Nitroso and Nitro Compounds 11/22/2014 Part 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vapor Phase Nitration of Butane in a Fused Salt Reactor Frank Slates Adams Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1961 Vapor phase nitration of butane in a fused salt reactor Frank Slates Adams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Adams, Frank Slates, "Vapor phase nitration of butane in a fused salt reactor " (1961). Retrospective Theses and Dissertations. 2472. https://lib.dr.iastate.edu/rtd/2472 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 61-6173 microfilmed exactly as received ADAMS, Jr., Frank Slates, 1931— VAPOR PHASE NITRATION OF BUTANE IN A FUSED SALT REACTOR. Iowa State University of Science and Technology Ph.D., 1961 Engineering, chemical University Microfilms, Inc., Ann Arbor, Michigan VAPOR PHASK NITRATION OF BUTANE IN A FUSED SALT REACTOR by Frank Slates Adams, Jr. A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHIDSOPHÏ Major Subject: Chemical Engineering Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was -
(Nitroaldol) Reaction
MICROREVIEW DOI: 10.1002/ejoc.201101840 Biocatalytic Approaches to the Henry (Nitroaldol) Reaction Sinéad E. Milner,[a] Thomas S. Moody,[b] and Anita R. Maguire*[c] Keywords: Enzyme catalysis / Biocatalysis / C–C coupling / Nitroaldol reaction / Nitro alcohols Enantiopure β-nitro alcohols are key chiral building blocks approaches to the Henry (nitroaldol) reaction. The first for the synthesis of bioactive pharmaceutical ingredients. method is a direct enzyme-catalysed carbon–carbon bond The preparation of these target compounds in optically pure formation resulting in either an enantio-enriched or enantio- form has been the focus of much research and there has been pure β-nitro alcohol. The second approach describes the an emergence of biocatalytic protocols in the past decade. Henry reaction without stereocontrol followed by a biocata- For the first time, these biotransformations are the focus of lytic resolution to yield the enantiopure β-nitro alcohol. this review. Herein, we describe two principal biocatalytic Introduction The construction of carbon–carbon bonds is an essential element of synthetic organic chemistry. Among the various C–C bond forming reactions, the nitroaldol or Henry reac- tion[1] is one of the classical named reactions in organic synthesis. Essentially, this reaction describes the coupling of a nucleophilic nitro alkane with an electrophilic aldehyde or ketone to produce a synthetically useful β-nitro alcohol (Scheme 1).[2–5] Moreover, the Henry reaction facilitates the joining of two molecular fragments, under mild reaction conditions with the potential formation of two new ste- reogenic centres and a new C–C bond. The resulting β-nitro alcohols can undergo a variety of useful chemical transfor- mations which lead to synthetically useful structural motifs, e.g. -
Nitro Compounds As Oxidizing Agents
Class Book _______ Accession 1-f c6-- 111 Vol. ______ MORRISON . LIBRARY OF THE Municipal University of Wichita WICHITA. KANSAS THE IVERSI~Y ·o v !CHIT. NIT O COMPOUH ]).) 0 ID! ING AGENTw . SUBMITTED TO THE G.1. IDATE FACULTY IN C DI CY FOR THE ·n~G. OF TERO TS ) ) :l)-, .l)) )) ) ! ~ ):> ) ) ) .) ) .). J ) ,, ) ) ..) )) )) .) } ::> ) ) ) ) J ) J ) J ) .) ) .) ) .) ) . ) , ) ) ) ) ..) ) ) ) ) } ) J).) ' .J ) "):) ) ) .) .) ) ::> .) J ) ) ' J .) J ) ) s JUN t J.~32 Acknov~e gment is made to Professor ·orth A. Fletcher for his direction and assistance in the con uctance of this study. (ii) (ii) T BLE ·0] 1 COMTiilllT :e G.J.:J CKU ONLE DGlJCNT • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . ii LIT OFT BLE • • • • • • • • • • • • • • • • • • • • • • • • , • • • , , • • • i V LI T OF FIGUl ~ ••••••••••••••••••••••• ' •••••••••• V IN Tl ODUCTI ON ••••••••••••••••••• , •••••••••••••••• l ~ pv. 11JI:E:t.i T L •· • • • • • • • • • • , • , •· • , , • • , • • • • • • • • • • • • • • • t ]? T B DFEECT OF TE1ft.PER TUHE •••• • • • • • • • • • • • .Id • C ffi.,' • y •••• •••••••••••• ............ •' • • • • • •••••• 13 LI 11: J:RE: CI TE'D. • • • • ••• , • • • • • • • • • • • • • • • , • • • • • •• 14 (iii) LI T O · BLE Table page I• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .-:. • • • • • • 5 I I •• .. ................ ··~. ·~ ·· .....•..•........••.• 7 III. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 8 rv~.. J ••••••••••••••••••••••••••••••• .•••••••••••• -
Preparation and Purification of Atmospherically Relevant Α
Atmos. Chem. Phys., 20, 4241–4254, 2020 https://doi.org/10.5194/acp-20-4241-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Technical note: Preparation and purification of atmospherically relevant α-hydroxynitrate esters of monoterpenes Elena Ali McKnight, Nicole P. Kretekos, Demi Owusu, and Rebecca Lyn LaLonde Chemistry Department, Reed College, Portland, OR 97202, USA Correspondence: Rebecca Lyn LaLonde ([email protected]) Received: 31 July 2019 – Discussion started: 6 August 2019 Revised: 8 December 2019 – Accepted: 20 January 2020 – Published: 9 April 2020 Abstract. Organic nitrate esters are key products of terpene oxidation in the atmosphere. We report here the preparation and purification of nine nitrate esters derived from (C)-3- carene, limonene, α-pinene, β-pinene and perillic alcohol. The availability of these compounds will enable detailed investigations into the structure–reactivity relationships of aerosol formation and processing and will allow individual investigations into aqueous-phase reactions of organic nitrate esters. Figure 1. Two hydroxynitrate esters with available spectral data. Relative stereochemistry is undefined. 1 Introduction derived ON is difficult, particularly due to partitioning into the aerosol phase in which hydrolysis and other reactivity Biogenic volatile organic compound (BVOC) emissions ac- can occur (Bleier and Elrod, 2013; Rindelaub et al., 2014, count for ∼ 88 % of non-methane VOC emissions. Of the to- 2015; Romonosky et al., 2015; Thomas et al., 2016). Hydrol- tal BVOC estimated by the Model of Emission of Gases and ysis reactions of nitrate esters of isoprene have been stud- Aerosols from Nature version 2.1 (MEGAN2.1), isoprene is ied directly (Jacobs et al., 2014) and the hydrolysis of ON estimated to comprise half, and methanol, ethanol, acetalde- has been studied in bulk (Baker and Easty, 1950). -
ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity
ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM) Nitrate/Nitrite Toxicity Course: WB2342 CE Original Date: December 5, 2013 CE Expiration Date: December 5, 2015 Key • Nitrate toxicity is a preventable cause of Concepts methemoglobinemia. • Infants younger than 4 months of age are at particular risk of nitrate toxicity from contaminated well water. • The widespread use of nitrate fertilizers increases the risk of well-water contamination in rural areas. About This This educational case study document is one in a series of and Other self-instructional modules designed to increase the primary Case Studies care provider’s knowledge of hazardous substances in the in environment and to promote the adoption of medical Environmen- practices that aid in the evaluation and care of potentially tal Medicine exposed patients. The complete series of Case Studies in Environmental Medicine is located on the ATSDR Web site at URL: http://www.atsdr.cdc.gov/csem/csem.html In addition, the downloadable PDF version of this educational series and other environmental medicine materials provides content in an electronic, printable format. Acknowledgements We gratefully acknowledge the work of the medical writers, editors, and reviewers in producing this educational resource. Contributors to this version of the Case Study in Environmental Medicine are listed below. Please Note: Each content expert for this case study has indicated that there is no conflict of interest that would bias the case study content. CDC/ATSDR Author(s): Kim Gehle MD, MPH CDC/ATSDR Planners: Charlton Coles, Ph.D.; Kimberly Gehle, MD; Sharon L. -
Acetaldehyde Oxime Hazard Summary Identification
Common Name: ACETALDEHYDE OXIME CAS Number: 107-29-9 RTK Substance number: 0003 DOT Number: UN 2332 Date: March 1987 Revision: August 1998 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Acetaldehyde Oxime can affect you when breathed in and No occupational exposure limits have been established for by passing through your skin. Acetaldehyde Oxime. This does not mean that this substance * Contact can irritate the eyes and skin. is not harmful. Safe work practices should always be * Breathing Acetaldehyde Oxime can irritate the nose and followed. throat. * Acetaldehyde Oxime is a FLAMMABLE LIQUID and a * It should be recognized that Acetaldehyde Oxime can be FIRE HAZARD. absorbed through your skin, thereby increasing your exposure. IDENTIFICATION Acetaldehyde Oxime is a colorless liquid or crystalline WAYS OF REDUCING EXPOSURE (needle-like) solid. It is used to make other chemicals. * Where possible, enclose operations and use local exhaust ventilation at the site of chemical release. If local exhaust REASON FOR CITATION ventilation or enclosure is not used, respirators should be * Acetaldehyde Oxime is on the Hazardous Substance List worn. because it is cited by DOT. * Wear protective work clothing. * This chemical is on the Special Health Hazard Substance * Wash thoroughly immediately after exposure to List because it is FLAMMABLE. Acetaldehyde Oxime and at the end of the workshift. * Definitions are provided on page 5. * Post hazard and warning information in the work area. In addition, as part of an ongoing education and training HOW TO DETERMINE IF YOU ARE BEING effort, communicate all information on the health and safety hazards of Acetaldehyde Oxime to potentially EXPOSED exposed workers. -
Reactions of Benzene & Its Derivatives
Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of -
Oligomerization and Nitration of the Grass Pollen Allergen Phlp5
International Journal of Molecular Sciences Article Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects Anna T. Backes 1,* , Kathrin Reinmuth-Selzle 1 , Anna Lena Leifke 1, Kira Ziegler 1 , Carola S. Krevert 1,† , Georg Tscheuschner 2 , Kurt Lucas 1 , Michael G. Weller 2 , Thomas Berkemeier 1 , Ulrich Pöschl 1 and Janine Fröhlich-Nowoisky 1,* 1 Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; [email protected] (K.R.-S.); [email protected] (A.L.L.); [email protected] (K.Z.); [email protected] (C.S.K.); [email protected] (K.L.); [email protected] (T.B.); [email protected] (U.P.) 2 Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany; [email protected] (G.T.); [email protected] (M.G.W.) * Correspondence: [email protected] (A.T.B.); [email protected] (J.F.-N.) † Current address: Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128 Mainz, Germany. Citation: Backes, A.T.; Reinmuth-Selzle, K.; Leifke, A.L.; Abstract: The allergenic and inflammatory potential of proteins can be enhanced by chemical Ziegler, K.; Krevert, C.S.; modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms Tscheuschner, G.; Lucas, K.; Weller, and kinetics of such modifications, however, have not yet been fully resolved. We investigated the M.G.; Berkemeier, T.; Pöschl, U.; oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide Fröhlich-Nowoisky, J. -
Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa. -
Systems Biology Reveals Reprogramming of the S-Nitroso
www.nature.com/scientificreports OPEN Systems biology reveals reprogramming of the S‑nitroso‑proteome in the cortical and striatal regions of mice during aging process Maryam Kartawy, Igor Khaliulin & Haitham Amal* Cell aging depends on the rate of cumulative oxidative and nitrosative damage to DNA and proteins. Accumulated data indicate the involvement of protein S‑nitrosylation (SNO), the nitric oxide (NO)-mediated posttranslational modifcation (PTM) of cysteine thiols, in diferent brain disorders. However, the changes and involvement of SNO in aging including the development of the organism from juvenile to adult state is still unknown. In this study, using the state‑of‑the‑ art mass spectrometry technology to identify S‑nitrosylated proteins combined with large‑scale computational biology, we tested the S‑nitroso‑proteome in juvenile and adult mice in both cortical and striatal regions. We found reprogramming of the S‑nitroso‑proteome in adult mice of both cortex and striatum regions. Signifcant biological processes and protein–protein clusters associated with synaptic and neuronal terms were enriched in adult mice. Extensive quantitative analysis revealed a large set of potentially pathological proteins that were signifcantly upregulated in adult mice. Our approach, combined with large scale computational biology allowed us to perform a system‑level characterization and identifcation of the key proteins and biological processes that can serve as drug targets for aging and brain disorders in future studies. Nitric oxide (NO) is produced in diferent organs and tissues, including the central and peripheral nervous sys- tem, and is one of the most important signaling molecules in the body1,2. At low concentrations, it participates in cell signaling and may have therapeutic value for brain injury 3. -
John Ulric N E F
NATIONAL ACADEMY OF SCIENCES JOHN ULRIC N EF 1862—1915 A Biographical Memoir by M E L V I L L E L . W O L F R O M Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1960 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. JOHN ULRIC NEF' June 14,1862-August 13,1915 BY MELVILLE L. WOLFROM OHN ULRIC NEF was a great pioneer in American chemistry. It was J he, along with Arthur Michael and Ira Remsen, who was mainly responsible for the transfer to the universities of the United States of the tenets of the actively growing science of organic chemistry from the laboratories of the great European universities of the time. Nef was a pioneer in theoretical organic chemistry, a great experimental- ist, and an inspiring trainer of men. His advanced students, the Ph.D. trainees, went into positions in the American universities, and espe- cially in the Middle West, determined to carry on the tradition of research. In the words of one: "We were determined to keep some research going if it were only to boil water." This establishment of chemical research in the American universities was carried out under the most difficult of conditions and with little support or understand- ing on the part of the administrators of these growing institutions, who mainly considered the science departments, in the liberal arts colleges, as units which cost a lot of money and produced results of doubtful cultural value. -
C-Nitroso-Substituted Ligands of Poly(ADP-Ribose) Polymerase (Zinc Rmger/Drug-Induced Cell Death) WILLIAM G
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 7703-7707, August 1992 Pharmacology Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose) polymerase (zinc rmger/drug-induced cell death) WILLIAM G. RICE*t, CHRISTOPHER D. HILLYERt, BRAD HARTEN*, CATHERINE A. SCHAEFFER*, MARK DORMINY*, DIXON A. LACKEY III*, EVA KIRSTEN§, JEROME MENDELEYEV§, KALMAN G. BUKI§, ALAEDDIN HAKAM§, AND ERNEST KUNt§ *Division of Hematology and Oncology, Department of Pediatrics, and tDepartment of Pathology and Laboratory of Medicine and the Winship Cancer Center, Emory University School of Medicine, Atlanta, GA 30322; and §Laboratory for Environmental Toxicology and Chemistry, The Romberg Tiburon Center, San Francisco State University, P.O. Box 855, Tiburon, CA 94920 Communicated by John Baldeschwieler, May 19, 1992 ABSTRACT 6-Nitroso-1,2-benzopyrone and 3-ni- Assays. For cell proliferation tests, cells were cultured in trosobenzamide, two C-nitroso compounds that inactivate the 96-well tissue culture plates at 3 x 103 cells per well (250-gl eukaryotic nuclear protein poly(ADP-ribose) polymerase total volume per well) for 2 hr (or the indicated length oftime) [NAD+:poly(adenosine diphosphate D-ribose) ADP-D-ribosyl- in the absence or presence of various concentrations of transferase, ADPRT, EC 2.4.2.30] at one zinc-ringer site, NOBA or NOBP; thereafter 0.5 ,uCi of [methyl-3H]thymidine completely suppressed the proliferation of leukemic and other (85 Ci/mmol; 1 Ci = 37 GBq) was added per well and its malignant human cells and subsequently produced cell death. incorporation into DNA following an 18-hr incubation was Tumoricidal concentrations of the drugs were relatively harm- determined radiochemically (6).