Conservation Trees and Shrubs for Montana
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of British Columbia's Contemporary and Projected
Review of British Columbia’s contemporary and projected western larch seed planning zones in light of climate change. Barry Jaquish Research and Knowledge Management Branch, B.C. Ministry of Forests and Range Kalamalka Forestry Centre, Vernon, B.C. February 26, 2010 Background The catastrophic effects of mountain pine beetle on the forests of central British Columbia combined with the projected effects of climate change have stimulated intense debate over forest management throughout the region. One commonly suggested approach to mitigating these effects is to increase the region’s ecosystem complexity through the planting of either exotic tree species or native species whose distribution lies outside the central Interior. While the benefits of introducing exotic species remains controversial and speculative, the assisted, or facilitated, migration of native species presents a valuable tool for enhancing ecological complexity and ensuring the species’ pace of migration matches the expected rate of climate change. Western larch (Larix occidentalis Nutt), a species native to the upper Columbia River basin in southeastern B.C. (Fig. 1), is often suggested as a desirable candidate for introduction because of its rapid early growth, desirable wood properties, and generalist mode of adaptation. Indeed, western larch is already commonly planted north of its native range in southeastern B.C. (Plate 1) and over the last three decades numerous small operational and research plantings have demonstrated western larch’s reforestation potential on many sites throughout the central Interior (Plates 2, 3, 4, and 5). Ecologically, it appears that western larch’s fundamental niche exceeds its realized niche. Climate envelope modelling also suggests that the future climate space amenable to western larch lies far north of its contemporary distribution. -
Great Falls Montana Tourism Marketing Strategy
Great Falls Montana Tourism Marketing Strategy April 2017 Executive Summary Great Falls Montana Tourism has begun an ambitious initiative to attract more visitors to the City of Great Falls, supporting its growth and bolstering its economy. Successful tourism attraction will depend on the highly-targeted engagement of Great Falls’ audience groups – people looking for a vacation or meeting experience centered around the assets Great Falls has to offer. Great Falls Montana Tourism has engaged Atlas to develop a comprehensive tourism marketing strategy for the city to guide tourism attraction tactics and campaigns for maximum impact. To develop an effective strategy, Atlas has: • Assessed Great Falls’ tourism strengths and weaknesses, and the opportunities and threats, to growing the tourism economy, along with an analysis of in-state and regional competing communities • Performed a national survey of professional meeting planners to gauge the perception of Great Falls as a meeting destination, including respondents that have actively planned meetings in Great Falls and those who have not • Researched Great Falls’ online reputation on popular travel websites, including TripAdvisor, Yelp, Google Maps, and Facebook • Interviewed Great Falls Montana Tourism leadership and reviewed the previous, internally-developed marketing plan and tourism brand package and its supporting research developed by North Star Destination Strategies From this foundation of analysis and research, Atlas developed the positioning statement for Great Falls as a tourism -
Western Larch, Which Is the Largest of the American Larches, Occurs Throughout the Forests of West- Ern Montana, Northern Idaho, and East- Ern Washington and Oregon
Forest An American Wood Service Western United States Department of Agriculture Larch FS-243 The spectacular western larch, which is the largest of the American larches, occurs throughout the forests of west- ern Montana, northern Idaho, and east- ern Washington and Oregon. Western larch wood ranks among the strongest of the softwoods. It is especially suited for construction purposes and is exten- sively used in the manufacture of lumber and plywood. The species has also been used for poles. Water-soluble gums, readily extracted from the wood chips, are used in the printing and pharmaceutical industries. F–522053 An American Wood Western Larch (Lark occidentalis Nutt.) David P. Lowery1 Distribution Western larch grows in the upper Co- lumbia River Basin of southeastern British Columbia, northeastern Wash- ington, northwest Montana, and north- ern and west-central Idaho. It also grows on the east slopes of the Cascade Mountains in Washington and north- central Oregon and in the Blue and Wallowa Mountains of southeast Wash- ington and northeast Oregon (fig. 1). Western larch grows best in the cool climates of mountain slopes and valleys on deep porous soils that may be grav- elly, sandy, or loamy in texture. The largest trees grow in western Montana and northern Idaho. Western larch characteristically occu- pies northerly exposures, valley bot- toms, benches, and rolling topography. It occurs at elevations of from 2,000 to 5,500 feet in the northern part of its range and up to 7,000 feet in the south- ern part of its range. The species some- times grows in nearly pure stands, but is most often found in association with other northern Rocky Mountain con- ifers. -
Plant Materials Tech Note
United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Plant Materials Plant Materials Technical Note No. MT-33 September 1999 PLANT MATERIALS TECH NOTE DESCRIPTION, PROPAGATION, AND USE OF SILVERBERRY Elaeagnus commutata. Introduction: Silverberry Elaeagnus commutata Bernh. ex. Rydb is a native shrub with potential use in streambank stabilization, wildlife habitat, windbreaks, and naturalistic landscaping projects. The purpose of this bulletin is to transfer information on the identification, culture, and proper use of this species. FIGURE 1 FRUIT STEM FOLIAGE I. DESCRIPTION Silverberry is a multi-stemmed, deciduous shrub ranging from 1.5 to 3.6 m (5 to 12 ft.) tall. In Montana, heights of 1.5 to 2.4 m (5 to 8 ft.) are most common. It has an erect, upright habit with slender and sometimes twisted branches. The new stems are initially a light to medium brown color, the bark becoming dark gray, but remaining smooth, with age. The leaves are deciduous, alternate, 38 to 89 mm (1.5 to 3.5 in.) long and 19 to 38 mm (0.75 to 1.5 in.) wide (see Figure 1). The leaf shape is described as oval to narrowly ovate with an entire leaf margin. Both the upper and lower leaf surfaces are covered with silvery white scales, the bottom sometimes with brown spots. The highly fragrant, yellow flowers are trumpet-shaped (tubular), approximately 13 mm (0.5 in.) in length, and borne in the leaf axils in large numbers in May or June. The fruit is a silvery-colored, 7.6 mm (0.3 in.) long, egg-shaped drupe that ripens in September to October. -
Modeling the Effects of Climate Change on Western Larch Stands in Idaho Eric Olson Advisor: Kristen M
Northern Arizona University School of Forestry Spring 2018 Modeling the Effects of Climate Change on Western Larch Stands in Idaho Eric Olson Advisor: Kristen M. Waring, Ph. D. Readers: Peter Fulé, Ph. D. and John Riling TABLE OF CONTENTS Abstract Section 2.6. Management Strategy Modeling Section 1. Introduction Forest Vegetation Simulator Time Scale Section 1.1. Climate Change Section 1.2. Land Management and Western Larch Climate-FVS USFS National Forests Climate-FVS Regeneration Western Larch Fire and Fuel Extension Study Approach Section 3. Results Section 2. Methods Section 3.1 Current Conditions at Project Scale Section 2.1. Study Areas Section 3.2 Future Projections Section 2.2. Data Sources BNF Section 2.3. Treatments Defined No Action Section 2.4. Desired Landscape-Scale Conditions Resistance Species Composition Resilience Density IPNF Fire Hazard No Action Section 2.5. Management Options Resistance No Action Resilience Resistance Resilience Section 4. Discussion Section 5. Conclusion Literature Cited 1 Abstract Climate change research has shown irrefutably that global temperatures are rising, and almost all climate-model projections agree that in the coming decades the western US is likely to experience warmer springs and summers. Hotter and drier conditions are a concern for the future of western forests because climate is an important factor in determining plant distributions. The general effects of climate change on forests include a significant increase to the variability in disturbance regimes, shifts in species ranges, or a shift in germination and establishment requirements. Adding to the complexity of challenges faced by western forests are the poor land management practices of the 20th century, such as fire suppression and high- grade logging, which have led to an adverse change in forest structure including a decline in shade intolerant species such as western larch (Larix occidentalis). -
Wildfire Severity and Postfire Salvage Harvest Effects on Long‐Term Forest
Wildfire severity and postfire salvage harvest effects on long-term forest regeneration 1,2, 3 4 1,4 NICHOLAS A. POVAK , DEREK J. CHURCHILL, C. ALINA CANSLER, PAUL F. HESSBURG , 4 4 5 6 VAN R. KANE, JONATHAN T. KANE, JAMES A. LUTZ , AND ANDREW J. LARSON 1USDA-Forest Service, Pacific Northwest Research Station, 1133 N Western Avenue, Wenatchee, Washington 98801-1229 USA 2Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830 USA 3Washington State Department of Natural Resources, Forest Health and Resiliency Division, Olympia, Washington 98504 USA 4School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, Washington 98195 USA 5Quinney College of Natural Resources & Ecology Center, Utah State University, Logan, Utah 84322 USA 6W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, Montana 59812 USA Citation: Povak, N. A., D. J. Churchill, C. A. Cansler, P. F. Hessburg, V. R. Kane, J. T. Kane, J. A. Lutz, and A. J. Larson. 2020. Wildfire severity and postfire salvage harvest effects on long-term forest regeneration. Ecosphere 11(8):e03199. 10. 1002/ecs2.3199 Abstract. Following a wildfire, regeneration to forest can take decades to centuries and is no longer assured in many western U.S. environments given escalating wildfire severity and warming trends. After large fire years, managers prioritize where to allocate scarce planting resources, often with limited informa- tion on the factors that drive successful forest establishment. Where occurring, long-term effects of postfire salvage operations can increase uncertainty of establishment. Here, we collected field data on postfire regeneration patterns within 13- to 28-yr-old burned patches in eastern Washington State. -
The Mountain Pine Beetle
The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson Sponsored by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre Victoria, BC Canada 2006 Pacific Forestry Centre 506 West Burnside Road Victoria, British Columbia V8Z 1M5 Phone: (250) 363-0600 www.pfc.cfs.nrcan.gc.ca © Her Majesty the Queen in Right of Canada, 2006 Printed in Canada Library and Archives Canada Cataloguing in Publication Safranyik, L., 1938- The mountain pine beetle : a synthesis of biology, management, and impacts on lodgepole pine / by Les Safranyik and Bill Wilson. Includes bibliographical references. Available also on the Internet and on CD-ROM. ISBN 0-662-42623-1 Cat. no.: Fo144-4/2006E 1. Mountain pine beetle. 2. Lodgepole pine--Diseases and pests--Control--Canada, Western. 3. Lodgepole pine--Diseases and pests--Economic aspects--Canada, Western. 4. Lodgepole pine—Diseases and pests--Control. 5. Forest management--Canada, Western. I. Wilson, Bill, 1950- II. Pacific Forestry Centre III. Title. SB945.M78S33 2006 634.9’7516768 C2006-980019-7 This book presents a synthesis of published information on mountain pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: Scolytidae]) biology and management with an emphasis on lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of western Canada. Intended as a reference for researchers as well as forest managers, the book covers three main subject areas: mountain pine beetle biology, management, and socioeconomic concerns. -
Plant List by Hardiness Zones
Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula -
Energy and Climate Change in Montana 6 Semester Credits
Combined Syllabi | 2019 Cycle the Rockies- Energy and Climate Change in Montana 6 semester credits Academic Credit All courses offered by the Wild Rockies Field Institute are accredited through the University of Montana with administrative support from the School for Extended and Lifelong Learning. Academic oversight of each Wild Rockies Field Institute course comes from University of Montana departmental leadership and faculty. Accepted students have the potential to earn credit in two academic courses (3 credits each): Environmental Studies 395- Field Studies of Climate Change in Montana Natural Resources Science & Management 321- Field Studies of Energy Systems in Montana Estimated Course Contact Hours and Academic Work Time The time ranges below describe daily student requirements for participation on a WRFI course. These ranges are approximate and vary with assignments, field learning opportunities, and environmental conditions: Instructional Contact Hours- 2-4 hours of formal classroom-style work per course day. This includes lectures, discussion-based classes, guest speaker presentations, individual meetings with course instructors or teaching assistants, and academic exercises not involving field exploration. Field / Laboratory Contact Hours- 2-4 hours per course day. This includes field explorations and exercises, site visits, local guest speakers, and opportunistic instruction as relevant examples of course concepts and issues arise. Individual Academic Work- 2-6 hours per day. This includes completing required readings, individual writing assignments, research investigation associated with course assignments, reviewing peer work. * The average amount of Instructional and Field / Laboratory contact time is 5.5 hours per day. * Each 3-credit WRFI course is developed with approximately 67 contact hours. Course Dates Pre-Field Expedition Coursework June 12 - June 18, 2019 Field Expedition June 19 - July 16, 2019 Post-Field Expedition Coursework July 17 - July 25, 2019 1 Instructors Matt Frank- M.S. -
LYNN KELTING-GIBSON 324 South 5Th Avenue Bozeman, Montana 59715 (406) 585-2702 [email protected]
1 LYNN KELTING-GIBSON 324 South 5th Avenue Bozeman, Montana 59715 (406) 585-2702 [email protected] EDUCATION Ed.D. Curriculum and Instruction, 2003 Montana State University – Bozeman, Montana Dissertation: Pre-service Teachers’ Planning and Preparation Practices: A Comparison of Lesson and Unit Plans Developed Using the Backward Design Model and a Traditional Model. M.S. Secondary School Administration, 1991 Montana State University – Bozeman, Montana B.S. Elementary Education and Physical Education and Health (K-12), 1991 Eastern Montana College – Billings, Montana B.A. Vocational Home Economics / Family Life (7-12), 1983 Concordia College – Moorhead, Minnesota TEACHING EXPERIENCE 2010 – present Associate Professor of Classroom Assessment Montana State University – Bozeman Courses Taught EDU 101US – TEACHING AND LEARNING EDU 382 – ASSESSMENT, CURRICULUM AND INSTRUCTION EDCI 360 – FOUNDATIONS OF ASSESSMENT EDCI 504 – ASSESSMENT AND EVALUATION IN EDUCATION – online course EDCI 588 – PREPARING FOR A STANDARDS-BASED ASSESSMENT SYSTEM 1999 – 2010 Adjunct Assistant Professor/GraduateTeaching Assistant Montana State University – Bozeman Courses Taught EDCI 588 – MENTORING NOVICE TEACHERS – online course EDCI 554 – CURRICULUM DESIGN, PEDAGOGY AND ASSESSMENT – online course EDCI 540 – AMERICAN INDIAN STUDIES FOR EDUCATORS – online course EDCI 535 – NEEDS ASSESSMENT IN EDUCATION EDCI 504 – ASSESSMENT AND EVALUATION IN EDUCATION – online course N504 – ASSESSMENT AND EVALUATION IN EDUCATION (Nursing) – online course EDEL 414 – PROFESSIONAL -
Pseudotsuga Menziesii)
120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P. -
October Example.Pub
October, 2012 REDRED NewsletterNewsletter A NON-PROFIT COUNTYWIDE ECONOMIC DEVELOPMENT CORPOR A T I O N INSIDE THIS 2012 RED Annual Meeting I S S U E : We are pleased to invite RED Annual Meeting 1 Club. The social will begin at you to our annual meeting 6:00 PM, with the dinner begin- banquet. The evening will en- CEDS 1 ning at 6:30 PM. tail an overview of the 2012 Please mark your calen- New Employee 2 activities that our office has dars and plan to attend this an- accomplished, as well as a nual event. The invitations, MRED 2 great meal. RSVP’s, and ballots will be arriv- The event will be held ing soon. Please mail or fax your th Eastern MT Coalition 3 on Monday, November 5 , RSVP as soon as possible in re- 2012, at the Sidney Country spect for the caterers. Per Diem Rates 4 Comprehensive Economic Development Strategy (CEDS) Energy Open 4 We updated the CEDS, Throughout July, Mi- including all changes and chelle and Leslie worked on challenges to our communities, the CEDS. This document is an and presented it to the Rich- overall look at our economy, land County Commissioners, how things have changed, the City of Sidney, and the and where we’d like to go as a Town of Fairview for approval. community. Every 5 years the Each governing body had the plan must be totally updated, opportunity to review and sug- presented to the governing gest changes to the docu- bodies for approval, approved, ment. and then submitted to the Eco- It is with great pleasure Leslie Messer at the RED office.