Neolignans from the Twigs of Corylopsis Coreana Uyeki

Total Page:16

File Type:pdf, Size:1020Kb

Neolignans from the Twigs of Corylopsis Coreana Uyeki plants Article SIRT1 Activation Enhancing 8,30-Neolignans from the Twigs of Corylopsis coreana Uyeki Hyun-Woo Kim 1,2 , Jin-Bum Jeon 1, Mi Zhang 1, Hyo-Moon Cho 1 , Byeol Ryu 1, Ba-Wool Lee 1 , William H. Gerwick 2,3 and Won-Keun Oh 1,* 1 Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; [email protected] (H.-W.K.); [email protected] (J.-B.J.); [email protected] (M.Z.); [email protected] (H.-M.C.); [email protected] (B.R.); [email protected] (B.-W.L.) 2 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA 92093, USA; [email protected] 3 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA * Correspondence: [email protected] Abstract: Three undescribed 8,30-neolignans, corynol (1), 3-methoxy-corynol (2) and 30-deoxy-corynol (3), together with two bergenin derivatives, three flavonoids, two hydrolysable tannins and six simple phenolic compounds, were isolated from the twigs of Corylopsis coreana Uyeki. The structures of the 8,30-neolignans were elucidated by analyzing their NMR, HRESIMS and ECD spectra. All the isolated compounds were evaluated for their SIRT1 stimulatory activity, and 30-deoxy-corynol (3) showed SIRT1 stimulation activity. Furthermore, a docking study of 3 was performed with three representative binding pockets of SIRT1. Citation: Kim, H.-W.; Jeon, J.-B.; Zhang, M.; Cho, H.-M.; Ryu, B.; Lee, Keywords: Corylopsis coreana; hamamelidacease; neolignan; SIRT1 B.-W.; Gerwick, W.H.; Oh, W.-K. SIRT1 Activation Enhancing 8,30-Neolignans from the Twigs of Corylopsis coreana Uyeki. Plants 2021, 1. Introduction 10, 1684. https://doi.org/10.3390/ The genus Corylopsis is one of 31 genera of the Hamamelidacea family, and it is dis- plants10081684 tributed primarily in tropical and subtropical mountainous regions. Corylopsis coreana Uyeki, also called Korean winter hazel, is an endemic species of the Korean Peninsula that Academic Editor: Maria Iorizzi is distributed in the Jiri Mountains and Gwangdeok of South Korea. It is a deciduous shrub with yellowish brown or dark brown twigs that is famous for flowering before the leaves Received: 16 July 2021 appear in the spring. Little research has been performed on C. coreana; however, several Accepted: 12 August 2021 Published: 16 August 2021 bioactivities have been reported for extracts of the plant, including antioxidative, antipro- liferative, antimicrobial and xanthine oxidase inhibitory activities [1–3]. Hydrolysable C. coreana Publisher’s Note: MDPI stays neutral tannins and flavonoids have been reported as chemical constituents of , and this with regard to jurisdictional claims in plant produces large quantities of bergenin, the C-glycoside of 4-O-methyl gallic acid [4,5]. published maps and institutional affil- Silent mating type information regulation 2 homolog 1 (SIRT1), a member of the iations. sirtuins, is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that is involved in cellular metabolism [6]. Over the past two decades, accumulating evidence has indicated that sirtuins are not only energy status sensors but also protect cells against metabolic stresses such as regulating inflammation, aging and autophagy [7]. SIRT1 has a key role in metabolic health by deacetylating many target proteins in numerous tissues, Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. including liver, muscle, adipocyte and heart tissue [8]. Recently, SIRT1 research has focused This article is an open access article on regulating cellular senescence and delaying cellular aging by deacetylation of the p53 distributed under the terms and protein [9]. conditions of the Creative Commons Despite the biological interests in SIRT1, only a few natural product-derived SIRT1 Attribution (CC BY) license (https:// activators have been reported. Resveratrol, a well-known stilbenoid antioxidant, is a SIRT1 creativecommons.org/licenses/by/ activator that stabilizes protein–substrate interactions [10]. In addition, several natural 4.0/). products, including quercetin and fisetin (flavonoids), berberine (isoquinoline alkaloid) Plants 2021, 10, 1684. https://doi.org/10.3390/plants10081684 https://www.mdpi.com/journal/plants Plants 2021, 10, 1684 2 of 12 and curcumin (diarylheptanoid), have been shown to directly or indirectly increase SIRT activation in cells [11]. In our previous studies, we reported that flavonoids from Psoralea corylifolia possess SIRT1-promoting activities [12]. Interestingly, most of these reported natural SIRT1 activators have a diphenyl moiety in their structure. Lignans are a major class of polyphenol and commonly possess a diphenyl moiety as part of their structure; however, they have not been studied for their SIRT1 stimula- tory effects. The only exception is magnolol, which has been reported to increase SIRT1 expression in an experimental rat stroke model [13]. Lignans and neolignans are a large group of naturally occurring phenols that are widely distributed within plants [14], and some 5258 lignans have been reported in nature. Among them, only 83 compounds have been reported as 8,30-neolignans. Biosynthetically, 8,30-neolignans are reduced forms of 7,40-epoxy-8,30-neolignans, a process that is catalyzed by phenylcoumaran benzylic ether reductase (PCBER) [15], and also found in the metabolism of dehydrodiisoeugenol (DDIE) with demethylation and ring-opening reaction [16]. The bioactivity of 8,30-neolignans has rarely been investigated. Icariside E5, which was isolated from Capsicum annuum, protects Jurkat cells from apoptosis induced by oxidative stress mediated by serum with- drawal [17]. Piperkadsin C, which was isolated from Piper kadsura, potently inhibits NO production in LPS-activated BV-2 microglial cells. Thus, investigations of the bioactivities of 8,30-neolignan could be worthwhile and may lead to the discovery of new sources of bioactive compounds. Investigations into the natural product chemical diversity in C. coreana isolated three pre- viously undescribed 8,30-neolignans (1–3) with 13 known compounds (4–16). The structures of the undescribed compounds were identified and named corynol (1), 3-methoxy-corynol (2) and 30-deoxy-corynol (3) based on an analysis of their NMR, HRESIMS and ECD spectra. Subsequently, we evaluated the isolated compounds for their SIRT1-promoting activities. 2. Results and Discussion 2.1. General The methanolic extract of twigs of C. coreana was suspended in H2O and partitioned successively using n-hexane, CH2Cl2, EtOAc and H2O. The water residues were sub- jected to Diaion HP-20 resin column chromatography and eluted with H2O and MeOH to provide two fractions. The CHCl2, EtOAc and MeOH extracts were separated by chro- matographic methods, and three previously undescribed neolignans (1–3) were isolated along with 13 known compounds including bergenin (4)[18], 11-O-galloyl bergenin (5)[19], (−)-epicatechin (6)[20], (−)-epicatechin 3-O-gallate (7)[21], (−)-epigallocatechin gallate (8)[22], 1,2,4,6-tetra-O-galloyl-β-D-glucose (9)[23], 1,2,3,4,6-penta-O-galloyl-β-D-glucose (10)[24], ellagic acid (11)[25], benzoic acid (12)[26], 3,4,5-trihydroxybenzoic acid (13)[27], 3,5-dihydroxy-4-methoxybenzoic acid (14)[28], 1-(4-hydroxy-3,5-dimethoxyphenyl)-1- propanone (15)[29] and 3,4,5-trimethoxyphenyl-(60-O-galloyl)-O-β-D-glucopyranoside (16) (Figure1)[ 30]. The structures of the known compounds (4-16) were identified by comparison with previously reported NMR data. Plants 2021, 10, 1684 3 of 12 Figure 1. Chemical structures of 16 isolated compounds from C. coreana. 2.2. Structure Elucidation of the Previously Undescribed Compounds Compound 1 was obtained as a pale brown amorphous powder. Its molecular formula was determined to be C18H20O3 based on the high-resolution electrospray ionization mass − spectrometry (HRESIMS) ion peak at m/z 283.1332 [M-H] (calcd for C18H19O3, 283.1334). The IR spectrum showed the presence of hydroxy (3365 cm−1) and aromatic (1441 cm−1) 1 groups. In the H NMR spectrum of 1 (Figure S1), two aromatic proton signals at dH 6.95 (2H, d, J = 8.4 Hz, H-2, 6) and 6.64 (2H, d, J = 8.4 Hz, H-3, 5) showed an AA0XX0 aromatic 0 system (A ring). The meta-coupled proton signals at dH 6.47 (1H, d, J = 1.9 Hz, H-6 ) and 6.44 (1H, d, J = 1.9 Hz, H-20) indicated the presence of a meta-coupled aromatic system 0 (B ring) in 1. Three olefinic proton signals at dH 5.90 (1H, ddt, J = 16.8, 10.2, 6.7 Hz, H-8 ), dH 0 0 5.00 (1H, dd, J = 16.8, 1.1 Hz, H-9 a) and dH 4.97 (1H, dd, J = 10.2, 1.1 Hz, H-9 b) indicated the presence of an unsaturated aliphatic chain. Further analysis of the 2D NMR spectra of 1 helped to define its molecular structure (Figure2 and Figure S2). The connection of the saturated aliphatic chain between H-7 ( dH 2.88 and 2.55), H-8 (dH 3.33) and H-9 (dH 1.11) was confirmed as a propyl group by analysis of the 1H-1H COSY spectrum. The connection of an unsaturated aliphatic chain between 0 0 0 H-7 (dH 3.19), H-8 (dH 5.90) and H-9 (dH 5.00 and 4.97) was also confirmed as a propylene 0 group by COSY. The HMBC correlations of H-8 (dH 3.33) with C-1 (dC 133.7), C-2 (dC 119.0) 0 and C-4 (dC 141.9) suggested that the aromatic rings were linked via a saturated aliphatic chain at C-1 and C-30. The propylene group was located at C-10, which was confirmed by 0 0 0 the HMBC correlation of H-7 (dH 3.19) with C-6 (dC 113.7) and C-2 (dC 119.0).
Recommended publications
  • Structure Activity Relationship of Phenolic Acid Inhibitors of Α-Synuclein fibril Formation and Toxicity
    ORIGINAL RESEARCH ARTICLE published: 05 August 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00197 Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity Mustafa T. Ardah 1, Katerina E. Paleologou 2, Guohua Lv 3, Salema B. Abul Khair 1, Abdulla S. Kazim 1, Saeed T. Minhas 4, Taleb H. Al-Tel 5, Abdulmonem A. Al-Hayani 6, Mohammed E. Haque 1, David Eliezer 3 and Omar M. A. El-Agnaf 1,7* 1 Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE 2 Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece 3 Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA 4 Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE 5 College of Pharmacy and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE 6 Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia 7 Faculty of Medicine, King Abdel Aziz University, Jeddah, Saudi Arabia Edited by: The aggregation of α-synuclein (α-syn) is considered the key pathogenic event in many Edward James Calabrese, University neurological disorders such as Parkinson’s disease (PD), dementia with Lewy bodies and of Massachusetts/Amherst, USA multiple system atrophy, giving rise to a whole category of neurodegenerative diseases Reviewed by: known as synucleinopathies. Although the molecular basis of α-syn toxicity has not been Kenjiro Ono, Kanazawa University Graduate School of Medical precisely elucidated, a great deal of effort has been put into identifying compounds that Science, Japan could inhibit or even reverse the aggregation process.
    [Show full text]
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • Ethnomedicinal Profile of Flora of District Sialkot, Punjab, Pakistan
    ISSN: 2717-8161 RESEARCH ARTICLE New Trend Med Sci 2020; 1(2): 65-83. https://dergipark.org.tr/tr/pub/ntms Ethnomedicinal Profile of Flora of District Sialkot, Punjab, Pakistan Fozia Noreen1*, Mishal Choudri2, Shazia Noureen3, Muhammad Adil4, Madeeha Yaqoob4, Asma Kiran4, Fizza Cheema4, Faiza Sajjad4, Usman Muhaq4 1Department of Chemistry, Faculty of Natural Sciences, University of Sialkot, Punjab, Pakistan 2Department of Statistics, Faculty of Natural Sciences, University of Sialkot, Punjab, Pakistan 3Governament Degree College for Women, Malakwal, District Mandi Bahauddin, Punjab, Pakistan 4Department of Chemistry, Faculty of Natural Sciences, University of Gujrat Sialkot Subcampus, Punjab, Pakistan Article History Abstract: An ethnomedicinal profile of 112 species of remedial Received 30 May 2020 herbs, shrubs, and trees of 61 families with significant Accepted 01 June 2020 Published Online 30 Sep 2020 gastrointestinal, antimicrobial, cardiovascular, herpetological, renal, dermatological, hormonal, analgesic and antipyretic applications *Corresponding Author have been explored systematically by circulating semi-structured Fozia Noreen and unstructured questionnaires and open ended interviews from 40- Department of Chemistry, Faculty of Natural Sciences, 74 years old mature local medicine men having considerable University of Sialkot, professional experience of 10-50 years in all the four geographically Punjab, Pakistan diversified subdivisions i.e. Sialkot, Daska, Sambrial and Pasrur of E-mail: [email protected] district Sialkot with a total area of 3106 square kilometres with ORCID:http://orcid.org/0000-0001-6096-2568 population density of 1259/km2, in order to unveil botanical flora for world. Family Fabaceae is found to be the most frequent and dominant family of the region. © 2020 NTMS.
    [Show full text]
  • Plants-Derived Biomolecules As Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences Against Coronaviruses
    plants Review Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses Arif Jamal Siddiqui 1,* , Corina Danciu 2,*, Syed Amir Ashraf 3 , Afrasim Moin 4 , Ritu Singh 5 , Mousa Alreshidi 1, Mitesh Patel 6 , Sadaf Jahan 7 , Sanjeev Kumar 8, Mulfi I. M. Alkhinjar 9, Riadh Badraoui 1,10,11 , Mejdi Snoussi 1,12 and Mohd Adnan 1 1 Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] (M.A.); [email protected] (R.B.); [email protected] (M.S.); [email protected] (M.A.) 2 Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania 3 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 4 Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia; [email protected] 5 Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India; [email protected] 6 Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India; [email protected] 7 Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia; [email protected] 8 Department of Environmental Sciences, Central University of Jharkhand,
    [Show full text]
  • Purification and Characterization of a Soluble Salicylic Acid-Binding
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 9533-9537, October 1993 Biochemistry Purification and characterization of a soluble salicylic acid-binding protein from tobacco (monoclonal antibody/pathogenesis-related proteins/plant defense mechanism/plant signal transduction/systemic acquired resistance) ZHIXIANG CHEN, JOSEPH W. RICIGLIANO, AND DANIEL F. KLESSIG* Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855-0759 Communicated by Charles S. Levings III, July 12, 1993 (received for review May 11, 1993) ABSTRACT Previously, we identified a soluble salicylic SA in the induction of defense responses is provided by the acid (SA)-binding protein (SABP) in tobacco whose properties transgenic tobacco plants which contain and constitutively suggest that it may play a role in transmitting the SA signal express the nahG gene encoding salicylate hydroxylase from during plant defense responses. This SA-binding activity has Pseudomonas putida (21). In these transgenic plants, induc- been purified 250-fold by conventional chromatography and tion of SAR by inoculation with tobacco mosaic virus was was found to copurify with a 280-kDa protein. Monoclonal blocked, presumably due to the destruction of the SA signal antibodies capable of immunoprecipitating the SA-binding by the hydroxylase. activity also immunoprecipitated the 280-kDa protein, indicat- We have been interested in identifying cellular compo- ing that it was responsible for binding SA. These antibodies also nent(s) which directly interact with SA, as a first step to recognized the 280-kDa protein in immunoblots ofthe partially elucidate the mechanism(s) of action of SA in plant signal purified SABP fraction or the crude extract.
    [Show full text]
  • Extraction, Quantification, and Cytokine Inhibitory Response Of
    separations Article Extraction, Quantification, and Cytokine Inhibitory Response of Bakuchiol in Psoralea coryfolia Linn. Deepak Khuranna 1, Sanchit Sharma 1, Showkat Rasool Mir 1, Mohd Aqil 2, Ajaz Ahmad 3, Muneeb U Rehman 3, Parvaiz Ahmad 4 , Mona S. Alwahibi 4, Mohamed Soliman Elshikh 4 and Mohd Mujeeb 1,* 1 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; [email protected] (D.K.); [email protected] (S.S.); [email protected] (S.R.M.) 2 Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; [email protected] 3 Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (A.A.); [email protected] (M.U.R.) 4 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (P.A.); [email protected] (M.S.A.); [email protected] (M.S.E.) * Correspondence: [email protected] Received: 18 August 2020; Accepted: 31 August 2020; Published: 11 September 2020 Abstract: (1) Background: The present investigation studies the optimization of extraction, quantification, and cytokine inhibitory effects bakuchiol (BKL) in Psoralea coryfolia Linn. (2) Methods: The seeds of Psoralea coryfolia cleaned, dried, and powdered. Different separation methods maceration, reflux, Soxhlet, and ultrasonic assisted extraction (UAE) were employed for the isolation of BKL by five pure solvents. The quantity of BKL was measured by high-performance liquid chromatography (HPLC) method to determine the highest yield percentage. The effect of optimized BKL was then tested in an animal model of sepsis induced by lipopolysaccharides (LPS).
    [Show full text]
  • Molecular Docking Study on Several Benzoic Acid Derivatives Against SARS-Cov-2
    molecules Article Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2 Amalia Stefaniu *, Lucia Pirvu * , Bujor Albu and Lucia Pintilie National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; [email protected] (B.A.); [email protected] (L.P.) * Correspondence: [email protected] (A.S.); [email protected] (L.P.) Academic Editors: Giovanni Ribaudo and Laura Orian Received: 15 November 2020; Accepted: 1 December 2020; Published: 10 December 2020 Abstract: Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection. Keywords: SARS-CoV-2; benzoic acid derivatives; gallic acid; molecular docking; reactivity parameters 1. Introduction Severe acute respiratory syndrome coronavirus 2 is an international health matter. Previously unheard research efforts to discover specific treatments are in progress worldwide.
    [Show full text]
  • View PDF for This Newsletter
    Newsletter No. 160 September 2014 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Bill Barker Mike Bayly State Herbarium of South Australia School of Botany PO Box 2732, Kent Town, SA 5071 University of Melbourne, Vic. 3010 Australia Australia Tel: (+61)/(0) 427 427 538 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Secretary Treasurer Frank Zich John Clarkson Australian Tropical Herbarium Queensland Parks and Wildlife Service E2 Building, J.C.U. Cairns Campus PO Box 156 PO Box 6811 Mareeba, Qld 4880 Cairns, Qld 4870 Australia Australia Tel: (+61)/(0) 7 4048 4745 Tel: (+61)/(0) 7 4059 5014 Mobile: (+61)/(0) 437 732 487 Fax: (+61)/(0) 7 4232 1842 Fax: (+61)/(0) 7 4092 2366 Email: [email protected] Email: [email protected] Councillor Councillor Ilse Breitwieser Leon Perrie Allan Herbarium Museum of New Zealand Te Papa Tongarewa Landcare Research New Zealand Ltd PO Box 467 PO Box 69040 Wellington 6011 Lincoln 7640 New Zealand New Zealand Tel: (+64)/(0) 4 381 7261 Tel: (+64)/(0) 3 321 9621 Fax: (+64)/(0) 4 381 7070 Fax: (+64)/(0) 3 321 9998 Email: [email protected] Email: [email protected] Other Constitutional Bodies Public Officer Affiliate Society Anna Monro Papua New Guinea Botanical Society Australian National Botanic Gardens GPO Box 1777 Canberra, ACT 2601 Australia Hansjörg Eichler Research Committee Tel: +61 (0)2 6250 9530 Philip Garnock-Jones Email: [email protected] David Glenny Betsy Jackes Greg Leach ASBS Website Nathalie Nagalingum www.asbs.org.au Christopher Quinn Chair: Mike Bayly, Vice President Webmasters Grant application closing dates: Anna Monro Hansjörg Eichler Research Fund: Australian National Botanic Gardens on March 14th and September 14th each year.
    [Show full text]
  • Design and Testing of Safer, More Effective Preservatives For
    Research Article pubs.acs.org/journal/ascecg Design and Testing of Safer, More Effective Preservatives for Consumer Products ¶ † ‡ † § † ⊥ Heather L. Buckley,*, , William M. Hart-Cooper, , Jong H. Kim, , David M. Faulkner, § § # ‡ ∇ Luisa W. Cheng, Kathleen L. Chan, Christopher D. Vulpe, William J. Orts, Susan E. Amrose, ¶ and Martin J. Mulvihill ¶ Berkeley Center for Green Chemistry, College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States ‡ Bioproducts Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, California 94710, United States § Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, California 94710, United States ⊥ Berkeley Center for Green Chemistry, Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, United States # Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States ∇ Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Preservatives deter microbial growth, providing crucial functions of safety and durability in composite materials, formulated products, and food packaging. Concern for human health and the environmental impact of some preservatives has led to regulatory restrictions and public pressure to remove individual classes of compounds, such as parabens and chromated copper arsenate, from consumer products. Bans do not address the need for safe, effective alternative preservatives, which are critical for both product performance (including lifespan and therefore life cycle metrics) and consumer safety. In this work, we studied both the safety and efficacy of a series of phenolic preservatives and compared them to common preservatives found in personal care products and building materials.
    [Show full text]
  • 12.2% 116000 120M Top 1% 154 3800
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 8 Potential Applications of Euphorbia hirta in Pharmacology Mei Fen Shih1 and Jong Yuh Cherng2* 1Department of Pharmacy, Chia-Nan University of Pharmacy & Science, Tainan, 2Department of Chemistry & Biochemistry, National Chung Cheng University, Chia-Yi, Taiwan 1. Introduction Euphorbia is a genus of plants belonging to the family Euphorbiaceae. Botanist and taxonomist Carl Linnaeus assigned the name Euphorbia to the entire genus in the physician's honor. Euphorbia hirta is a very popular herb amongst practitioners of traditional herb medicine, widely used as a decoction or infusion to treat various ailments including intestinal parasites, diarrhoea, peptic ulcers, heartburn, vomiting, amoebic dysentery, asthma, bronchitis, hay fever, laryngeal spasms, emphysema, coughs, colds, kidney stones, menstrual problems, sterility and venereal diseases. Moreover, the plant is also used to treat affections of the skin. In this chapter we explore those investigations related to their pharmacological activities (see the section 2.2). 2. Euphorbia hirta 2.1 Chemical Composition of Euphorbia hirta Phytochemical analysis of Euphorbia hirta (E. hirta) revealed the presence of reducing sugar, alkaloids, flavonoids, sterols, tannins and triterpenoids in the whole plant.
    [Show full text]
  • Comparison of Seed and Ovule Development in Representative Taxa of the Tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Rugenstein, Seanna Reilly, "Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) " (1983). Retrospective Theses and Dissertations. 8435. https://lib.dr.iastate.edu/rtd/8435 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2.
    [Show full text]
  • Herbal Therapy What Every Facial Plastic Surgeon Must Know
    ORIGINAL ARTICLE Herbal Therapy What Every Facial Plastic Surgeon Must Know Edmund deAzevedo Pribitkin, MD; Gregory Boger, MD erbal medicine (phytomedicine) uses remedies possessing significant pharmacologi- cal activity and, consequently, potential adverse effects and drug interactions. The explosion in sales of herbal therapies has brought many products to the marketplace that do not conform to the standards of safety and efficacy that physicians and pa- Htients expect. Unfortunately, few surgeons question patients regarding their use of herbal medi- cines, and 70% of patients do not reveal their use of herbal medicines to their physicians and phar- macists. All surgeons should question patients about the use of the following common herbal remedies, which may increase the risk of bleeding during surgical procedures: feverfew, garlic, ginger, ginkgo, and Asian ginseng. Physicians should exercise caution in prescribing retinoids or advising skin resurfacing in patients using St John’s wort, which poses a risk of photosensitivity reaction. Sev- eral herbal medicines, such as aloe vera gel, contain pharmacologically active ingredients that may aid in wound healing. Practitioners who wish to recommend herbal medicines to patients should counsel them that products labeled as supplements have not been evaluated by the US Food and Drug Administration and that no guarantee of product quality can be made. Arch Facial Plast Surg. 2001;3:127-132 The use of herbal medicine is widespread display space and marketing dollars to and growing. The actual and perceived high-profit herbal remedies. Naturally, re- relative safety of natural products is a ma- ports have begun to surface from poison jor reason for their popularity with the gen- control centers in various states detailing eral public.
    [Show full text]