Plant List by Hardiness Zones

Total Page:16

File Type:pdf, Size:1020Kb

Plant List by Hardiness Zones Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula (European white birch) Elaeagnus pungens (thorny elaeagnus) Cornus alba (Tatarian dogwood) Ilex aquifolium (English holly) Elaeagnus angustifolia (Russian olive) Lagerstroemia indica (crapemyrtle) Euonymus alatus (winged euonymus - zone 3b) Melia azedarach (chinaberry - zone 7b) Hydrangea paniculata (panicle hydrangea) Osmanthus heterophyllus (holly osmanthus) Juniperus communis (common juniper) Pinus radiata (Monterey pine - zone 7b) Juniperus horizontalis (creeping juniper) Rhododendron Kurume Group (Kurume azalea) Lonicera tatarica (Tatarian honeysuckle) Sequoia sempervirens (coast redwood) Malus baccata (Siberian crabapple) Parthenocissus quinquefolia (Virginia creeper) Zone 8 Picea abies (Norway spruce) 10 to 20 F Pinus strobus (eastern white pine - zone 3b) -12.3 to -6.6 C Rosa rugosa (rugosa rose) Arbutus unedo (strawberry-tree) Spiraea ×vanhouttei (Van Houtte spirea) Butia capitata (Pindo palm - zone 8b) Thuja occidentalis (American arborvitae) Camellia reticulata (Yunnan camellia) Ceanothus impressus (Santa Barbara ceanothus) Zone 4 Choisya ternata (Mexican orange) -30 to -20 F Cinnamomum camphora (camphor tree) -34.5 to -28.9 C Eriobotrya japonica (loquat) Abeliophyllum distichum (white forsythia) ×Fatshedera lizei (botanical-wonder) Aesculus ×carnea (red horse-chestnut) Myrtus communis (true myrtle - zone 8b) Aristolochia durior (Dutchman's pipe) Nerium oleander (oleander - zone 8b) Berberis thunbergii (Japanese barberry) Olea eurpoaea (common olive) Forsythia ovata (early forsythia) Olearia x haastii (New Zealand daisy-bush) Ginkgo biloba (ginkgo, maidenhair-tree) Pittosporum tobira (Japanese pittosporum) Juniperus chinensis (Chinese juniper) Rhaphiolepis indica (Indian hawthorn) Ligustrum obtusifolium ssp. suave (Amur privet) Rhododendron 'Loderi King George' (hybrid rhododendron) Ligustrum vulgare (common privet) Rhododendron southern Indian hybrids (Indian azalea) Malus ×arnoldiana (Arnold crabapple) Viburnum tinus (laurustinus) Metasequoia glyptostroboides (dawn redwood) Parthenocissus tricuspidata (Boston ivy) Zone 9 Rhododendron mollis hybrids (mollis azalea) 20 to 30 F Taxus cuspidata (Japanese yew) -6.6 to -1.1 C Asparagus setaceus (asparagus-fern) Zone 5 Bauhinia variegata (orchidtree) -20 to -10 F Casuarina equisetifolia (Australian pine - zone 9b) -28.9 to -23.3 C Corymbia citriodora (lemon-scented gum) Acer palmatum (Japanese maple) Eucalyptus globulus (Tasmanian blue gum) Berberis aquifolium (Oregon-grape - zone 5b) Fremontodendron mexicanum (flannel bush) Carya illinoinensis 'Major' (pecan cultivar - grows, but does not fruit, in zone 5) Fuchsia hybrids (fuchsia) Chamaecyparis pisifera (Sawara cypress) Grevillea robusta (silky-oak) Cornus florida (flowering dogwood) Schinus molle (California pepper-tree) Cornus kousa (Japanese dogwood, kousa dogwood) Hibiscus rosa-sinensis (Chinese hibiscus) Cotoneaster microphyllus (small-leaf cotoneaster) Schinus terebinthifolius (Brazilian pepper-tree) Deutzia gracilis (slender deutzia) Syzygium paniculatum (Australian brush-cherry) Elaeagnus multiflora (cherry elaeagnus) Euonymus fortunei (winter-creeper) Zone 10 Forsythia suspensa (weeping forsythia - zone 5b) 30 to 40 F Hibiscus syriacus (shrub althaea, rose-of-Sharon - zone 5b) -1.1 to 4.4 C Iberis sempervirens (evergreen candytuft) Bougainvillea spectabilis (bougainvillea) Ilex crenata (Japanese holly - zone 5b) Cassia fistula (golden shower) Koelreuteria paniculata (golden rain-tree - zone 5b) Ensete ventricosum (Abyssinian-banana) Laburnum ×watereri (goldenchain tree) Euphorbia pulcherrima (poinsettia) Pieris japonica (Japanese andromeda) Ficus elastica (rubber plant) Prunus yedoensis (Yoshino cherry - zone 5b) Jacaranda acutifolia (green ebony) Rosa multiflora (multiflora rose) Roystonea regia (royal palm) Stewartia pseudocamellia (Japanese stewartia) Viburnum ×burkwoodii (Burkwood viburnum) Zelkova serrata (Japanese zelkova) .
Recommended publications
  • Ensete Ventricosum: a Multipurpose Crop Against Hunger in Ethiopia
    Hindawi e Scientific World Journal Volume 2020, Article ID 6431849, 10 pages https://doi.org/10.1155/2020/6431849 Review Article Ensete ventricosum: A Multipurpose Crop against Hunger in Ethiopia Getahun Yemata Bahir Dar University, College of Science, Department of Biology, Mail-79, Bahir Dar, Ethiopia Correspondence should be addressed to Getahun Yemata; [email protected] Received 2 October 2019; Accepted 20 December 2019; Published 6 January 2020 Academic Editor: Tadashi Takamizo Copyright © 2020 Getahun Yemata. (is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ensete ventricosum is a traditional multipurpose crop mainly used as a staple/co-staple food for over 20 million people in Ethiopia. Despite this, scientific information about the crop is scarce. (ree types of food, viz., Kocho (fermented product from scraped pseudostem and grated corm), Bulla (dehydrated juice), and Amicho (boiled corm) can be prepared from enset. (ese products are particularly rich in carbohydrates, minerals, fibres, and phenolics, but poor in proteins. Such meals are usually served with meat and cheese to supplement proteins. As a food crop, it has useful attributes such as foods can be stored for long time, grows in wide range of environments, produces high yield per unit area, and tolerates drought. It has an irreplaceable role as a feed for animals. Enset starch is found to have higher or comparable quality to potato and maize starch and widely used as a tablet binder and disintegrant and also in pharmaceutical gelling, drug loading, and release processes.
    [Show full text]
  • Erigenia : Journal of the Southern Illinois Native Plant Society
    ERIGENIA THE LIBRARY OF THE DEC IS ba* Number 13 UNIVERSITY OF ILLINOIS June 1994 ^:^;-:A-i.,-CS..;.iF/uGN SURVEY Conference Proceedings 26-27 September 1992 Journal of the Eastern Illinois University Illinois Native Plant Society Charleston Erigenia Number 13, June 1994 Editor: Elizabeth L. Shimp, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial St., Harrisburg, IL 62946 Copy Editor: Floyd A. Swink, The Morton Arboretum, Lisle, IL 60532 Publications Committee: John E. Ebinger, Botany Department, Eastern Illinois University, Charleston, IL 61920 Ken Konsis, Forest Glen Preserve, R.R. 1 Box 495 A, Westville, IL 61883 Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 Lawrence R. Stritch, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial Su, Harrisburg, IL 62946 Cover Design: Christopher J. Whelan, The Morton Arboretum, Lisle, IL 60532 Cover Illustration: Jean Eglinton, 2202 Hazel Dell Rd., Springfield, IL 62703 Erigenia Artist: Nancy Hart-Stieber, The Morton Arboretum, Lisle, IL 60532 Executive Committee of the Society - April 1992 to May 1993 President: Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 President-Elect: J. William Hammel, Illinois Environmental Protection Agency, Springfield, IL 62701 Past President: Jon J. Duerr, Kane County Forest Preserve District, 719 Batavia Ave., Geneva, IL 60134 Treasurer: Mary Susan Moulder, 918 W. Woodlawn, Danville, IL 61832 Recording Secretary: Russell R. Kirt, College of DuPage, Glen EUyn, IL 60137 Corresponding Secretary: John E. Schwegman, Illinois Department of Conservation, Springfield, IL 62701 Membership: Lorna J. Konsis, Forest Glen Preserve, R.R.
    [Show full text]
  • Ensete Ventricosum (Welw.) Cheesman]
    73 Fruits (6), 342–348 | ISSN 0248-1294 print, 1625-967X online | https://doi.org/10.17660/th2018/73.6.4 | © ISHS 2018 Review article – Thematic Issue Traditional enset [Ensete ventricosum (Welw.) Cheesman] improvement sucker propagation methods and opportunities for crop Z. Yemataw , K. Tawle 3 1 1 2,a 1 , G. Blomme and K. Jacobsen 23 The Southern Agricultural Research Institute (SARI-Areka), Areka Agricultural Research Center, P.O. Box 79, Areka, Ethiopia Bioversity International, c/o ILRI, P.O. Box 5689, Addis Ababa, Ethiopia Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium Summary Significance of this study Introduction – This review focuses on the enset What is already known on this subject? seed systems in Ethiopia and explores opportunities • to improve the system. Cultivated enset is predomi- nantly vegetatively propagated by farmers. Repro- Traditional macro-propagation methods, using entire duction of an enset plant from seed is seldom prac- scaperhizomes level. or rhizome pieces, currently suffice to pro- ticed by farmers and has been reported only from vide the needed enset suckers at farm, village or land- the highlands of Gardula. Seedlings arising from seed What are the new findings? are reported to be less vigorous than the suckers • e.g., obtained through vegetative propagation. Rhizomes when introducing a new enset cultivar or coping with from immature plants, between 2 and 6 years old, severeWhen larger disease quantities or pest impacts, of suckers improved/novel are needed, mi are preferred for the production of suckers. The aver- age number of suckers produced per rhizome ranges this review paper, could offer solutions.
    [Show full text]
  • Plant Materials Tech Note
    United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Plant Materials Plant Materials Technical Note No. MT-33 September 1999 PLANT MATERIALS TECH NOTE DESCRIPTION, PROPAGATION, AND USE OF SILVERBERRY Elaeagnus commutata. Introduction: Silverberry Elaeagnus commutata Bernh. ex. Rydb is a native shrub with potential use in streambank stabilization, wildlife habitat, windbreaks, and naturalistic landscaping projects. The purpose of this bulletin is to transfer information on the identification, culture, and proper use of this species. FIGURE 1 FRUIT STEM FOLIAGE I. DESCRIPTION Silverberry is a multi-stemmed, deciduous shrub ranging from 1.5 to 3.6 m (5 to 12 ft.) tall. In Montana, heights of 1.5 to 2.4 m (5 to 8 ft.) are most common. It has an erect, upright habit with slender and sometimes twisted branches. The new stems are initially a light to medium brown color, the bark becoming dark gray, but remaining smooth, with age. The leaves are deciduous, alternate, 38 to 89 mm (1.5 to 3.5 in.) long and 19 to 38 mm (0.75 to 1.5 in.) wide (see Figure 1). The leaf shape is described as oval to narrowly ovate with an entire leaf margin. Both the upper and lower leaf surfaces are covered with silvery white scales, the bottom sometimes with brown spots. The highly fragrant, yellow flowers are trumpet-shaped (tubular), approximately 13 mm (0.5 in.) in length, and borne in the leaf axils in large numbers in May or June. The fruit is a silvery-colored, 7.6 mm (0.3 in.) long, egg-shaped drupe that ripens in September to October.
    [Show full text]
  • Phylogenetic Relationships in Korean Elaeagnus L. Based on Nrdna ITS Sequences
    Korean J. Plant Res. 27(6):671-679(2014) Print ISSN 1226-3591 http://dx.doi.org/10.7732/kjpr.2014.27.6.671 Online ISSN 2287-8203 Original Research Article Phylogenetic Relationships in Korean Elaeagnus L. Based on nrDNA ITS Sequences OGyeong Son1, Chang Young Yoon2 and SeonJoo Park1* 1Department of Life Science, Yeungnam University, Gyeongsan 712-749, Korea 2Department of Biotechnology, Shingyeong University, Hwaseon 445-741, Korea Abstract - Molecular phylogenetic analyses of Korean Elaeagnus L. were conducted using seven species, one variety, one forma and four outgroups to evaluate their relationships and phylogeny. The sequences of internal transcribed spacer regions in nuclear ribosomal DNA were employed to construct phylogenetic relationships using maximum parsimony (MP) and Bayesian analysis. Molecular phylogenetic analysis revealed that Korean Elaeagnus was a polyphyly. E. umbellata var. coreana formed a subclade with E. umbellata. Additionally, the genetic difference between E. submacrophylla and E. macrophylla was very low. Moreover, E. submacrophylla formed a branch from E. macrophylla, indicating that E. submacrophylla can be regarded as a variety. However, several populations of this species were not clustered as a single clade; therefore, further study should be conducted using other molecular markers. Although E. glabra f. oxyphylla was distinct in morphological characters of leaf shape with E. glabra. But E. glabra f. oxyphylla was formed one clade by molecular phylogenetic with E. glabra. Additionally, this study clearly demonstrated that E. pungens occurs in Korea, although it was previously reported near South Korea in Japan and China. According to the results of ITS regions analyses, it showed a resolution and to verify the relationship between interspecies of Korean Elaeagnus.
    [Show full text]
  • International Journal of Agriculture and Veterinary Sciences
    www.iaard.net IAARD Journals eISSN:2456-009X International Journal of Agriculture And Veterinary Sciences IAARD-International Journal of Agriculture and Veterinary Sciences, 2017, 3(2),55-58 Seed Storage behavior of wild and cultivated enset (Enset Ventricosum) and conservation opportunity Seblework Belaineh Ethiopian Biodiversity Institute (EBI) P.O. Box 30726, Addis Ababa, Ethiopia ([email protected]),[email protected] ………………………………………………………………………………………………………………….. Abstract: Seed Storage behavior of wild and cultivated (Ensete ventricosum Welw. Cheesman) was not identified. Seeds are not the edible part of the plant. Belongs to species of the separate genus of the banana family. Variation within the species to altitude, soil and climate has allowed widespread cultivation in the Ethiopia. Genetic resources, is essential to the well-being of human kind, need to be conserved and utilized properly. Because of the urban development and road construction the wild relatives became very rare and therefore it is very vital to conserve wild and cultivated seeds in the gene bank. Most of the genetic diversity of enset is traditionally maintained in situ by farmers. The Ethiopian Biodiversity Institute (EBI) is responsible for the collection, conservation, & sustainable utilization of the country’s genetic recourses. To carry out this responsibility, the institute has been conserving genetic resources using both by in-situ and ex-situ conservation methods according to their national priority. The objective of this work was to determine the seed storage behavior of cultivated and wild enset & to mention conservation opportunities. Seeds of both wild and cultivated enset were collected and studied by using a standard protocol to determine seed storage behavior & identified as one of the orthodox seeds which can be conserved in the gene bank for long term conservation and sustainable utilization.
    [Show full text]
  • Ensete Ventricosum) Production and Its
    ISSN: 2224-0616 Int. J. Agril. Res. Innov. Tech. 11(1): 17-25, June 2021 Available online at https://ijarit.webs.com DOI: https://doi.org/10.3329/ijarit.v11i1.54462 https://www.banglajol.info/index.php/IJARIT What determines Enset (Ensete ventricosum) production and its contribution to household income? Empirical evidence from Ethiopia Ejigu Mulatu Received 7 February 2021, Revised 28 April 2021, Accepted 23 June 2021, Published online 30 June 2021 A B S T R A C T Enset production in Ethiopia is seemingly limited to only consumption-based production and most of producers supplied small amounts of products to the market. This study was conducted with main objective of assessing factors affecting market participation of enset producers in Chena district in southwestern Ethiopia. Two-stage sampling technique was employed to select 101 representative enset producer households. Both primary and secondary data sources were used to gather necessary data for attaining specific objectives of the study. Both descriptive statistics and econometric model were used to analyze the collected data. A Heckman two stage model was employed to analyze the factors affecting households’ decision in market participation in sale of enset products and the amount of gross income earned. Econometric model analysis result showed that; sex of household head, education level, livestock owned, a distance from nearest market center, enset plantation size, and transport access were found to be significant in affecting the probability of market participation decision. In addition, education level, family size, distance from market center, enset plantation, and transport access affected the amount of gross income earned from sale of different enset products.
    [Show full text]
  • Forsythia.Pdf
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 18 April 2016 Forsythia, Forsythia spp. Forsythia is both the common and genus name of a group of deciduous fl ower shrubs in the olive family (Oleaceae) named after William Forsyth, a Scottish botanist who was at that time Director of the Royal Garden at Kensington and a founding member of England’s Royal Horticultural Society. The 11 or so species are primarily native to eastern Asia, with one species from Europe. The two quite variable species F. suspensa and F. viridissima were the fi rst to be brought from the Far East to Europe. Forsythia × intermedia is a hybrid of these species that was introduced in continental Europe Forsythia is a common landscape plant in the about 1880. Many Midwest. other crosses using the same two parents have been made so plants with this name can be quite variable. F. suspensa tends to have a widely open to drooping habit, but a more upright form found in China in 1861 was given the (incorrect) name F. fortunei. Other species discovered in the early 1900’s – F. giraldiana from China and F. ovata from Korea – as well as the European species F. europaea, have been used in 20th-century American crosses. Hardiness varies by species, with most in zones 5-8, but many of the hybrids are hardier than the parents, surviving in zones 4 or even 3. The unrelated white forsythia, Abeliophyllum distichum, has many of the same characteristics as forsythia, blooming White forsythia, Abeliophyllum about the same time, but with white fl owers.
    [Show full text]
  • Ensete Ventricosum (Welw.) Cheesman
    [Ashango *, Vol.5 (Iss.5): May, 2017] ISSN- 2350-0530(O), ISSN- 2394-3629(P) ICV (Index Copernicus Value) 2015: 71.21 IF: 4.321 (CosmosImpactFactor), 2.532 (I2OR) InfoBase Index IBI Factor 3.86 Science EFFECT OF CORM AND CORM PIECES ON REGENERATION AND MULTIPLICATION OF ENSET (ENSETE VENTRICOSUM (WELW.) CHEESMAN) Taye Buke Ashango *1 *1 Wolaita Sodo UNIVERSITY, Wolaita Sodo, Ethiopia DOI: https://doi.org/10.29121/granthaalayah.v5.i5.2017.1860 Abstract A field study was conducted on ‘enset’ propagation at Humbo, Wolayta. The experiments of this study were executed with the objectives of determining size of whole corms and corm pieces for better sucker production. Five whole corm sizes (0.75, 3, 7, 11and15 kg), five bigger (0.8, 1.75, 2.3, 3.5 and 4.6) and three smaller (0.2, 0.3 and 0.4 kg) corm pieces, three corm piece positions (lower, middle and top) of horizontal cut. There were significant (p<0.01) differences among corms and corm pieces in the number of suckers. Whole corms with 7 kg gave the highest number of suckers; similarly, corm pieces with 3.5 kg. The mean number of suckers produced ranged from 9.5-28.4 for whole corms, 3.7-38.1 for corm piece. There was no positive and significant relationship between total number of suckers and growth. Many of the other growth parameters are associated with each other. The highest sucker number was recorded using corms of 7 kg corm and 3.5 kg corm pieces. 1) Significant variations among corms and corm pieces in the number of suckers formed, with whole corms, corms with 7 and 3 kg weights scored the highest number of suckers.
    [Show full text]
  • Agroforestry News Index Vol 1 to Vol 22 No 2
    Agroforestry News Index Vol 1 to Vol 22 No 2 2 A.R.T. nursery ..... Vol 2, No 4, page 2 Acorns, edible from oaks ..... Vol 5, No 4, page 3 Aaron, J R & Richards: British woodland produce (book review) ..... Acorns, harvesting ..... Vol 5, No 4, Vol 1, No 4, page 34 page 3 Abies balsamea ..... Vol 8, No 2, page Acorns, nutritional composition ..... 31 Vol 5, No 4, page 4 Abies sibirica ..... Vol 8, No 2, page 31 Acorns, removing tannins from ..... Vol 5, No 4, page 4 Abies species ..... Vol 19, No 1, page 13 Acorns, shelling ..... Vol 5, No 4, page 3 Acca sellowiana ..... Vol 9, No 3, page 4 Acorns, utilisation ..... Vol 5, No 4, page 4 Acer macrophyllum ..... Vol 16, No 2, page 6 Acorus calamus ..... Vol 8, No 4, page 6 Acer pseudoplatanus ..... Vol 3, No 1, page 3 Actinidia arguta ..... Vol 1, No 4, page 10 Acer saccharum ..... Vol 16, No 1, page 3 Actinidia arguta, cultivars ..... Vol 1, No 4, page 14 Acer saccharum - strawberry agroforestry system ..... Vol 8, No 1, Actinidia arguta, description ..... Vol page 2 1, No 4, page 10 Acer species, with edible saps ..... Vol Actinidia arguta, drawings ..... Vol 1, 2, No 3, page 26 No 4, page 15 Achillea millefolium ..... Vol 8, No 4, Actinidia arguta, feeding & irrigaton page 5 ..... Vol 1, No 4, page 11 3 Actinidia arguta, fruiting ..... Vol 1, Actinidia spp ..... Vol 5, No 1, page 18 No 4, page 13 Actinorhizal plants ..... Vol 3, No 3, Actinidia arguta, nurseries page 30 supplying ..... Vol 1, No 4, page 16 Acworth, J M: The potential for farm Actinidia arguta, pests and diseases forestry, agroforestry and novel tree ....
    [Show full text]
  • Conservation Trees and Shrubs for Montana
    Conservation Trees and Shrubs for Montana Montana mt.nrcs.usda.gov Introduction When you are contemplating which tree or shrub species to plant, your first thought might be, “Will this plant thrive here?” You will want to know if the plant will tolerate the temperatures, moisture, and soil conditions of the area. This publication focuses on identifying and describing trees and shrubs capable of tolerating Montana’s severe climatic and environmental conditions, the site conditions where they are best adapted to grow, and some of the benefits each tree and shrub provides. When looking at each of the provided attributes, consider these two points. First, these characteristics and traits are approximations, and variability within a species is quite common. Second, plant performance varies over time as a plant grows and matures. For example, even “drought tolerant” species require adequate moisture until their root systems become well established. Landowners and managers, homeowners, and others plant trees and shrubs for many reasons, including: windbreaks for livestock protection and crop production, shelterbelts for homes and farmsteads to reduce wind speed and conserve energy usage, living snow fences to trap and manage snow, hedgerows as visual and noise screens, landscaping for beautification around homes and parks, wildlife habitat and food, blossoms for pollinators such as bees, streamside and wetland restoration, reforestation following timber harvest or wildfire, and fruit and berries for human use to name just a few. Montana encompasses 93.3 million acres with temperature extremes ranging from -50 degrees F in northeast Montana, to 110 degrees F in summer in southcentral Montana.
    [Show full text]
  • Verbascoside-Rich Abeliophyllum Distichum Nakai Leaf Extracts
    molecules Article Verbascoside-Rich Abeliophyllum distichum Nakai Leaf Extracts Prevent LPS-Induced Preterm Birth Through Inhibiting the Expression of Proinflammatory Cytokines from Macrophages and the Cell Death of Trophoblasts Induced by TNF-α Ho Won Kim 1, A-Reum Yu 1, Minji Kang 2, Nak-Yun Sung 3 , Byung Soo Lee 3 , Sang-Yun Park 3 , In-Jun Han 3, Dong-Sub Kim 3 , Sang-Muk Oh 4, Young Ik Lee 5, Gunho Won 6, Sung Ki Lee 7,* and Jong-Seok Kim 1,* 1 Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; [email protected] (H.W.K.); [email protected] (A.-R.Y.) 2 Department of Medical Science, Chungnam National University, Daejeon 35365, Korea; [email protected] 3 Division of Natural Product Research, Korea Prime Pharmacy CO. LTD., Jeonnam 58144, Korea; [email protected] (N.-Y.S.); [email protected] (B.S.L.); [email protected] (S.-Y.P.); [email protected] (I.-J.H.); [email protected] (D.-S.K.) 4 Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; [email protected] 5 Industrial Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 35365, Korea; [email protected] 6 Centers for Disease Control & Prevention National Institute of Health 187, Chungcheongbuk-do 28159, Korea; [email protected] 7 Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea * Correspondence: [email protected] (S.K.L.); [email protected] (J.-S.K.); Tel.: +82-42-600-9114 (S.K.L.); +82-42-600-8648 (J.-S.K.) Academic Editors: Maurizio Battino, Jesus Simal-Gandara and Esra Capanoglu Received: 2 September 2020; Accepted: 5 October 2020; Published: 7 October 2020 Abstract: Background: Preterm birth is a known leading cause of neonatal mortality and morbidity.
    [Show full text]