Material Transport by the World's Rivers: Evolving Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Material Transport by the World's Rivers: Evolving Perspectives Water for the Future: Hydrology in Perspective (Proceedings of the Rome Symposium, April 1987). IAHS Publ. no. 164, 1987. Material transport by the world's rivers: evolving perspectives D, E, WALLING & B, W, WEBB Department of Geography, University of Exeter, Exeter EX4 4RJ, Devon, UK ABSTRACT Measurements of material transport by rivers were first undertaken more than 150 years ago and the significance of the resultant data has become increasingly apparent. Current knowledge concerning the magnitude of particulate and dissolved loads, the associated global patterns and total material transport to the oceans is reviewed and some future needs identified. Transport des matières par les fleuves mondiaux: perspectives d'évolution RESUME Les mesures du transport de matières solides et dissoutes par les fleuves ont été faites depuis 150 ans et l'importance des données qui en résulte est devenue de plus en plus apparente. Les connaissances actuelles en ce qui concerne l'ampleur des charges des sédiments et des matières solubles, leurs distributions mondiales, et le transport total aux océans sont examinés et des besoins pour l'avenir sont identifiés. INTRODUCTION Interest in the measurement of the transport of dissolved and particulate material by rivers can be traced back to the first half of the nineteenth century. For example, an attempt to estimate the annual suspended and dissolved load of the Ganges was made as early as 1831 (Everest, 1832), measurements of suspended sediment transport were commenced on the Mississippi in 1845 (Nordin, personal communi­ cation) , and Livingstone (1963a) reports analyses of the chemical composition of water from the Rhine undertaken in 1837. Increasing awareness of the significance of such measurements for estimating rates of erosion and denudation (e.g. Reade, 1876; Penck, 1894; Dole & Stabler, 1909; Fournier, 1949) and for assessing material transport to the oceans and geochemical cycling (e.g. Kuenen, 1950; Gilluly, 1955; Livingstone, 1936b) as well as their significance to practical problems, such as reservoir sedimentation, subsequently encouraged the expansion of measurement programmes in many areas of the world. This growth of measurement activity in turn stimulated a series of global-scale assessments of river loads (e.g. Fournier, 1960; Lisitzin, 1962; Livingstone, 1963a; Strakhov, 1967; Holeman, 1968; Meybeck, 1976,1979; Jansson, 1982; Milliman & Meade, 1983; Walling & Webb, 1983a) to which the International Association of Hydrological Sciences made an important contribution through its activities in promoting the compilation of load data for the world's rivers (e.g. Durum et al., 1960; Fournier, 1969; UNESCO, 1974). _ 314 D.E.Walling S B.W.Webb It is now more than 150 years since Everest's pioneering work in estimating the annual load of the Ganges and his estimate of 360 x 10 t year- still compares quite favourably with the value of 600 x 106 t year-1 cited by Meybeck (1976) in his review of material transport by world rivers. In many other instances, however, recent expansion of data availability has occasioned more significant revisions of existing estimates and ideas. Looking specifically at the global-scale, this paper attempts to review existing information and some of the recent improvements in our knowledge of global river loads and to highlight some requirements for future research. Attention will be restricted to overall values of particulate and dissolved material transport rather than the loads associated with individual mineral or organic constituents. PARTICULATE LOADS Suspended sediment yields Global minima for specific suspended sediment yield in areas — 2 — 1 evidencing significant annual runoff lie well below 2 t km year For example Douglas (1973) cites a yield of 1.7 t km- year for the Queanbeyan River (172 km ) in the Southern Tablelands and Highlands of New South Wales, Australia, and loads of <1.0 t km- year- have been documented for several rivers in Poland (Branski, 1975). Increased data availability can do little to modify our view of minimum levels of suspended sediment yield, but it has significantly changed our perception of the upper bound in recent years. In their reviews of global sediment transport rates, Strakhov (1967) refers to a maximum of 2000 t km-2year- for the Sulak River in the USSR and Fournier (1960) cites a maximum of 6068 t km-2year_1 for the Lo Ho River in China. Values considerably in excess of 10 000 t km year have, however, now been reported for several rivers, and Table 1 lists a number of rivers characterized by such extreme values. The highest value in Table 1 is a mean annual yield of 53 500 t km-2year_1 for the Huangfuchuan River (3199 km2) in China. This river is a tributary of the Yellow River (Hwang Ho) draining the gullied loess region which is now well known for its high sediment yields (cf. Long & Qian, 1986). In the past, there have been several attempts to combine the limited sediment yield data available at the time with notions concerning the influence of relief, climate, geology, tectonic stability and other factors, to produce global maps of sediment yield. The work of Fournier (1960) and the Soviet scientist Lopatin, reported in Strakhov (1967), are two such studies which have been frequently cited. Often it has not been fully appreciated that these maps were based on a very small number of actual obser­ vations of sediment yield (60 in the case of Lopatin and 96 for Fournier) and that they reflect very considerable subjective interpolation and extrapolation. These problems and uncertainties are clearly demonstrated by a comparison of the maps of these two workers (Fig.l). In terms of general levels, the sediment yields depicted on Fournier's map are frequently an order of magnitude greater than those shown by Strakhov. Furthermore, there are Material transport by the world's rivers 315 TABLE 1 Maximum values of mean annual specific suspended sediment yield reported for world rivers Country River Drainage Mean annual Source area sediment yield (km2) (t km 2year 1 ) China Huangfuchuan 3199 53 500 Yellow River Conservancy Commission (Personal Communication) Dali 96 25 600 Mou and Meng (1980) Dali 187 21 700 Mou and Meng (1980) Taiwan Tsengwen 1000 28 000 Milliman and Meade (1983) Kenya Perkerra 1310 19 520 Dunne (1975) Java Cilutung 600 12 000 Hardjowitjitro (1981) Cikeruh 250 11 200 Hardjowitjitro (1981) North Island, Waiapu 1378 19 970 Griffiths (1982) New Zealand Waingaromia 175 17 340 Griffiths (1982) South Island Hokitika 352 17 070 Griffiths (1981) New Zealand Cleddau 155 13 300 Griffiths (1981) significant contrasts in the overall patterns demonstrated by the two maps. Recent improvements in data availability have inevitably permitted updating and improvement of these maps and two more recent attempts to produce global maps are presented in Figs 2 and 3. Figure 2 presents a map produced by the authors based on data assembled from nearly 2000 rivers and Fig.3 depicts a recent map produced by the Soviet scientists Dedkov & Mozzherin (1984) using a data-base which included more than 3000 measuring stations. Both maps refer to the sediment yields associated with intermediate-sized basins of the order of lO^km2, but in the latter case the global map refers essentially to plains rivers and no attempt has been made to map the yields occurring within the major mountain regions. Comparison of Figs 2 and 3 reveals many broad similarities between the two maps, indicating that considerable progress has been made towards producing a consistent and generally acceptable map of the global pattern of sediment yields. Furthermore, many of the patterns suggested by Fournier and Strakhov can be seen to be unsubstantiated by the recent improvement in data availability. For example, no evidence of the areas of very high sediment yield depicted by Fournier for West Africa is provided by Figs 2 and 3, and whereas 316 D.E.Walling S B.W.Webb FIG.l Global patterns of suspended sediment yield according to (a) Strakhov (1967) and (b) Fournier (1960) . Strakhov's map suggests that sediment yields are low throughout Africa, both these more recent maps represent relatively high values in parts of East and North Africa. Many workers have attempted to account for global variations in sediment yield in terms of climatic controls (e.g. Langbein & Schumm, 1958; Fournier, 1960; Douglas, 1967; Wilson, 1969) but recent work has increasingly demonstrated the complexity of the controls involved (e.g. Walling & Webb, 1983a). Any explanation of the Material transport by the world's rivers 317 FIG.2 A generalized map of global suspended sediment yields produced by the authors. I D I Deserts i i Mountain 1 ' regions FIG.3 The map of global suspended sediment yields produced by Dedkov & Mozzherin (1984). 318 D.E.Walling & B.W.Webb generalized pattern depicted in Fig.3 must, for example, take account of the influence of rock type, relief, tectonic stability, land use and human activity as well as that of climate. A number of authors have suggested that sediment yields will be highest in areas of semiarid climate (e.g. Langbein & Schumm, 1958), and the high yields mapped for the Mediterranean, Southwest United States and parts of East Africa may be largely ascribed to this tendency. Equally, however, the high sediment yields occurring throughout much of Asia and in the Pacific Islands reflect the high annual rainfall of these areas, although the steep terrain and tectonic instability are also very important influences. The close association between high sediment yields and mountain belts is also evident from Fig.3, with large areas in the Andes, the Himalayas, Alaska and the Mediterranean producing high yields. The influence of topography and geology is also demonstrated by the low yields mapped for much of the northern regions of Eurasia and North America.
Recommended publications
  • Note Sur Les Terrains De Transport
    NOTE SUR LES TERRAINS DE TRANSPORT DES ENVIRONS DE THONON-LES-BA1NS (HAUTE-SAVOIE) Avec une planche et une carte Par M. Ch. JACOB, Préparateur de Géologie à la Faculté des Sciences. Les collines et les plateaux qui s'élèvent près de Thonon et d'Évian- Ies-Bains, du lac de Genève aux premiers chaînons des montagnes du Ghablais, sont presque exclusivement constitués par des formations de transport, dont le beau développement et la complexité ont depuis longtemps attiré l'attention des géologues suisses et français. En ne citant que les principales recherches dont ces terrains ont fait l'objet, on peut mentionner les travaux d'Alphonse Favre4, qui ont apporté à leur connaissance la plus importante contribution, les notes de MM. Renevier 2, Delebecque3, Schardt 4 et tout récemment encore 1 Rech. géol. dans les parties de la Savoie, du Piémont et de la Saisse voisines du Mont-Blanc, Genève, 1867, t. I. ch. 1 à ix. 2 Notice delà feuille géologique Thonon au . Paris, i884- 80.000 3 Arch. des se. phys. et nat. de Genève, t. XXXIII, i8g5, p. 98, et Les lacs français, Paris, 1898, p. 352 et suiv. 4 Arch. des se. pays, et nat. de Genève, t. XXXIII, 1890, p. 280, et feuille géol. n° XVI de la carte suisse au 100.000 116 — de M. H. Douxami*. Les différents auteurs ont formulé diverses hypothèses au sujet du groupement à adopter pour les terrasses des environs de Thonon et de l'âge qu'il faut leur attribuer. Nous n'avons pas l'intention d'étudier ici toutes les opinions émises.
    [Show full text]
  • Discovery Centre of the Valley D’Aulps
    Réserve naturelle du Delta Jardins de l’eau du Maxilly-sur-Léman i n D I B MO . ais BL CHA K- eopar WWW.G a de la Dranse / Delta de la Dranse The Water 10 Pré Curieux / 5 Meillerie 0 m D 100 5 Canton de Vaud é Nature Reserve Gardens of the Pré Curieux Lugrin D 24 Saint-Gingolph com . ais BL CHA K- eopar WWW.G L (Switzerland) M i Le Bouveret e Thollon-les-Mémises k i Évian-les-Bains 1 i eopark G Chablais Chablais 2 Publier D Neuvecelle e M D 24 a s Usine d’embouteillage 19 n a NYON r 1 des eaux d’Evian / D 6 11 Château de Ripaille / D D L a L Bottling plant for Evian water Château of Ripaille M D 21 nature. Marin Direction D Saint-Paul-en-Chablais 5 Novel the link between man and and man between link the 2 Monthey - Martigny THONON-LES-BAINS 1 Mont Bénand examples of the strength of of strength the of examples Champanges D 52 18 Lac de la Beunaz / Waters are just some of the the of some just are Waters Écomusée de la pêche et du lac i M Beunaz Lake Conception Larringes Marais the Evian and Thonon Mineral Mineral Thonon and Evian the Yvoire et Musée du Chablais / The Ecomuseum of du Maravant / Maravant Marsh Bernex legends, the natural riches of of riches natural the legends, i Fishing and the Lake and the Museum of Chablais D graphique : graphique 9 e i 0 in “alpages”, the stories and the the and stories the “alpages”, g 2 L’U Nernier Anthy-sur-Léman life in the high alpine farms farms alpine high the in life 5 Féternes 00 L 1 21 Vinzier Atelier Duo I www.atelierduo.fr - e D the use of the mountains, the the mountains, the of use the D D P 23 8 Lac de Darbon Excenevex 33 a m 6 tors.
    [Show full text]
  • Fascicule B Du Contrat De Rivières Des Dranses Et De L'est Lémanique
    FASCICULE B CONTRAT DE RIVIÈRES Des Dranses et Est Lémanique ÉTAT DES LIEUX ET DIAGNOSTIC 2017-2022 SIAC Documents constitutifs du Dossier Définitif Le Dossier définitif du Contrat de Rivières du bassin versant des Dranses et de l’Est Lémanique est constitué de 3 documents : - Fascicule A : Document contractuel - Fascicule B : Etat des lieux et Diagnostic - Fascicule C : Recueil des fiches-Actions Le présent document constitue le Fascicule B : Etat des lieux et Diagnostic. Etat des lieux - Diagnostic Projet de Contrat de Rivières des Dranses / Est lémanique Mars 2017 Page 3 sur 126 SIAC Etat des lieux - Diagnostic Projet de Contrat de Rivières des Dranses / Est lémanique Mars 2017 Page 4 sur 126 SIAC Sommaire Sommaire ................................................................................................................................. 5 Préambule ................................................................................................................................ 7 CONTEXTE et motivations ......................................................................................................... 8 1.1 Contexte naturel et humain : territoire et usages ................................................................... 8 1.1.1 Situation géographique ................................................................................................... 8 1.1.2 Présentation générale du bassin versant ........................................................................ 8 1.1.3 Masses d’eau définies dans le SDAGE 2016 – 2021
    [Show full text]
  • Hydrology in Mountainous Regions I
    mm Hydrology in Mountainous Regions I HYDROLOGICAL MEASUREMENTS THE WATER CYCLE Edited by H. LANG Geographisches Institut ETH, Abteilung Hydrologie, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland A. MUSY Institut d'Aménagement des Terres et des Eaux, Ecole Polytechnique Fédérale de Lausanne, GR Ecublens, CH-101S Lausanne, Switzerland Proceedings of two international symposia, the Symposium on Improved Methods of Hydrological Measurements in Mountain Areas (SI) and the Symposium on Quantitative and Qualitative Water Cycle Aspects in Heterogeneous Basins (S2), held at Lausanne, Switzerland, 27 August- 1 September 1990. The symposia were part of the International Conference on Water Resources in Mountainous Regions jointly convened by the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH). IAHS Publication No. 193 Published by the International Association of Hydrological Sciences 1990. IAHS Press, Institute of Hydrology, Wallingford, Oxfordshire OX10 8BB, UK. IAHS Publication No. 193. ISBN 0-947571-57-4. The designations employed and the presentation of material throughout the publication do not imply the expression of any opinion whatsoever on the part of IAHS concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The use of trade, firm, or corporate names in the publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by IAHS of any product or service to the exclusion of others that may be suitable. The camera-ready copy for the papers was prepared by the authors and assembled/finished at IAHS Press.
    [Show full text]
  • Responses to Comments from Anonymous Referee 2
    Responses to comments from anonymous Referee 2 On “Should altitudinal gradients of temperature and precipitation inputs be inferred from key parameters in snow-hydrological models?” by D. Ruelland (HESS-2019-556) Referee’s comment The article analyzes the sensitivity of a snow accounting procedure and hydrological modeling results to the evaluation of temperature and precipitation in space and time in mountainous catchments. The study is based on a set of 20 catchments in the French Alps and two hydrological models. The author evaluates the interplay between the lapse rate, snow routine and hydrological model parameters. I found this is a clear and interesting paper. I have a few suggestions for improvement detailed below, some of which are quite major and requiring new calculations. I suggest considering the paper for possible publication in HESS after major revision. Authors’ response I would like to thank the referee for the time spent in reviewing the initial paper and making interesting suggestions. Most of them were judged useful even though I did not agree with all comments. In any cases, I provided a point-by-point response to the reviewer’s comments and tried to bring modifications to the manuscript accordingly. Detailed comments Referee’s comment 1. I found that the literature review could have been more exhaustive, to better stress the originality of the work compared to existing studies on similar or close topics. Some recent works could be discussed, for example the work by Le Moine et al. (2015) on the link between snow and hydrological sub-models in model parameterization, some studies on using snow data to calibrate hydrological models (Besic et al.
    [Show full text]
  • Comite De Rivieres Des Dranses Et De L'est Lemanique
    COMITE DE RIVIERES DES DRANSES ET DE L'EST LEMANIQUE 17 juillet 2014– 10h30 heures - espace Tully Date de la convocation du Comité de rivières : 10juillet 2014 Membres présents Collège des membres représentant les élus Jean Paul MOILLE – Conseiller Régional ; George CONSTANTIN – Conseiller Général Gaston LACROIX – Conseiller général ; Paul GIRARD-DEPRAULEX – ABONDANCE ;Daniel CHAUSEE – ARMOY ; André FELIZAZ – BELLEVAUX ; Henri-Victor TOURNIER – LE BIOT ; Renato GOBBER – CHAMPANGES ; Bernard MAXIT – LA CHAPELLED’ABONDANCE ; Nicolas RUBIN – CHATEL ; Pierre MERCIER-GALLAY – CHEVENOZ ; Sophie MUFFAT – COTE D’ARBROZ ; Alain CAPPAI – FETERNES ; Gilbert GALLAY – LA FORCLAZ ; Jean René BOURRON – LARRINGES ;Jacques BURNET– LUGRIN ; Pascal CHESSEL – MARIN ; Jean Michel JULLIARD – MAXILLY SUR LEMAN ; Georges LAGRANGE – MONTRIOND André PEERSMAN – MONTRIOND ;Gérard BERGER – MORZINE ; Philippe DRAGO – NEUVECELLE ; André LAPERROUZAZ – PUBLIER ;Gérard LOMBARD – REYVROZ ; Eric DUPONT – SEYTROUX ; Max MICHOUD – SAINT PAUL EN CHABLAIS ;Jean DENAIS – THONON LES BAINS ;Jacqueline GARIN – LA VERNAZ ; Yannick TRABICHET – VAILLY ; Jean Yves MORACCHINI – SIAC ; Josiane LEI - CCPE Collège des membres représentant de l’état et les établissements publics David PROUTEAU– Préfecture de Haute-Savoie ; Mathieu DELILLE – DDT 74 ; Frédéric BRUNET - ONF Collège des membres représentant les organisations professionnelles et les usagers des rivières Philippe EROLA – AAPPMA ; Alain GAGNAIRE – ASL ;Alain LEVRAY – FDC ; Guy VULLIEZ – SPFS ; I.J BELEY – SAEME- LPO ; Martial
    [Show full text]
  • PPRN De Bellevaux (Révision) Document PPRN Bellevaux Presentation V5.Odt Référence Proposition N° D1408097 Référence Commande Adresse Maître D’Ouvrage DDT74 - SAR/CPR
    9 1 0 2 - s e u q s i r o é G ’ p Préfet de Haute-Savoie l A PPRN de la commune de Bellevaux Révision du PPRN Note de présentation Maître d’ouvrage DDT74 - SAR/CPR Date Mars 2019 Alp’Géorisques Z.I. – 52 rue du Moirond - 38420 DOMENE - FRANCE Tél. 04-76-77-92-00 Fax : 04-76-77-55-90 Courriel : contact@alpgeo risques.com sarl au capital de 18 300 € - Siret : 380 934 216 00025 - Code A.P.E. 7112B Référence 19031373 – (devis D1408097) Version 5 Rev. 2 Date Mars 2019 Édition du 18/03/2019 Identification du document Projet Note de présentation Titre PPRN de Bellevaux (révision) Document PPRN_Bellevaux_presentation_v5.odt Référence Proposition n° D1408097 Référence commande Adresse Maître d’ouvrage DDT74 - SAR/CPR Maître d’œuvre Adresse - ou AMO Modifications Version Date Description Auteur Vérifié par 5 (rév. 2) 18/03/2019 Première version JPR - Diffusion Chargé Jean-Pierre Rossetti 04 76 77 92 00 [email protected] d’études Papier Diffusion Numérique P DDT74 Archivage N° d’archivage (référence) Titre Note de présentation Département Haute-Savoie Commune(s) concernée(s) Bellevaux Cours d’eau concerné(s) - Région naturelle Alpes du Nord, Chablais Thème Mots-clefs PPRN, mouvements de terrain, avalanches, crue torrentielles SOMMAIRE I. PRÉAMBULE...............................................................................................................................1 II. CONTEXTE LÉGISLATIF ET RÉGLEMENTAIRE......................................................................1 II.1. Rappel de l’objet du PPRN................................................................................................1
    [Show full text]
  • The Dissolved Loads of Rivers: a Global Overview
    Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships (Proceedings of the Hamburg Symposium, August 1983). IAHS Publ. no. 141. The dissolved loads of rivers: a global overview D. E, WALLING & B, W. WEBB University of Exeter, Exeter EX4 4RJ, Devon, UK ABSTRACT Values of mean annual total dissolved load have been assembled from 490 rivers located throughout the world and these data have been used to review the general characteristics of dissolved load transport. Attention is given to the magnitude of dissolved loads and their spatial variation, the temporal variation of dissolved load transport and the relationship between the magnitude of the dissolved and particulate components of total load. Transport en solution par les rivières: examen sur le plan mondial RESUME Les valeurs de transport en solution ont été rassemblées pour 490 rivières réparties dans le monde entier. Ces données ont été utilisées pour définir les caractéristiques générales de transport en solution, y compris l'ampleur des transports spécifiques en solution et leur variation dans l'espace, la variation temporelle des transport en solution, et l'importance relative du transport en solution et du transport solide en suspension. INTRODUCTION Interest in the transport of material in solution by rivers can be traced back for over 100 years. Amongst the earliest studies are those undertaken by Popp and by Letheby on the River Nile in Egypt in 1870 and 1874-1875 respectively (Popp, 1875; Baker, 1880). In most cases this early work focussed on chemical analyses of individual water samples rather than attempting to document the loads transported during specific periods of time, since records of water discharge were generally lacking.
    [Show full text]
  • Should Altitudinal Gradients of Temperature and Precipitation Inputs Be Inferred from Key Parameters in Snow-Hydrological Models?
    https://doi.org/10.5194/hess-2019-556 Preprint. Discussion started: 12 November 2019 c Author(s) 2019. CC BY 4.0 License. Should altitudinal gradients of temperature and precipitation inputs be inferred from key parameters in snow-hydrological models? Denis Ruelland CNRS, HydroSciences Montpellier, University of Montpellier, Place E. Bataillon, 34395 Montpellier Cedex 5, France 5 Correspondence to: [email protected] Abstract. This paper evaluates whether snow-covered area and streamflow measurements can help assess altitudinal gradients of temperature and precipitation in data-scarce mountainous areas more realistically than using the usual interpolation procedures. An extensive dataset covering 20 Alpine catchments is used to investigate this issue. Elevation dependency in the meteorological fields is accounted for using two approaches: (i) by estimating the local and time-varying 10 altitudinal gradients from the available gauge network based on deterministic and geostatistical interpolation methods with an external drift; and (ii) by calibrating the local gradients using an inverse snow-hydrological modelling framework. For the second approach, a simple 2-parameter model is proposed to target the temperature/precipitation-elevation relationship and to regionalise air temperature and precipitation from the sparse meteorological network. The coherence of the two approaches is evaluated by benchmarking several hydrological variables (snow-covered area, streamflow and water balance) 15 computed with snow-hydrological models fed with the interpolated datasets and checked against available measurements. Results show that accounting for elevation dependency from scattered observations when interpolating air temperature and precipitation cannot provide sufficiently accurate inputs for models. The lack of high-elevation stations seriously limits correct estimation of lapse rates of temperature and precipitation, which, in turn, affects the performance of the snow- hydrological simulations due to imprecise estimates of temperature and precipitation volumes.
    [Show full text]
  • Synthese Bibliographique Bv Dr
    RAPPORT D’ETUDE SIAC Rédacteur : Gaëtan Loubaresse Relecture : Vivian Visini Etude piscicole des cours d’eau du bassin versant des Dranses et de l’est lémanique S YNTHESE BIBLIOGRAPHI QUE E T RESULTATS BRUTS 2012 - 2013 Etude réalisée avec le concours financier de : Dossier n°: 2012062 Version : 2012062-1-3 Date : 29/11/2013 G ESTION DES E S P A C E S N A T U R E L S - TEREO G ESTION DES E S P A C E S N A T U R E L S - TEREO SOMMAIRE 1 - Objectif du rapport ............................................................................................................................................. 1 2 - Synthèse bibliographique ................................................................................................................................... 2 2.1 - Contexte géographique .......................................................................................................................................... 2 2.2 - Occupation du sol .................................................................................................................................................... 3 2.3 - Réseau hydrographique et masses d’eau DCE .................................................................................................. 6 2.3.1 - Réseau hydrographique ..................................................................................................................... 6 2.3.2 - Masse d’eau DCE ...............................................................................................................................
    [Show full text]
  • Article Is Available Online Chen, C.-T
    Biogeosciences, 13, 3573–3584, 2016 www.biogeosciences.net/13/3573/2016/ doi:10.5194/bg-13-3573-2016 © Author(s) 2016. CC Attribution 3.0 License. Are flood-driven turbidity currents hot spots for priming effect in lakes? Damien Bouffard1 and Marie-Elodie Perga2 1Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair, EPFL-ENAC-IEE-APHYS, 1015 Lausanne, Switzerland 2INRA-Université Savoie Mont Blanc, UMR042 CARRTEL, Thonon-les-Bains, France Correspondence to: Marie-Elodie Perga ([email protected]) Received: 15 December 2015 – Published in Biogeosciences Discuss.: 18 January 2016 Revised: 20 May 2016 – Accepted: 27 May 2016 – Published: 20 June 2016 Abstract. In deep stratified lakes, such as Lake Geneva, 1 Introduction flood-driven turbidity currents are thought to contribute to the replenishment of deep oxygen by significant transport In thermally stratified lakes, river water inflow occurs un- of river waters saturated with oxygen into the hypolimnion. der two different modes. Under normal (i.e dry-weather) flow The overarching aim of this study was to test this long- conditions, the river water is injected at the interface between standing hypothesis directly. It combines direct observational the warm, upper layer (epilimnion) and the cold, lower layer data collected during an extreme flooding event that occurred (hypolimnion), forming an interflow in the upper thermocline in May 2015 with dark bioassays designed to evaluate the (Fischer, 1979) or at the surface. Particularly during flood consequences of river-borne inputs for the hypolimnetic res- events, high concentrations of suspended sediments in rivers piration. The exceptional precipitation events of May 2015 increase the density of inflowing waters and therefore gen- caused floods with an annual return time for the Rhône River, erate turbid density currents following the slope and flow- the dominant tributary of Lake Geneva, and with 50-year ing into the hypolimnion (i.e.
    [Show full text]
  • Nautique CÔTÉ THONON-LES-BAINS
    LÉMAN nautique CÔTÉ THONON-LES-BAINS 2021/2022 NAUTISME JETEZ-VOUS À L’EAU ET EMBARQUEZ À LA DÉCOUVERTE DES RIVES DU LÉMAN 2 LÉMAN nautique GUIDE NAUTIQUE 2021 | 2022 3 EditoLE MOT DU PRÉSIDENT DE LA STATION NAUTIQUE Sur les rives du Léman, Thonon-les-Bains avait déjà fait le pari fou d’intégrer le club très fermé des stations nautiques en 2004. Depuis, la station n’a eu de cesse que d’améliorer ses infrastructures, son accueil, sa promotion et son organisation afin d’offrir à ses usagers les meilleurs services pour une pratique optimale des sports et loisirs nautiques. Un effort récompensé dès 2010 par l’attribution du plus haut niveau du label : 4 étoiles ! Notre station se distingue par la richesse de son offre nautique aussi variée que depuis ses plages, nombreuses et aménagées vous pourrez profiter d’une journée baignade et farnienté ou aussi bien vous opterez pour des activités plus sportives tels que ski nautique, la planche à voile ou la plongée. Plaisancier ou adepte de croisière, bienvenue dans le plus grand port de la rive française lémanique, 800 anneaux d’où évoluent les écoles de voiles, de plongée, d’aviron ou de sauvetage. Un peu plus loin vous affronterez les Dranses et vous pourrez vous adonner à des sports d’eaux vives tels que le rafting, l’hydrospeed ou le canyoning. Le littoral lémanique ce sont enfin des dizaines de kilomètres organisées autour de la pêche du côté du port de Rives, de la natation plus loin au cœur de la plage municipale en passant par le point plage et ses excursions en paddle, kayak ou pedal’eau.
    [Show full text]