Common Name: NITROSYL CHLORIDE HAZARD SUMMARY IDENTIFICATION REASON for CITATION HOW to DETERMINE IF YOU ARE BEING EXPOSED WORKP

Total Page:16

File Type:pdf, Size:1020Kb

Common Name: NITROSYL CHLORIDE HAZARD SUMMARY IDENTIFICATION REASON for CITATION HOW to DETERMINE IF YOU ARE BEING EXPOSED WORKP Common Name: NITROSYL CHLORIDE CAS Number: 2696-92-6 RTK Substance number: 1396 DOT Number: UN 1069 Date: January 2002 --------------------------------------------------------------------------- --------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Nitrosyl Chloride can affect you when breathed in. No occupational exposure limits have been established for * Nitrosyl Chloride is a CORROSIVE CHEMICAL and Nitrosyl Chloride. This does not mean that this substance is contact can severely irritate and burn the skin and eyes not harmful. Safe work practices should always be followed. with possible eye damage. * Breathing Nitrosyl Chloride can irritate the nose and WAYS OF REDUCING EXPOSURE throat. * Where possible, enclose operations and use local exhaust * Breathing Nitrosyl Chloride can irritate the lungs causing ventilation at the site of chemical release. If local exhaust coughing and/or shortness of breath. Higher exposures ventilation or enclosure is not used, respirators should be can cause a build-up of fluid in the lungs (pulmonary worn. edema), a medical emergency, with severe shortness of * Wear protective work clothing. breath. * Wash thoroughly immediately after exposure to Nitrosyl Chloride and at the end of the workshift. IDENTIFICATION * Post hazard and warning information in the work area. In Nitrosyl Chloride is an orange-red colored gas or a deep red addition, as part of an ongoing education and training liquid with an irritating odor. It is used as a catalyst, an effort, communicate all information on the health and intermediate, a bleaching agent for flour, and in synthetic safety hazards of Nitrosyl Chloride to potentially exposed detergents. workers. REASON FOR CITATION * Nitrosyl Chloride is on the Hazardous Substance List because it is cited by DOT. * This chemical is on the Special Health Hazard Substance List because it is CORROSIVE. * Definitions are provided on page 5. HOW TO DETERMINE IF YOU ARE BEING EXPOSED The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information and training concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard, 1910.1200, requires private employers to provide similar training and information to their employees. * Exposure to hazardous substances should be routinely evaluated. This may include collecting personal and area air samples. You can obtain copies of sampling results from your employer. You have a legal right to this information under OSHA 1910.1020. * If you think you are experiencing any work-related health problems, see a doctor trained to recognize occupational diseases. Take this Fact Sheet with you. NITROSYL CHLORIDE page 2 of 6 This Fact Sheet is a summary source of information of all Request copies of your medical testing. You have a legal right potential and most severe health hazards that may result from to this information under OSHA 1910.1020. exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the Mixed Exposures potential effects described below. * Because smoking can cause heart disease, as well as lung --------------------------------------------------------------------------- cancer, emphysema, and other respiratory problems, it may worsen respiratory conditions caused by chemical exposure. HEALTH HAZARD INFORMATION Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems. Acute Health Effects The following acute (short-term) health effects may occur WORKPLACE CONTROLS AND PRACTICES immediately or shortly after exposure to Nitrosyl Chloride: Unless a less toxic chemical can be substituted for a hazardous * Contact can severely irritate and burn the skin and eyes substance, ENGINEERING CONTROLS are the most with possible eye damage. effective way of reducing exposure. The best protection is to * Breathing Nitrosyl Chloride can irritate the nose and enclose operations and/or provide local exhaust ventilation at throat. the site of chemical release. Isolating operations can also * Breathing Nitrosyl Chloride can irritate the lungs causing reduce exposure. Using respirators or protective equipment is coughing and/or shortness of breath. Higher exposures can less effective than the controls mentioned above, but is cause a build-up of fluid in the lungs (pulmonary edema), a sometimes necessary. medical emergency, with severe shortness of breath. In evaluating the controls present in your workplace, consider: Chronic Health Effects (1) how hazardous the substance is, (2) how much of the The following chronic (long-term) health effects can occur at substance is released into the workplace and (3) whether some time after exposure to Nitrosyl Chloride and can last for harmful skin or eye contact could occur. Special controls months or years: should be in place for highly toxic chemicals or when significant skin, eye, or breathing exposures are possible. Cancer Hazard * According to the information presently available to the New In addition, the following control is recommended: Jersey Department of Health and Senior Services, Nitrosyl Chloride has not been tested for its ability to cause cancer * Where possible, automatically transfer gaseous Nitrosyl in animals. Chloride or pump liquid Nitrosyl Chloride from cylinders or other storage containers to process containers. Reproductive Hazard * According to the information presently available to the New Good WORK PRACTICES can help to reduce hazardous Jersey Department of Health and Senior Services, Nitrosyl exposures. The following work practices are recommended: Chloride has not been tested for its ability to affect reproduction. * Workers whose clothing has been contaminated by Nitrosyl Chloride should change into clean clothing promptly. Other Long-Term Effects * Contaminated work clothes should be laundered by * Nitrosyl Chloride can irritate the lungs. Repeated individuals who have been informed of the hazards of exposure may cause bronchitis to develop with cough, exposure to Nitrosyl Chloride. phlegm, and/or shortness of breath. * Eye wash fountains should be provided in the immediate work area for emergency use. MEDICAL * If there is the possibility of skin exposure, emergency shower facilities should be provided. * On skin contact with Nitrosyl Chloride, immediately wash Medical Testing or shower to remove the chemical. At the end of the If symptoms develop or overexposure is suspected, the workshift, wash any areas of the body that may have following is recommended: contacted Nitrosyl Chloride, whether or not known skin contact has occurred. * Consider chest x-ray after acute overexposure. * Do not eat, smoke, or drink where Nitrosyl Chloride is handled, processed, or stored, since the chemical can be Any evaluation should include a careful history of past and swallowed. Wash hands carefully before eating, drinking, present symptoms with an exam. Medical tests that look for smoking, or using the toilet. damage already done are not a substitute for controlling exposure. NITROSYL CHLORIDE page 3 of 6 PERSONAL PROTECTIVE EQUIPMENT HANDLING AND STORAGE WORKPLACE CONTROLS ARE BETTER THAN * Prior to working with Nitrosyl Chloride you should be PERSONAL PROTECTIVE EQUIPMENT. However, for trained on its proper handling and storage. some jobs (such as outside work, confined space entry, jobs * Nitrosyl Chloride will react with WATER or STEAM to done only once in a while, or jobs done while workplace form corrosive Hydrogen Chloride gas and heat. controls are being installed), personal protective equipment * Nitrosyl Chloride is not compatible with STRONG may be appropriate. ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC); ACID FUMES; REDUCING MATERIALS; and OSHA 1910.132 requires employers to determine the NITROGEN OXIDES. appropriate personal protective equipment for each hazard and * Store in tightly closed containers in a cool, well-ventilated to train employees on how and when to use protective equipment. area away from METALS. The following recommendations are only guidelines and may QUESTIONS AND ANSWERS not apply to every situation. Q: If I have acute health effects, will I later get chronic Clothing health effects? A: Not always. Most chronic (long-term) effects result from * Avoid skin contact with Nitrosyl Chloride. Wear protective gloves and clothing. Safety equipment suppliers/ repeated exposures to a chemical. manufacturers can provide recommendations on the most protective glove/clothing material for your operation. Q: Can I get long-term effects without ever having short- * All protective clothing (suits, gloves, footwear, headgear) term effects? should be clean, available each day, and put on before A: Yes, because long-term effects can occur from repeated work. exposures to a chemical at levels not high enough to make you immediately sick. Eye Protection * For liquified Nitrosyl Chloride wear indirect-vent, impact Q: What are my chances of getting sick when I have been and splash resistant goggles when working with liquids. exposed to chemicals? * Wear non-vented, impact resistant goggles when working A: The likelihood of becoming sick from chemicals is with fumes, gases, or vapors. increased as the amount of exposure increases. This is * Wear a face shield along with goggles when working with determined by the length of time and the amount of corrosive, highly irritating
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Download Safety Data Sheet (SDS)
    SAFETY DATA SHEET 1. Identification Product identifier Strike 80 Soil Fumigant Other means of identification SDS number 180-AUS-TCA Recommended use Soil fumigant NOTE TO PESTICIDE HANDLERS: If the pesticide product end-use labeling contains hazard information, specific instructions, or requirements that conflict with this Safety Data Sheet (SDS), follow the hazard information, instructions, or requirements on the labeling. Restrictions on use Use of this product requires supervision by a qualified pesticide applicator. Details of manufacturer or importer TriCal Australia Pty Ltd Address 5 Chamberlain Street, Wingfield, SA 5013, Australia Telephone 08 8347 3838 E-mail [email protected] Emergency phone number CHEMTREC (Australia) 02 9037 2994 (24/7) POISONS INFORMATION CENTRE 13 11 26 2. Hazard(s) identification Physical hazards Not classified. Health hazards Acute toxicity, oral Category 2 Acute toxicity, dermal Category 2 Acute toxicity, inhalation Category 1 Skin corrosion/irritation Category 1C Serious eye damage/eye irritation Category 1 Sensitization, skin Category 1 Carcinogenicity Category 2 Specific target organ toxicity, Category 1 (respiratory system damage) single exposure Specific target organ toxicity, Category 3 (respiratory tract irritation) single exposure Specific target organ toxicity, Category 1 (respiratory tract/lungs) repeated exposure Environmental hazards Hazardous to the aquatic environment, Category 1 acute hazard Hazardous to the aquatic environment, Category 2 long-term hazard Label elements Skull Corrosion Health Exclamation Environment Signal word DANGER Hazard statement Fatal if swallowed, in contact with skin or if inhaled. May cause an allergic skin reaction. Causes serious eye damage. Causes severe skin burns and eye damage. Strike 80 Soil Fumigant November 25, 2019 Page 1 of 11 May cause respiratory irritation.
    [Show full text]
  • Aqua Regia Is a Mixture of Concentrated Nitric Acid and Hydrochloric Acid Most Commonly Used to Remove Trace Metals and TRACE Organic Materials from Glassware
    Laboratory Safety Standard Operating Procedure (SOP) (For the use of hazardous materials or equipment) NAME OF PROCEDURE: AQUA REGIA PREPARED BY: RACHAEL MATTHEWS REVISION DATE: 07/16/2018 BRIEF DESCRIPTION OF PROCEDURE: 100 words or less, mass balanced equation, quantity limits Aqua Regia is a mixture of concentrated nitric acid and hydrochloric acid most commonly used to remove trace metals and TRACE organic materials from glassware. LOCATION – This procedure may be performed at the following location(s): Procedures are performed in fume hood only. HAZARDS – The materials and equipment associated with this procedure present the following exposure or physical health hazards. Safety precautions are prudent and mandatory (SDS of all chemicals referenced): -Aqua Regia is an oxidizer. Oxidizers are agents that initiate or promote combustion in other materials, generally through the release of oxygen. -Regia will oxidize over time to form toxic gases (nitrosyl chloride, nitrogen dioxide, and chlorine). The toxic gases formed as Aqua Regia oxidizes are also PHSs – nitrosyl chloride, nitrogen dioxide, and chlorine are all on the PHS list. Nitrosyl Chloride does not have a PEL or TLV. The PEL for nitrogen dioxide is 5 ppm (ceiling); the TLV is 3 ppm over 8 hours and 5 ppm for 15 minutes. The PEL for Chlorine gas is a 1 ppm (ceiling); the TLV is 0.5 ppm over 8 hours and 1 ppm for 15 minutes. -Aqua Regia solutions are extremely corrosive. Corrosive materials can cause destruction of living tissue by chemical action at the site of contact and can be solids, liquids, or gases. Corrosive effects can occur not only on the skin and eyes, but also in the respiratory tract and, in the case of ingestion, in the gastrointestinal tract as well.
    [Show full text]
  • TIH/PIH List
    Hazardous Materials Designated as TIH/PIH (consolidated AAR and Railinc lists) 3/12/2007 STCC Proper Shipping Name 4921402 2-CHLOROETHANAL 4921495 2-METHYL-2-HEPTANETHIOL 4921741 3,5-DICHLORO-2,4,6-TRIFLUOROPYRIDINE 4921401 ACETONE CYANOHYDRIN, STABILIZED 4927007 ACROLEIN, STABILIZED 4921019 ALLYL ALCOHOL 4923113 ALLYL CHLOROFORMATE 4921004 ALLYLAMINE 4904211 AMMONIA SOLUTION 4920360 AMMONIA SOLUTIONS 4904209 AMMONIA, ANHYDROUS 4904210 AMMONIA, ANHYDROUS 4904879 AMMONIA, ANHYDROUS 4920359 AMMONIA, ANHYDROUS 4923209 ARSENIC TRICHLORIDE 4920135 ARSINE 4932010 BORON TRIBROMIDE 4920349 BORON TRICHLORIDE 4920522 BORON TRIFLUORIDE 4936110 BROMINE 4920715 BROMINE CHLORIDE 4918505 BROMINE PENTAFLUORIDE 4936106 BROMINE SOLUTIONS 4918507 BROMINE TRIFLUORIDE 4921727 BROMOACETONE 4920343 CARBON MONOXIDE AND HYDROGEN MIXTURE, COMPRESSED 4920399 CARBON MONOXIDE, COMPRESSED 4920511 CARBON MONOXIDE, REFRIGERATED LIQUID 4920559 CARBONYL FLUORIDE 4920351 CARBONYL SULFIDE 4920523 CHLORINE 4920189 CHLORINE PENTAFLUORIDE 4920352 CHLORINE TRIFLUORIDE 4921558 CHLOROACETONE, STABILIZED 4921009 CHLOROACETONITRILE 4923117 CHLOROACETYL CHLORIDE 4921414 CHLOROPICRIN 4920516 CHLOROPICRIN AND METHYL BROMIDE MIXTURES 4920547 CHLOROPICRIN AND METHYL BROMIDE MIXTURES 4920392 CHLOROPICRIN AND METHYL CHLORIDE MIXTURES 4921746 CHLOROPIVALOYL CHLORIDE 4930204 CHLOROSULFONIC ACID 4920527 COAL GAS, COMPRESSED 4920102 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920303 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920304 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920305 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920101 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920300 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920301 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920324 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920331 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920165 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S. 4920378 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S. 4920379 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S.
    [Show full text]
  • The Chemistry of Solvated Nitric Oxide
    The Chemistry of Solvated Nitric Oxide: As the Free Radical and as Super-saturated Dinitrogen Trioxide Solutions By Kristopher A. Rosadiuk March, 2015 A thesis submitted to McGill University in partial fulfillment of the requirements in the degree of: DOCTORATE OF PHILOSOPHY Department of Chemistry, Faculty of Science McGill University Montreal, Quebec, Canada © Kristopher Rosadiuk, 2015. Abstract The unusual behaviour of the mid-oxidation state nitrogen oxides, nitric oxide (NO) and dinitrogen trioxide (N2O3), are explored in solution. Nitric oxide is shown to catalyze the cis-trans isomerizations of diazo species in aqueous and organic solutions, and a model is presented by which this proceeds by spin catalysis, making use of the unpaired electron of NO to permit access to triplet patways. Five diazo compounds are tested and compared to stilbene, which is not found to isomerize under these conditions. Dinitrogen trioxide is found to form easily in organic solvents, which stabilize the molecule even above room temperature. Solutions can be formed at chemically useful concentrations and levels of purity, and this result is compared with the sparse literature concerning this phenomenon. The chemistry of these solutions at 0˚C is surveyed extensively, with 23 distinct organic reactions and 15 inorganic reactions being described. The first reported room temperature adduct of dinitrogen trioxide is presented, as well as novel syntheses for nitrosyl chloride and nitrosylsulfuric acid. X-ray structures are also given for a previously reported benzoquinone-phenol adduct, as well as a new mixed valent-mercury nitride salt of the form Hg4N4O9. Résumé Le comportement inhabituel des oxydes d'azote aux états d’oxydations moyens, comme l’oxyde nitrique (NO) et le trioxyde dinitrique (N2O3), est exploré en solution.
    [Show full text]
  • Nitrogen Oxychlorides : a Bibliography on Data for Physical and Chemical
    NBS Publl - cations NArL INST. OF STAND & TECH NBS SPECIAL PUBLICATION 478 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards NITROGEN OXYCHLORIDES: A Bibliography on Data for Physical and Chemical Properties of CUNO, CLNO2, and CdNOs NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to' strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute! for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen-' tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry,! and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:
    [Show full text]
  • Limonene: a Versatile Chemical
    ASME 1990 Citrus Engineering Conference CEC1990 March 29, 1990, Lakeland, Florida, USA Downloaded from http://asmedigitalcollection.asme.org/CES/proceedings-pdf/CEC1990/99779/72/2370597/cec1990-3605.pdf by guest on 23 September 2021 LIMONENE - A VERSATILE CHEMICAL BY Joseph J. McBride Consultant Ariiona Chemical 807 Wood Avenue Panama Ciy, Florida 32401 ABSTRACT Following a brief review of the chemistry and properties of limonene as a chemical entity, d-limonene recovered as a by-product in the processing of citrus fruit is discussed in more detail. The largest use of d-limonene, the production of tackifying resins for the adhesive industry, is given special attention, although other important uses, such as in the synthesis of I-cawone, and in specialty solvents and cleaners are also discussed. d-Limonene's price history is compared with those of its competitors in the resin market, piperylene and sulfate turpentine. Its current relative position in the large and growing market is explained and estimates of its future availability and potential use in the market are proposed. LIMONENE -A VERSATILE CHEMICAL d-Limonene is the major component of the oils of citrus fruits. Chemically it is classified as a "terpene hydrocarbon." Terpenes are compounds of hydrogen and carbon and sometimes oxygen, and can be considered as made up of two or more units of isoprene, which is the building block of natural rubber. Monoterpenes, like limonene, consist of two isoprene units, sesquiterpenes of three isoprene units, diterpenes of four isoprene units,
    [Show full text]
  • Limonene.Pdf
    View Online Limonene A. F. Thomas Firmenich SA, Research Laboratories, 12 I I Geneva 8, Switzerland Y. Bessiere 126 I Borex, Switzerland 1 Introduction is over 95 % pure, there is sometimes doubt in the literature as 2 Hydrogen Shifts and Disproportionation ; the Action to whether the limonene that was used in any experiment was of Acids and Bases further purified or not. The major impurity in the material from 3 Addition of Water, Alcohols, and other HX-type orange oil is myrcene (3); this can be removed by clathration Molecules with tetrakis(4-methy1pyridine)di thiocyanatonickel. l1 About 4 Addition of Halogens, Sulphur, etc. 1 YOof aldehydes (mainly octanal) is also present, and there are 5 Hydrogenation of Limonene traces of other monoterpenes. The aldehydes can be removed 6 Hydroboration and Related Reactions by distillation over 0.5 YOsodium hydroxide. 7 Oxidation (except Epoxide Formation) The presence of these impurities has led to widely different 8 The Limonene Epoxides values being determined for the flavour threshold concentration 9 Addition of a C, Unit to Limonene in water. This has been given as 0.21 p.p.m., and the effect of 10 Addition of C, or More to Limonene non-volatiles on this value has been measured,12 but the 11 Pyrolysis and Miscellaneous Reactions limonene was only 96.5 YOpure, and was probably only distilled 12 Biological Reactions of Limonene orange oil, so the figures are meaningless. Values of 0.01 13 References p.p.m.13 and 229 p.p.b. (also for 96% pure limonene)" have been published, but in these papers
    [Show full text]
  • The Chemistry of Heterocycles Structure, Reactions, Syntheses
    The Chemistry of Heterocycles Structure, Reactions, Syntheses, and Applications Mohammad Jafarzadeh Faculty of Chemistry, Razi University The Chemistry of Heterocycles, (Second Edition). By Theophil Eicher and Siegfried Hauptmann, Wiley-VCH Veriag GmbH, 2003 1 24 3 Three-Membered Heterocycles 3.2 Thiirane 24 3 Three-Membered Heterocycles 3.2 Thiirane Thiiranes are also known as episulfides. As a result of the greater atomic radius of the S-atom, the three atoms form an acute-angled triangle (see Fig. 3.2). [A] Thiiranes are also known as episulfides. As a result of the greater atomic radius of the S-atom, the 3.2 Thiirane three atoms form an acute-angled triangle. Fig. 3.2 Structure of thiirane (bond lengths in pm, bond angles in degrees) The thermochemically determined strainThenthalpye thermochemicallof thiiraney determineof 83 kJd molstrai-1n isenthalplessythan of thiiranthateof ofoxirane 83 kJ mo. H is less than that of oxirane. The ionization potential amounts to 9.05TheV,e ionizatiothe dipolen potentiamomentl amountto 1.66s toD 9.0. Both5 eVvalues, the dipolaree belowmomenthoset to 1.66 D. Both values are below Thiiranes are also known aofsoxirane episulfides. The chemical. Ashiftss a resulin the NMRt thosofspectrae thof oxiranee greateare. �ThH e= chemica2r. 27atomi, �l Cshift= 18sc i .n1radiu .the NMRs spectrof ath are S ^S-atom = 2.27, Sc ,=18.1. the three atoms form an acute-angled triangle (see Fig. 3.2)Th.e properties of the thiiranes are primarily due to ring strain. In spite of the smaller strain en- [B] The properties of the thiiranes are primarilythalpydue, tothiiranringestrain is thermall.
    [Show full text]
  • Chemical and Physical Properties of Nitryl Chloride
    Rochester Institute of Technology RIT Scholar Works Theses 4-1977 Chemical and physical properties of nitryl chloride Andreas J. Illies Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Illies, Andreas J., "Chemical and physical properties of nitryl chloride" (1977). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. CHEMICAL AND PHYSICAL PROPERTIES OF NITRYL CHLORIDE ANDREAS J. ILLIES APRIL, 1977 THESIS SUBMITTED IN PARTIAL · ~ FULFILLMENT 'OF THE REQUIREMENTS FOR THE DEGREE ·OF MASTER OF SCIENCE APPROVED: Name Illegible Project Adviser Name Illegible Department Head Name Illegible Library Rochester Institute of Technology Rochester, New York Department of Chemistry # % ABSTRACT Nitryl chloride (C1N02) and nitrosyl chloride (C1N0) atmos- are pollutants that have been detected in the lower chemical between phere . Interconnecting reactions the chlorine and nitrogen oxide cycles of the stratosphere may also produce these molecules. 1 ' 2 Two methods for preparing CINOp .were evaluated, and experimental techniques for determining the purity of CINOp were developed. The vapor pressure and mass spec trum for C1N0? and the ultraviolet absorption cross sec tions of C1N02 and C1N0 were investigated. Preliminary results for the photochemical decomposition of C1N0? with 253-7 and 350.5 radiation are reported, and the ener getically possible steps for photochemical dissociation of G1N0? are summarized. Data involving the absorption cross sections and pri mary photochemical processes, such as those that we have studied, are needed as input for calculations modelling the chemistry of the stratosphere.
    [Show full text]
  • Appendix a to Part 27
    Appendix A to Part 27. – DHS Chemicals of Interest1 - - - WME - - – – Chemical Chemicals of Interest Abstract Synonym (COI) Service (CAS) # y Issue: Theft Theft y Issue: Screening Threshold Threshold Screening EXP/IEDP Issue: Security Sabotage/Contamination Security Issue: Theft Theft Issue: Security CWI/CWP Theft Issue: Security Release: Minimum Minimum Release: (%) Concentration Screening Release: (in Quantities Threshold pounds) Theft: Minimum (%) Concentration Theft: pounds (in Quantities noted) otherwise unless Minimum Sabotage: (%) Concentration Screening Sabotage: Quantities Threshold Release Issue: Security Toxic Release Issue: Security Flammables Release Issue: Security Explosives Securit Acetaldehyde 75-07-0 1.00 10,000 X Acetone cyanohydrin, 75-86-5 ACG APA X stabilized Acetyl bromide 506-96-7 ACG APA X Acetyl chloride 75-36-5 ACG APA X Acetyl iodine 507-02-8 ACG APA X Acetylene [Ethyne] 74-86-2 1.00 10,000 X Acrolein [2-Propenal] or Acrylaldehyde 107-02-8 1.00 5,000 X Acrylonitrile [2-Propenenitrile] 107-13-1 1.00 10,000 X Acrylyl chloride [2-Propenoyl Chloride] 814-68-6 1.00 10,000 X Allyl alcohol [2-Propen-1-ol] 107-18-6 1.00 15,000 X Allylamine [2-Propen-1-amine] 107-11-9 1.00 10,000 X Allyltrichlorosilane, 107-37-9 ACG APA X stabilized Aluminum (powder) 7429-90-5 ACG 100 X Aluminum bromide, 7727-15-3 ACG APA X anhydrous Aluminum chloride, 7446-70-0 ACG APA X anhydrous Aluminum phosphide 20859-73-8 ACG APA X Ammonia (anhydrous) 7664-41-7 1.00 10,000 X 1 The acronyms used in this appendix have the following meaning: ACG
    [Show full text]
  • The Chemical List of Interest
    List of Toxic and Pyrophoric Gases that require preappro val from MSU EHS BEFORE purc hase Chemical MSDS CAS # Health Fire Reactive 1,3-BUTADIENE 1,3-BUTADIENE 106-99-0 2d 4 0 2-METHYL-1,3-BUTADIENE 2-METHYL-1,3-BUTADIENE 78-79-5 1i 4 0 ACETYL FLUORIDE ACETYL FLUORIDE 557-99-3 3 0 0 AMMONIA AMMONIA 7664-41-7 3 1 0 ANTIMONY PENTAFLUORIDE ANTIMONY PENTAFLUORIDE 7783-70-2 4 0 1 ARSENIC PENTAFLUORIDE ARSENIC PENTAFLUORIDE 7784-36-3 3 1 0 ARSENIC TRIFLUORIDE ARSENIC TRIFLUORIDE 7784-35-2 3 0 1 ARSINE ARSINE 7784-42-1 4 4 2 BIS(TRIFLUOROMETHYL)PEROXIDE BIS(TRIFLUOROMETHYL)PEROXIDE 927-84-4 a, j a, j a, j BORON TRIBROMIDE BORON TRIBROMIDE 10294-33-4 4 2 0 BORON TRICHLORIDE BORON TRICHLORIDE 10294-34-5 3 0 1 BORON TRIFLUORIDE BORON TRIFLUORIDE 7637-07-2 4 0 1 BROMINE BROMINE 7726-95-6 3 0 0 BROMINE CHLORIDE BROMINE CHLORIDE 13863-41-7 3 0 1 BROMINE PENTAFLUORIDE BROMINE PENTAFLUORIDE 7789-30-2 3 0 3 BROMINE TRIFLUORIDE BROMINE TRIFLUORIDE 7787-71-5 3 0 3 BROMOETHENE BROMOETHENE 593-60-2 2d 4 1 BROMOMETHANE BROMOMETHANE 74-83-9 3 1 0 CARBON DISULFIDE CARBON DISULFIDE 75-15-0 3 4 0 CARBON MONOXIDE CARBON MONOXIDE 630-08-0 2e 4 0 CARBONYL FLUORIDE CARBONYL FLUORIDE 353-50-4 4 0 1 CARBONYL SULFIDE CARBONYL SULFIDE 463-58-1 3 4 1 CHLORINE CHLORINE 7782-50-5 4 0 0 CHLORINE DIOXIDE CHLORINE DIOXIDE 10049-04-4 3 0 4 CHLORINE MONOXIDE CHLORINE MONOXIDE 12301-79-0 a a a CHLORINE PENTAFLUORIDE CHLORINE PENTAFLUORIDE 13637-63-3 3 0 3 CHLORINE TRIFLUORIDE CHLORINE TRIFLUORIDE 7790-91-2 4 0 3 CHLOROTRIFLUOROETHYLENE CHLOROTRIFLUOROETHYLENE 79-38-9 3 4 3 CARBON
    [Show full text]