; Tel: +86 451 8806 0576; Fax: +86 451 8806 0575 Abstract Fruit structure of Apiaceae was studied in 19 species representing the 10 genera of the tribe Heteromorpheae. Our results indicate this group has a woody habit, simple leaves, heteromorphic mericarps with lateral wings. fruits with bottle- shaped or bulging epidermal cells which have thickened and cutinized outer wall, regular vittae (one in furrow and two in commissure) and irregular vittae (short, dwarf, or branching and anatosmosing), and dispersed druse crystals. However, lateral winged mericarps, bottle-shaped epidermal cells, and branching and anatosmosing vittae are peculiar in the tribe Heteromorpheae of Apioideae sub family. Although many features share with other early-diverging groups of Apiaceae, including Annesorhiza clade, Saniculoideae sensu lato, Azorelloideae, Mackinlayoideae, as well as with Araliaceae. -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Analgesic Effects of Methanolic Extracts of Anogeissus Latifolia Wall on Swiss Albino Mice
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Der Pharmacia Sinica, 2013, 4(5):79-82 ISSN: 0976-8688 CODEN (USA): PSHIBD Analgesic effects of methanolic extracts of Anogeissus latifolia wall on swiss albino mice Vijusha M.*1, Shalini K.2, Veeresh K.2, Rajini A.2 and Hemamalini K.1 1Teegala Ram Reddy College of Pharmacy, Meerpet, Hyderabad, Andhra Pradesh, India 2Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Andhra Pradesh, India _____________________________________________________________________________________________ ABSTRACT The main objective of my present research work is to find out the good pharmacological properties from medicinal plants with their preliminary phytochemical study and also to evaluate the analgesic activity of Anogeissus latifolia belongs to combretaceae family on mice by tail immersion, tail flick and eddy’s hot plate method. Dose was selected from the literature and the dose chosen for the study is 200 mg/kg, a small trial on acute toxicity was used to confirm the dose by using 2000 mg/kg, and there was no mortality found, so 1/10 th of this dose was chosen for analgesic activity. Normally herbal drugs are free of side effects and available in low cost. The methanolic extract of Anogeissus latifolia at 200 mg/kg showed a significant analgesic activity in tail immersion, tail flick, and hot plate model when compared to that of standard drug. Key words: Anogeissus latifolia, leaf, methanolic extract, tail immersion, tail flick and eddy’s hot plate model. _____________________________________________________________________________________________ INTRODUCTION In the history of medicine for the relief of pain many medicinal herbs has been used .natural products which contain many active principles are believed to have their potiential therapeutic value. -
Phylogeny of the Tropical Tree Family Dipterocarpaceae Based on Nucleotide Sequences of the Chloroplast Rbcl Gene1
American Journal of Botany 86(8): 1182±1190. 1999. PHYLOGENY OF THE TROPICAL TREE FAMILY DIPTEROCARPACEAE BASED ON NUCLEOTIDE SEQUENCES OF THE CHLOROPLAST RBCL GENE1 S. DAYANANDAN,2,6 PETER S. ASHTON,3 SCOTT M. WILLIAMS,4 AND RICHARD B. PRIMACK2 2Biology Department, Boston University, Boston, Massachusetts 02215; 3Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138; and 4Division of Biomedical Sciences, Meharry Medical College, 1005 D. B. Todd, Jr. Boulevard, Nashville, Tennessee 37208 The Dipterocarpaceae, well-known trees of the Asian rain forests, have been variously assigned to Malvales and Theales. The family, if the Monotoideae of Africa (30 species) and South America and the Pakaraimoideae of South America (one species) are included, comprises over 500 species. Despite the high diversity and ecological dominance of the Dipterocar- paceae, phylogenetic relationships within the family as well as between dipterocarps and other angiosperm families remain poorly de®ned. We conducted parsimony analyses on rbcL sequences from 35 species to reconstruct the phylogeny of the Dipterocarpaceae. The consensus tree resulting from these analyses shows that the members of Dipterocarpaceae, including Monotes and Pakaraimaea, form a monophyletic group closely related to the family Sarcolaenaceae and are allied to Malvales. The present generic and higher taxon circumscriptions of Dipterocarpaceae are mostly in agreement with this molecular phylogeny with the exception of the genus Hopea, which forms a clade with Shorea sections Anthoshorea and Doona. Phylogenetic placement of Dipterocarpus and Dryobalanops remains unresolved. Further studies involving repre- sentative taxa from Cistaceae, Elaeocarpaceae, Hopea, Shorea, Dipterocarpus, and Dryobalanops will be necessary for a comprehensive understanding of the phylogeny and generic limits of the Dipterocarpaceae. -
Forsythia.Pdf
A Horticulture Information article from the Wisconsin Master Gardener website, posted 18 April 2016 Forsythia, Forsythia spp. Forsythia is both the common and genus name of a group of deciduous fl ower shrubs in the olive family (Oleaceae) named after William Forsyth, a Scottish botanist who was at that time Director of the Royal Garden at Kensington and a founding member of England’s Royal Horticultural Society. The 11 or so species are primarily native to eastern Asia, with one species from Europe. The two quite variable species F. suspensa and F. viridissima were the fi rst to be brought from the Far East to Europe. Forsythia × intermedia is a hybrid of these species that was introduced in continental Europe Forsythia is a common landscape plant in the about 1880. Many Midwest. other crosses using the same two parents have been made so plants with this name can be quite variable. F. suspensa tends to have a widely open to drooping habit, but a more upright form found in China in 1861 was given the (incorrect) name F. fortunei. Other species discovered in the early 1900’s – F. giraldiana from China and F. ovata from Korea – as well as the European species F. europaea, have been used in 20th-century American crosses. Hardiness varies by species, with most in zones 5-8, but many of the hybrids are hardier than the parents, surviving in zones 4 or even 3. The unrelated white forsythia, Abeliophyllum distichum, has many of the same characteristics as forsythia, blooming White forsythia, Abeliophyllum about the same time, but with white fl owers. -
Plant List by Hardiness Zones
Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula