Synthesis, Characterisation and DFT Analysis of {Ru(NO)2}8 Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Synthesis, Characterisation and 8 DFT Analysis of {Ru(NO)2} Compounds Anna Katharina Elisabeth Gallien, geb. Filser aus Mainz, Deutschland 2014 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Peter Klüfers betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 17.01.2014 Anna Gallien Dissertation eingereicht am: 17.01.2014 1. Gutachter: Prof. Dr. Peter Klüfers 2. Gutachter: Prof. Dr. H.-C. Böttcher Mündliche Prüfung am: 26.02.2014 Diese Arbeit wurde in der Zeit von Oktober 2009 bis Januar 2014 am Departement für Chemie und Pharmazie der Ludwig-Maximilians-Universität München am Lehrstuhl für Bioanorganische Chemie und Koordinationschemie unter Anleitung von Herrn Prof. Dr. Peter Klüfers durchgeführt. TABLE OF CONTENTS Table of contents 1 Introduction 1 1.1 Natural and anthropogenic sources of nitrogen monoxide 1 1.2 Nitrogen monoxide – biochemical properties 2 1.2.1 The discovery of nitric oxide as an endogenous gasotransmitter 2 1.2.2 Endogenous sources and cellular targets of nitric oxide 5 1.3 General chemical and physical properties of NO 8 1.4 NO as a ligand 9 1.4.1 The metal-nitrosyl bond 9 1.4.2 NO as a redoxactive ligand 10 1.4.3 NO as an ambident ligand 11 1.5 Nitrosyl complexes 12 1.5.1 Mononitrosyl complexes 13 1.5.2 Dinitrosyl complexes 15 1.6 Metal nitrosylation 17 1.7 Properties of ruthenium and its compounds 17 1.8 Phosphanes as ligands 18 1.9 Aims of this work 21 2 Results 23 2.1 Synthesis of the {RuNO}n precursor compounds 23 2.2 Synthesis of the {RuNO}8 intermediate products 25 8 2.3 Synthesis of the {Ru(NO)2} products 26 2.4 Characterisation of the {RuNO}n precursor compounds 27 2.5 Characterisation of {RuNO}6 side and {RuNO}8 intermediate products 29 2.5.1 {RuNO}8 compound with triphenylphosphane 29 2.5.2 {RuNO}8 compound with tert-butyldiphenylphosphane 32 8 2.6 Characterisation of the {Ru(NO)2} products 34 2.6.1 Spectroscopic methods 34 2.6.2 Single-crystal X-ray crystallography and description of the structure by CShM and τ5 values 35 2.6.3 Comparative calculations, based on DFT 46 2.7 Verification of the crystallographically determined nitrosyl bonding modes 48 I TABLE OF CONTENTS 2.7.1 By comparative quantum-chemical calculations and IR measurements in solution 49 2.7.2 By investigations on the temperature dependence of ADPs 51 2.8 Correlations between structure, co-ligands and spectroscopic properties 53 i 2.9 [{Ru(NO)2(P Pr3)}2(µ-I)]BF4: a DNIC analogous bisdinitrosyl 55 2.10 PLI measurements 58 2.10.1 [RuCl(NO)2(PPh3)2]BF4 58 2.10.2 [RuBr(NO)2(PPh3)2]BF4 59 2.10.3 [RuCl(NO)2(PPh2Bn)2]BF4 60 2.10.4 [RuCl(NO)2{P(p-tolyl)}2]BF4 61 2.10.5 [RuCl(NO)2(PCy3)2]BF4 62 i 2.10.6 [RuBr(NO)2(P Pr3)2]BF4 63 2.11 Photocrystallography of [RuCl(NO)2(PPh3)2]BF4 64 3 Discussion 69 3.1 Structural interconversion observed in solution 69 3.2 Electronic states and Enemark–Feltham notation 70 6 8 8 3.3 {RuNO} , {RuNO} , {Ru(NO)2} : Structural and IR spectroscopic properties in comparison 71 3.4 Description of [RuX(NO)2(PR3)2]BF4 compounds using MO theory 74 + 3.4.1 Pentacoordination and site preferences in [RuX(NO)2(PR3)2] : crystal-field theoretical considerations 74 8 3.4.2 The {Ru(NO)2} moiety in the context of MO theory 78 3.5 Investigations of PLI behaviour by low-temperature IR spectroscopy and photocrystallography 83 4 Summary 86 5 Experimental Part 92 5.1 Common working techniques 92 5.2 Analytic methods 92 5.3 Reagents and solvents 93 5.4 Preparation of the precursor compounds 94 5.4.1 RuCl3(NO) · x H2O 94 5.4.2 K2[RuCl5(NO)] 95 5.4.3 K2[Ru(OH)(NO2)4(NO)] 96 5.4.4 K2[RuBr5(NO)] 97 5.4.5 K2[RuI5(NO)] 98 II TABLE OF CONTENTS 5.4.6 [RuCl3(NO)(PPh3)2] 99 5.4.7 [RuBr3(NO)(PPh3)2] 100 5.4.8 [RuI3(NO)(PPh3)2] 101 5.4.9 [RuCl3(NO)(PPh2Bn)2] 102 5.4.10 [RuBr3(NO)(PPh2Bn)2] 103 5.4.11 [RuCl3(NO)(PBn3)2] 104 5.4.12 [RuBr3(NO)(PBn3)2] 105 t 5.4.13 [RuCl3(NO)(P BuPh2)2] 106 5.4.14 [RuCl1–3(NO){P(p-tolyl)3}2] 107 5.4.15 [RuBr1–3(NO){P(p-tolyl)3}2] 108 5.4.16 [RuCl2–3(NO){P(p-anisyl)3}2] 109 5.4.17 [RuBr1–3(NO){P(p-anisyl)3}2] 110 5.4.18 [RuCl1–3(NO)(PCy3)2] 111 5.4.19 [RuBr1–3(NO)(PCy3)2] 112 5.4.20 [RuI1–3(NO)(PCy3)2] 113 5.4.21 [RuCl1–3(NO)(PCyp3)2] 114 5.4.22 [RuBr1–3(NO)(PCyp3)2] 115 5.4.23 [RuI1–3(NO)(PCyp3)2] 116 i 5.4.24 [RuCl1–3(NO)(P Pr3)2] 117 i 5.4.25 [RuBr1–2(NO)(P Pr3)2] 118 i 5.4.26 [RuI1–2(NO)(P Pr3)2] 119 8 5.5 Synthesis of products of the {Ru(NO)2} -type 120 5.5.1 [RuCl(NO)2(PPh3)2]BF4 120 5.5.2 [RuBr(NO)2(PPh3)2]BF4 121 5.5.3 [RuCl(NO)2(PPh2Bn)2]BF4 122 5.5.4 [RuBr(NO)2(PPh2Bn)2]BF4 123 5.5.5 [RuCl(NO)2(PBn3)2]BF4 124 5.5.6 [RuBr(NO)2(PBn3)2]BF4 125 t 5.5.7 [RuCl(NO)2( BuPPh2)2]BF4 126 5.5.8 [RuCl(NO)2{P(p-tolyl)3}2]BF4 · C7H8 127 5.5.9 [RuBr(NO)2{P(p-tolyl)3}2]BF4 128 5.5.10 [RuCl(NO)2{P(p-anisyl)3}2]BF4 129 5.5.11 [RuBr(NO)2(P(p-anisyl)3)2]BF4 130 5.5.12 [RuCl(NO)2(PCy3)2]BF4 131 5.5.13 [RuBr(NO)2(PCy3)2]BF4 132 III TABLE OF CONTENTS 5.5.14 [RuI(NO)2(PCy3)2]BF4 133 5.5.15 [RuCl(NO)2(PCyp3)2]BF4 134 5.5.16 [RuBr(NO)2(PCyp3)2]BF4 135 5.5.17 [RuI(NO)2(PCyp3)2]BF4 136 i 5.5.18 [RuCl(NO)2(P Pr3)2]BF4 137 i 5.5.19 [RuBr(NO)2(P Pr3)2]BF4 138 i 5.5.20 [RuI(NO)2(P Pr3)2]BF4 139 i 5.5.21 [{Ru(NO)2(P Pr3)}2(µ-I)]BF4 140 5.6 {RuNO}8 intermediate products and {RuNO}6 side products 141 5.6.1 [RuCl(NO)(PPh3)2] 141 t 5.6.2 [RuCl(NO)(P BuPh2)2] 142 5.6.3 [{RuBr2(NO)(PPh3)}2(µ-Br)2] 143 5.6.4 [{RuI2(NO)(PPh3)}2(µ-I)2] 143 5.7 Methods for the description of geometrical parameters 144 5.8 Crystal structure determination and refinement 146 5.9 Analysis of the temperature dependence of atomic displacement parameters (ADPs) 147 5.10 Photocrystallography and investigations on PLI 148 5.11 Quantum chemical computations 150 6 Appendix 151 6.1 Additional information 151 6.2 Packing diagrams of the crystal structures 152 6.3 Crystallographic tables 173 7 Bibliography 184 IV LIST OF FIGURES List of Figures Fig. 1.1: The nitrogen cycle. ........................................................................................................................................................ 1 Fig. 1.2: The observations that similar physiological responses to endothelium dependent vasodilators, nitrovasodilators and NO occur, led to the finding that EDRF is nitric oxide. ......................................................................................................... 3 Fig. 1.3: The various physiological processes, regulated by the signalling molecule NO. ........................................................... 4 Fig. 1.4: Domains and cofactors of NO-synthase. ....................................................................................................................... 5 Fig. 1.5: Structures of the various fragments of NO synthase ..................................................................................................... 5 Fig. 1.6: The nitric oxide synthetic pathway. ............................................................................................................................... 6 Fig. 1.7: Schematic mechanism of the NO-dependent activation of sGC. ................................................................................... 6 Fig. 1.8: The reaction of NO with oxyHb serving as a detoxification mechanism for NO and/or O2 ........................................... 7 Fig. 1.9: Some physical and chemical properties of NO, NO+ and NO−........................................................................................ 8 Fig. 1.10: Qualitative molecular orbital diagram of the neutral NO radical. ............................................................................... 9 Fig. 1.11: Resonance structures of nitric oxide and the formation of the various bonding modes .......................................... 10 Fig. 1.12: Schematic representation of the bonding situation in the ground state and the metastable states of sodium nitroprusside (SNP) as an example for the PLI-effect................................................................................................................ 12 Fig. 1.13: Some examples for mononitrosyl complexes. ........................................................................................................... 12 Fig. 1.14: Orbital diagram for the interaction of a linearly coordinated NO with an octahedral ML5 complex......................... 13 Fig. 1.15: Bending of the MNO moiety ...................................................................................................................................... 14 Fig. 1.16: Possible resonance structures and hybridisations for a six-coordinate {MNO}6 complex and {MNO}8 complex. ..... 14 Fig. 1.17: Some examples of dinitrosyl structures, deposited in the CSD. ................................................................................ 15 Fig. 1.18: The various possibilities for introducing NO or generating a nitrosyl ligand in a metal complex. ............................. 17 Fig. 1.19: Electronic and steric effects of common P donor ligands plotted on a map according to Tolman ........................... 19 Fig. 1.20: Visualisation of Tolman’s electronic and steric parameter.......................................................................................