Purification and Characterization of a Soluble Salicylic Acid-Binding

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Characterization of a Soluble Salicylic Acid-Binding Proc. Natl. Acad. Sci. USA Vol. 90, pp. 9533-9537, October 1993 Biochemistry Purification and characterization of a soluble salicylic acid-binding protein from tobacco (monoclonal antibody/pathogenesis-related proteins/plant defense mechanism/plant signal transduction/systemic acquired resistance) ZHIXIANG CHEN, JOSEPH W. RICIGLIANO, AND DANIEL F. KLESSIG* Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08855-0759 Communicated by Charles S. Levings III, July 12, 1993 (received for review May 11, 1993) ABSTRACT Previously, we identified a soluble salicylic SA in the induction of defense responses is provided by the acid (SA)-binding protein (SABP) in tobacco whose properties transgenic tobacco plants which contain and constitutively suggest that it may play a role in transmitting the SA signal express the nahG gene encoding salicylate hydroxylase from during plant defense responses. This SA-binding activity has Pseudomonas putida (21). In these transgenic plants, induc- been purified 250-fold by conventional chromatography and tion of SAR by inoculation with tobacco mosaic virus was was found to copurify with a 280-kDa protein. Monoclonal blocked, presumably due to the destruction of the SA signal antibodies capable of immunoprecipitating the SA-binding by the hydroxylase. activity also immunoprecipitated the 280-kDa protein, indicat- We have been interested in identifying cellular compo- ing that it was responsible for binding SA. These antibodies also nent(s) which directly interact with SA, as a first step to recognized the 280-kDa protein in immunoblots ofthe partially elucidate the mechanism(s) of action of SA in plant signal purified SABP fraction or the crude extract. However, when transduction. We have detected and partially characterized a the crude extract was prepared in the presence of antioxidants, soluble SA-binding protein (SABP) in tobacco leaves (12). only a 57-kDa protein was recognized. Since the SABP has a Here, we report the successful purification of SABP by using native molecular mass of 240 kDa, it appears that the SABP is conventional chromatography and monoclonal antibodies a complex which contains a 57-kDa subunit and perhaps one or (mAbs). The isolated SABP has also been further character- more additional proteins which are covalently crosslinked in ized to assess its functional relevance to plant defense the absence of antioxidants. The ability of a variety of phenolic mechanisms induced by SA. compounds to compete with SA for binding to the SABP was both qualitatively and quantitatively correlated with their MATERIALS AND METHODS biological activity in inducing defense-related genes. Moreover, the inducibility of the pathogenesis-related (PR)-1 genes by SA Materials. [7-14C]SA (55 Ci/mol; 1 Ci = 37 GBq) was from was proportional to the abundance of the SABP in different New England Nuclear. SA and other phenolic compounds organs. These correlations are consistent with a role for the were from Sigma or Aldrich. DEAE-Sephacel, Sephacryl SABP in perceiving and transducing the SA signal in plant S-300, and protein A-Sepharose were from Pharmacia. Blue defense. dextran-agarose and other general chemicals were from Sigma. Assays. [14C]SA binding was assayed with spin-column Plants, like other organisms, use environmental signals to exclusion chromatography (12). Protein concentrations were make appropriate adaptive responses. An excellent example determined according to Bradford (13) with the Bio-Rad of this is the induction of defense responses by plants upon protein assay kit. infection by microbial pathogens (1, 2). In the well- Purification Procedure. Tobacco (Nicotiana tabacum cv. characterized tobacco/tobacco mosaic virus system, the Xanthi nc) leaves (200 g) were sliced and homogenized with resistance response consists of both local and systemic a Polytron homogenizer (Brinkmann) in 1 liter of binding components. The local response, referred to as the hyper- buffer [20 mM citrate (pH 6.5)/5 mM MgSO4/1 mM EDTA/ sensitive response, involves the formation ofnecrotic lesions 10% (vol/vol) glycerol/phenylmethylsulfonyl fluoride at 30 and the restriction of virus proliferation to small zones Ztg/ml] with 2% (wt/vol) polyvinylpolypyrrolidone. The ho- around the sites of infection (3). In addition, plant defense mogenate was filtered through four layers of cheesecloth and genes, including five or more families of unrelated pathogen- then clarified by centrifugation at 40,000 x g for 40 min. The esis-related (PR) genes, are activated in both the inoculated resulting supernatant was loaded onto a DEAE-Sephacel and the uninoculated portions of the plant (4). The systemic column (2.5 x 15 cm) that had been equilibrated with binding expression of PR genes correlates with the establishment of buffer. After loading, the column was washed with binding systemic acquired resistance (SAR) (5), in which the entire buffer and a 400-ml gradient from 0 to 1 M KCI in the binding plant exhibits elevated levels of resistance to secondary buffer was applied at aflow rate of0.5 ml/min. Fractions with infection by the same or unrelated pathogens (3). peak binding activity were pooled and loaded onto a Seph- A growing body of evidence has suggested that salicylic acryl S-300 gel filtration column (2.5 x 100 cm) equilibrated acid (SA) is a natural signal in SAR. More than a decade ago, with binding buffer at a flow rate of 0.5 ml/min. The peak application of exogenous SA or its derivative acetylsalicylic fractions from the gel filtration column were pooled and acid was shown to induce PR genes and, at least, partial loaded onto a blue dextran-agarose column (0.5 x 15 cm) resistance to plant diseases (6). More recently, increases in equilibrated with binding buffer. After extensive washing the levels of endogenous SA were observed to correlate with with the binding buffer, the SA-binding activity was step the expression of defense-related genes and the development eluted at a flow rate of 0.1 ml/min with binding buffer ofSAR (7-11). The strongest evidence for the involvement of Abbreviations: PR, pathogenesis-related; SA, salicylic acid; SABP, The publication costs of this article were defrayed in part by page charge SA-binding protein; SAR, systemic acquired resistance; mAb, payment. This article must therefore be hereby marked "advertisement" monoclonal antibody. in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 9533 Downloaded by guest on October 11, 2021 9534 Biochemistry: Chen et al. Proc. Natl. Acad. Sci. USA 90 (1993) containing 0.7 M KCl. The peak fractions were again com- 0.1% Tween 20) containing 5% nonfat milk and was washed bined and injected (0.5 ml per run) into a Superose 6 HR 10/30 three times with PBST buffer. Blots were incubated for 1 hr column connected to an FPLC system (Pharmacia). Proteins with diluted hybridoma medium (1:100) in PBST buffer were eluted with binding buffer at a flow rate of0.35 ml/min, containing 0.2% bovine serum albumin and washed three and peak fractions were pooled for further characterization. times with PBST buffer. The antigen-antibody complexes mAb Production. The Superose 6 HR 10/30 peak fractions were detected with a 1:10,000 dilution of horseradish perox- were pooled and submitted for mAb production (14) to the idase-conjugated sheep anti-mouse IgG antibodies and the Hybridoma Laboratory, Department of Molecular Biology, ECL (enhanced chemiluminescence) detection kit from Am- Princeton University. ersham. ELISA. ELISA was performed essentially as described by Analysis of PR-1 Induction. To determine the biological Walker and Huber (15) except that all steps were carried out activity of SA and its analogues for inducing PR-1 gene at room temperature and 0.2% bovine serum album was expression, three leafdiscs (1 cm in diameter) were floated on added to the solution containing goat anti-mouse-alkaline 30 ml of solution containing 10 AM to 1 mM inducer. To phosphatase-conjugated antibodies. analyze the inducibility of PR-1 genes by SA in different Immunoprecipitation. In standard assays, 100-500 ,ul of organs, 6-week-old plants were watered with 1 mM SA. hybridoma culture medium was incubated with 40 ,ul of Tissue was harvested 48 hr after treatment and homogenized protein A-Sepharose (50% slurry) at 4°C for 2 hr. The in 50 mM Tris, pH 8.0/1 mM EDTA/12 mM 2-mercaptoeth- antibody-protein A-Sepharose complexes were pelleted and anol/phenylmethylsulfonyl fluoride at 10 ,ug/ml. After clar- washed three times with RIPA buffer (150 mM NaCl/5 mM ification by centrifugation, the homogenate was fractionated EDTA/1% sodium deoxycholate/0.1% SDS/10 mM Tris, pH by SDS/PAGE, and immunoblot analysis was performed 7.4), and once with binding buffer containing 150 mM KCl with a 1:1,000 dilution of mAb 33G1, which specifically and 0.1% Nonidet P-40. The complexes were incubated at recognizes PR-1 proteins (16). 4°C for 2 hr with 100 ,ul of the partially purified SABP obtained after blue dextran-agarose chromatography. Anti- gen-antibody-protein A complexes were pelleted and super- RESULTS natants were assayed for residual SA-binding activity. The Purification of SABP. During the initial characterization of pellets were washed three times with RIPA buffer before the soluble SABP, we found that the protein exhibited a very SDS/PAGE. high molecular mass (>600 kDa) when analyzed by gel Immunoblot Analysis. Protein samples were fractionated filtration chromatography after 0-35% ammonium sulfate by SDS/PAGE and the separated proteins were electro- precipitation (12). Subsequent fractionation steps resulted in phoretically transferred to a nitrocellulose filter. The filter very inefficient purification because SABP was eluted with was blocked by a 1-hr incubation at room temperature in the majority of the other proteins present.
Recommended publications
  • Structure Activity Relationship of Phenolic Acid Inhibitors of Α-Synuclein fibril Formation and Toxicity
    ORIGINAL RESEARCH ARTICLE published: 05 August 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00197 Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity Mustafa T. Ardah 1, Katerina E. Paleologou 2, Guohua Lv 3, Salema B. Abul Khair 1, Abdulla S. Kazim 1, Saeed T. Minhas 4, Taleb H. Al-Tel 5, Abdulmonem A. Al-Hayani 6, Mohammed E. Haque 1, David Eliezer 3 and Omar M. A. El-Agnaf 1,7* 1 Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE 2 Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece 3 Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA 4 Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE 5 College of Pharmacy and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE 6 Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia 7 Faculty of Medicine, King Abdel Aziz University, Jeddah, Saudi Arabia Edited by: The aggregation of α-synuclein (α-syn) is considered the key pathogenic event in many Edward James Calabrese, University neurological disorders such as Parkinson’s disease (PD), dementia with Lewy bodies and of Massachusetts/Amherst, USA multiple system atrophy, giving rise to a whole category of neurodegenerative diseases Reviewed by: known as synucleinopathies. Although the molecular basis of α-syn toxicity has not been Kenjiro Ono, Kanazawa University Graduate School of Medical precisely elucidated, a great deal of effort has been put into identifying compounds that Science, Japan could inhibit or even reverse the aggregation process.
    [Show full text]
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • Molecular Docking Study on Several Benzoic Acid Derivatives Against SARS-Cov-2
    molecules Article Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2 Amalia Stefaniu *, Lucia Pirvu * , Bujor Albu and Lucia Pintilie National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; [email protected] (B.A.); [email protected] (L.P.) * Correspondence: [email protected] (A.S.); [email protected] (L.P.) Academic Editors: Giovanni Ribaudo and Laura Orian Received: 15 November 2020; Accepted: 1 December 2020; Published: 10 December 2020 Abstract: Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection. Keywords: SARS-CoV-2; benzoic acid derivatives; gallic acid; molecular docking; reactivity parameters 1. Introduction Severe acute respiratory syndrome coronavirus 2 is an international health matter. Previously unheard research efforts to discover specific treatments are in progress worldwide.
    [Show full text]
  • Design and Testing of Safer, More Effective Preservatives For
    Research Article pubs.acs.org/journal/ascecg Design and Testing of Safer, More Effective Preservatives for Consumer Products ¶ † ‡ † § † ⊥ Heather L. Buckley,*, , William M. Hart-Cooper, , Jong H. Kim, , David M. Faulkner, § § # ‡ ∇ Luisa W. Cheng, Kathleen L. Chan, Christopher D. Vulpe, William J. Orts, Susan E. Amrose, ¶ and Martin J. Mulvihill ¶ Berkeley Center for Green Chemistry, College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States ‡ Bioproducts Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, California 94710, United States § Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, California 94710, United States ⊥ Berkeley Center for Green Chemistry, Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, United States # Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States ∇ Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Preservatives deter microbial growth, providing crucial functions of safety and durability in composite materials, formulated products, and food packaging. Concern for human health and the environmental impact of some preservatives has led to regulatory restrictions and public pressure to remove individual classes of compounds, such as parabens and chromated copper arsenate, from consumer products. Bans do not address the need for safe, effective alternative preservatives, which are critical for both product performance (including lifespan and therefore life cycle metrics) and consumer safety. In this work, we studied both the safety and efficacy of a series of phenolic preservatives and compared them to common preservatives found in personal care products and building materials.
    [Show full text]
  • Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods
    antioxidants Article Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods Berta Alcalde, Mercè Granados and Javier Saurina * Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; [email protected] (B.A.); [email protected] (M.G.) * Correspondence: [email protected]; Tel.: +34-93-403-4873 Received: 16 October 2019; Accepted: 30 October 2019; Published: 31 October 2019 Abstract: This paper evaluates the antioxidant ability of polyphenols as a function of their chemical structures. Several common food indexes including Folin-Ciocalteau (FC), ferric reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) assays were applied to selected polyphenols that differ in the number and position of hydroxyl groups. Voltammetric assays with screen-printed carbon electrodes were also recorded in the range of 0.2 to 0.9 V (vs. Ag/AgCl − reference electrode) to investigate the oxidation behavior of these substances. Poor correlations among assays were obtained, meaning that the behavior of each compound varies in response to the different methods. However, we undertook a comprehensive study based on principal component analysis that evidenced clear patterns relating the structures of several compounds and their antioxidant activities. Keywords: antioxidant index; differential pulse voltammetry; polyphenols; index correlation; structure-activity 1. Introduction Epidemiological studies have shown that antioxidant molecules such as polyphenols may help in the prevention of cardiovascular and neurological diseases, cancer and aging-related disorders [1–4]. Antioxidants act against excessively high levels of free radicals, the harmful products of aerobic metabolism that can produce oxidative damage in the organism [5].
    [Show full text]
  • The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: a Potential Role in Cancer Prevention" (2019)
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 3-26-2019 The lF avonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention Ranjini Sankaranarayanan South Dakota State University Chaitanya K. Valiveti South Dakota State University Ramesh Kumar Dhandapani University of Kentucky, [email protected] Severine Van Slambrouck South Dakota State University Siddharth S. Kesharwani South Dakota State University See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Oncology Commons Repository Citation Sankaranarayanan, Ranjini; Valiveti, Chaitanya K.; Dhandapani, Ramesh Kumar; Van Slambrouck, Severine; Kesharwani, Siddharth S.; Seefeldt, Teresa; Scaria, Joy; Tummala, Hemachand; and Bhat, G. Jayarama, "The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention" (2019). Entomology Faculty Publications. 183. https://uknowledge.uky.edu/entomology_facpub/183 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Ranjini Sankaranarayanan, Chaitanya K. Valiveti, Ramesh Kumar Dhandapani, Severine Van Slambrouck, Siddharth S. Kesharwani, Teresa Seefeldt, Joy Scaria, Hemachand Tummala, and G. Jayarama Bhat The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention Notes/Citation Information Published in Cancers, v.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,851,005 B2 Bingley Et Al
    US007851 005B2 (12) United States Patent (10) Patent No.: US 7,851,005 B2 Bingley et al. (45) Date of Patent: Dec. 14, 2010 (54) TASTE POTENTIATOR COMPOSITIONS AND 3,795,744 A 3/1974 Ogawa et al. BEVERAGES CONTAINING SAME 3,819,838 A 6, 1974 Smith et al. 3,821,417 A 6, 1974 Westallet al. (75) Inventors: Carole A. Bingley, Caversham (GB); 3,826,847. A 7/1974 Ogawa et al. Katherine Clare Darnell, Wokingham 3,857,964 A 12, 1974 Yoles (GB) 3,862,307 A 1/1975 Di Giulio (73) Assignee: Sally Adams USA LLC, Parsippany, SS A ME. al. (US) 3,912,817 A 10/1975 Sapsowitz (*) Notice: Subject to any disclaimer, the term of this 3,930,026 A 12, 1975 Clark patent is extended or adjusted under 35 3,943.258 A 3/1976 Bahoshy et al. U.S.C. 154(b) by 1136 days. 3,962.416 A 6, 1976 Katzen 3,962.463. A 6, 1976 Witzel (21) Appl. No.: 11/439,832 3,974,293 A 8/1976 Witzel 3,984,574 A 10, 1976 Comollo (22) Filed: May 23, 2006 4,032,661. A 6/1977 Rowsell et al. O O 4,037,000 A 7/1977 Burge et al. (65) Prior Publication Data 4,045,581. A 8/1977 Mackay et al. US 2006/0286259 A1 Dec. 21, 2006 4,083,995 A 4, 1978 Mitchell et al. 4,107,360 A 8/1978 Schmidgall Related U.S. Application Data 4,130,638 A 12/1978 Dhabhar et al.
    [Show full text]
  • Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison
    Int. J. Mol. Sci. 2010, 11, 3266-3276; doi:10.3390/ijms11093266 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison Prontipa Nokthai 1, Vannajan Sanghiran Lee 2,3,4,* and Lalida Shank 3,5,* 1 Bioinformatics Research Laboratory (BiRL), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; E-Mail: [email protected] 2 Computational Simulation and Modeling Laboratory (CSML), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 3 Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 4 Thailand Center of Excellence in Physics (ThEP), Commission Higher on Education, Ministry of Education, Bangkok 10400, Thailand 5 Phytochemica Research Unit, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand * Author to whom correspondence should be addressed; E-Mails: [email protected] (V.S.L.); [email protected] (L.S.); Tel.: +66-53-943341-5 ext. 117 (V.S.L), ext. 151 (L.S.); Fax: +66-53-892277 (V.S.L). Received: 30 July 2010; in revised form: 26 August 2010 / Accepted: 07 September 2010 Published: 14 September 2010 Abstract: Peroxidases (POD) and polyphenol oxidase (PPO) are enzymes that are well known to be involved in the enzymatic browning reaction of fruits and vegetables with different catalytic mechanisms. Both enzymes have some common substrates, but each also has its specific substrates. In our computational study, the amino acid sequence of grape peroxidase (ABX) was used for the construction of models employing homology modeling method based on the X-ray structure of cytosolic ascorbate peroxidase from pea (PDB ID:1APX), whereas the model of grape polyphenol oxidase was obtained directly from the available X-ray structure (PDB ID:2P3X).
    [Show full text]
  • Chemistry, Occurrence and Biosynthesis of C-Glycosyl Compounds in Plants
    Journal of Planta 1983, Vol.47, pp.131—140,© Hippokrates Verlag GmbH Medicinal .PlantResearchmediCa Chemistry, Occurrence and Biosynthesis of C-Glycosyl Compounds in Plants Gerhard Franz, Michael Grun1 Lehrstuhl für Pharmazeutische Biologie, Universität Regensburg, Federal Republic of Germany Received: August 2, 1982 Introduction Therapid development of natural product chemi- stry has led to the isolation of a wide varieLty of secon- dary metabolites, which, in many cases, was shown to be of glycosidic nature. In particular our knowledge of the chemistry, occurrence and biogenesis of glyco- Flavone Xanthone sides has grown substantially during the last two de- cades [1, 2]. Most of this effort has been directed to- ward the large group of the 0-glycosides as well as the S- and N-glycosides. Far less effort has been given to the C-glycosides due to analytical difficulties. C-Glycosides are a special type of glycoside since the aglycone is directly attached to carbon 1 of a pyra- nose ring of a sugar while 0-glycosides possess a he- miacetal linkage. It is more correct to regard them as C-glycosyls or anhydropolyols as proposed by Chromone Anthrone BANDYUKOVA and YUGIN [3]. Since the original term C-glycoside is well established, it should be maintai- ned. One of the main characteristics of C-glycosides is COOH resistance towards acid hydrolysis. Even after pro- longed acid treatment the sugar residue, which is at- tached by a carbon-carbon-bond, remains attached HOOH to the aglycone. Cleavage of the C-C-linkage is achie- ved only under drastic conditions. When oxidizing reagents are used partial degradation of the sugar re- Gallic acid sidue is likely [4].
    [Show full text]
  • Fermentation of Trihydroxybenzenes by Pelobacter Acidigallici Gen. Nov. Sp. Nov., a New Strictly Anaerobic, Non-Sporeforming Bacterium
    Archives of Arch Microbiol (1982) 133:195-201 Hicrobielogy Springer-Verlag 1982 Fermentation of Trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a New Strictly Anaerobic, Non-Sporeforming Bacterium Bernhard Schink and Norbert Pfennig Fakult/it ffir Biologic, Universit/it Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany Abstract. Five strains of rod-shaped, Gram-negative, non- reported already by Tarvin and Buswell (1934) and was again sporing, strictly anaerobic bacteria were isolated from limnic proven recently in more refined studies (Healy and Young and marine mud samples with gallic acid or phloroglucinol as 1978, 1979; Healy et al. 1980). The organisms involved in sole substrate. All strains grew in defined mineral media these processes have not yet been identified. From anaerobic without any growth factors; marine isolates required salt con- enrichments on methoxylated phenol derivatives recently centrations higher than i % for growth, two freshwater strains Acetobacterium woodii was isolated. This organism fermented only thrived in freshwater medium. Gallic acid, pyrogallol, the methoxyl groups to acetate and did not attack the 2,4,6-trihydroxybenzoic acid, and phloroglucinol were the aromatic ring (Bache and Pfennig 198l). In the present study only substrates utilized and were fermented stoichiometri- pure cultures of new organisms are described which degrade cally to 3 mol acetate (and I mol CO2) per mol with a growth two trihydroxybenzene isomers fermentatively and produce yield of 10 g cell dry weight per mol of substrate. Neither exclusively acetate and CO2 as products. sulfate, sulfur, nor nitrate were reduced. The DNA base ratio was 51.8 % guanine plus cytosine.
    [Show full text]
  • Journal of Hazardous Materials 165 (2009) 156–161
    Journal of Hazardous Materials 165 (2009) 156–161 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Toxicity and quantitative structure–activity relationships of benzoic acids to Pseudokirchneriella subcapitata Po Yi Lee, Chung Yuan Chen ∗ Institute of Environmental Engineering, National Chiao Tung University, 75 Po-Ai Street, Hsinchu, Taiwan 300, Taiwan, ROC article info abstract Article history: The present study presents the toxicity data of benzoic acid and its derivatives on Pseudokirchneriella Received 27 July 2008 subcapitata, in terms of EC50 and NOEC values. Median effective concentrations (EC50) range from 0.55 Received in revised form to 270.7 mg/L (based on final yield) and 1.93 to 726.3 mg/L (based on algal growth rate). No-observed- 22 September 2008 effect concentration (NOEC) is within the range of <0.0057–179.9 mg/L. From both the NOEC and EC50 Accepted 23 September 2008 values, it was found that, 2,4,6-trihydroxybenzoic acid, 4-chlorobenzoic acid, 3-bromobenzoic acid, 4- Available online 30 September 2008 bromobenzoic acid, 2,6-dihydroxybenzoic acid, and 2,3,4-trihydroxybenzoic acid possess much higher risks to the aquatic organisms as compared to the other benzoic acids. These data are useful for risk Keywords: Pseudokirchneriella subcapitata assessment and protection of the aquatic environments, because such information is not available in the Benzoic acids existing toxicological databases. The toxicity of halogenated benzoic acids was found to be directly related NOEC to the compound’s hydrophobicity (the logarithm of the 1-octanol/water partition coefficient, logKow).
    [Show full text]
  • Neolignans from the Twigs of Corylopsis Coreana Uyeki
    plants Article SIRT1 Activation Enhancing 8,30-Neolignans from the Twigs of Corylopsis coreana Uyeki Hyun-Woo Kim 1,2 , Jin-Bum Jeon 1, Mi Zhang 1, Hyo-Moon Cho 1 , Byeol Ryu 1, Ba-Wool Lee 1 , William H. Gerwick 2,3 and Won-Keun Oh 1,* 1 Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; [email protected] (H.-W.K.); [email protected] (J.-B.J.); [email protected] (M.Z.); [email protected] (H.-M.C.); [email protected] (B.R.); [email protected] (B.-W.L.) 2 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA 92093, USA; [email protected] 3 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA * Correspondence: [email protected] Abstract: Three undescribed 8,30-neolignans, corynol (1), 3-methoxy-corynol (2) and 30-deoxy-corynol (3), together with two bergenin derivatives, three flavonoids, two hydrolysable tannins and six simple phenolic compounds, were isolated from the twigs of Corylopsis coreana Uyeki. The structures of the 8,30-neolignans were elucidated by analyzing their NMR, HRESIMS and ECD spectra. All the isolated compounds were evaluated for their SIRT1 stimulatory activity, and 30-deoxy-corynol (3) showed SIRT1 stimulation activity. Furthermore, a docking study of 3 was performed with three representative binding pockets of SIRT1. Citation: Kim, H.-W.; Jeon, J.-B.; Zhang, M.; Cho, H.-M.; Ryu, B.; Lee, Keywords: Corylopsis coreana; hamamelidacease; neolignan; SIRT1 B.-W.; Gerwick, W.H.; Oh, W.-K.
    [Show full text]