Synthetic Uses of S-Nitrosothiols in Organic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Uses of S-Nitrosothiols in Organic Chemistry SYNTHETIC USES OF S-NITROSOTHIOLS IN ORGANIC CHEMISTRY By TYLER DAVID BIGGS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Chemistry MAY 2017 © Copyright by TYLER DAVID BIGGS, 2017 All Rights Reserved © Copyright by TYLER DAVID BIGGS, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of TYLER DAVID BIGGS find it satisfactory and recommend that it be accepted. Ming Xian, Ph.D., Chair Cliff E. Berkman, Ph.D. Aurora Clark, Ph.D. Jeffery Jones, Ph.D. ii ACKNOWLEDGMENT I would like to thank Dr. Ming Xian for his supervision, help, and guidance over the course of my Ph.D. study. His challenges and questions kept me on track, and forced me to constantly reevaluate myself critically. I would also like to thank Dr. Ronald for helping to kindle my interest and passion in chemistry. I would like to thank my committee members for sharing their time and knowl- edge. I would also like to thank the Washington State University Chemistry depart- ment for the resources and equipment provided, and those in the front office who keep things running. Finally I would like to thank my fellow students who have supported me. Ryan Joseph, for his help and enthusiasm in chemistry and LATEX. Nelmi Devarie, for talks of cooking and science. Laksiri, Hua Wang, and Chung-Min Park for their help in training me in the basics. Most importantly are my family and friends, with out their support I would have never started this journey, or have a place to go up on finishing it, without their help and commitment. iii SYNTHETIC USES OF S-NITROSOTHIOLS IN ORGANIC CHEMISTRY Abstract by Tyler David Biggs, Ph.D. Washington State University May 2017 Chair: Ming Xian S-Nitrosothiols have risen to prominence since their identification as an impor- tant post-translational modification of cysteine residues. The full range of chem- istry and biological implications of this motif are under exploration. Direct chem- ical reactions of S-nitrosothiols should reveal clues into their biological effects, and produce new synthetic tools for the construction of sulfur and nitrogen con- taining compounds. Here several explorations into synthetic applications of S-Nitrosothiols are ex- plored. The relevant background literature is reviewed. Then a phosphine medi- ated reductive ligation of aldehydes and S-Nitrosothiols is discussed. Followed the development of a proline-based phosphine reagent and its reactivity with S-nitrosothiols is explored. iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS . iii ABSTRACT . iv A REVIEW OF S-NITROSOTHIOLS . .1 1.1 Introduction................................1 1.1.1 Historical Context.........................1 1.1.2 Chemical Background......................2 1.1.3 Biological Significance......................3 1.2 Properties of S-Nitrosothiols.......................4 1.2.1 Structure and Electronic Nature of S-Nitrosothiols......5 1.2.2 Isomerization of S-Nitrosothiols.................6 1.3 Spectra...................................7 1.3.1 Infrared and Raman Spectra...................7 1.3.2 UV-Vis Spectra...........................8 1.4 S-Nitrosation................................8 1.4.1 Direct Reaction of Thiols with Nitric Oxide..........8 1.4.2 Nitrosation by Nitrite in Acidic Media............. 10 1.4.3 Nitrosation by Alkyl Nitrites................... 10 1.4.4 Transnitrosation.......................... 11 1.5 Decomposition............................... 12 1.5.1 Homolytic & Heterolytic Cleavage of the S-N Bond...... 13 1.5.2 Rates of Decomposition of S-Nitrosothiols........... 14 v 1.5.3 Metal-based SNO Decomposition................ 15 1.6 Reactions of S-Nitrosothiols....................... 16 1.6.1 Bioorthogonal Reactions of SNO................ 16 1.6.2 Reactions with Phosphines.................... 16 1.6.3 Light Induced Reactions..................... 28 1.6.4 Reactions with Sulfenic Acids.................. 29 1.6.5 Reactions with Carbanions.................... 30 1.6.6 Miscellaneous Reactions..................... 31 CONJUGATION OF S-NITROSOTHIOLS WITH ALDEHYDES . 34 2.1 Introduction................................ 34 2.1.1 Hypothesis............................. 34 2.2 Results and Discussion.......................... 35 2.2.1 Experimental Plan........................ 35 2.2.2 Preparation of Starting Materials................ 36 2.2.3 Condition Screen......................... 37 2.2.4 Intramolecular Substrate Screen................. 38 2.2.5 Intermolecular Substrate Screen................. 38 2.2.6 Application - Synthesis of Benzoisothiazole.......... 41 2.3 Conclusion................................. 43 2.A Appendix.................................. 43 2.A.1 Methods.............................. 43 PROLINE BASED PHOSPHORAMIDITE REDUCTIVE LIGATION REAGENTS 49 3.1 Introduction................................ 49 3.1.1 Rationale for S-N bond Formation Methodology Development 50 3.2 Results and Discussion.......................... 52 3.2.1 Experimental Plan........................ 52 3.2.2 Reaction Screening........................ 53 3.2.3 Removal of the Phosphine Oxide Moiety............ 55 vi 3.2.4 Use as a Nitroxyl trap....................... 55 3.3 Conclusion................................. 58 3.A Appendix.................................. 58 3.A.1 Methods.............................. 58 3.A.2 Preparation of S-Nitrosothiols.................. 60 3.A.3 General Reductive Ligation Procedure............. 60 3.A.4 Deprotection of the Diphenylphosphoryl Group....... 64 BIBLIOGRAPHY . 78 vii LIST OF TABLES Page 1.1 Bond lengths and angles of selected S-nitrosothiols..........5 1.2 Characteristic IR bands of SNO.....................7 1.3 Characteristic UV/Vis bands S-nitrosothiols...............8 1.4 Rates of nitrosation of the thiolate anion................ 11 1.5 Rates of transnitrosation by SNAP.................... 12 1.6 Half-life values of selected SNO compounds............... 15 1.7 Thioether formation from SNO..................... 31 1.8 Generation of polysulfides from copper (II) halides.......... 32 2.1 Solvent screen for the intramolecular phosphine mediated conjugation. 38 2.2 Substrate screen of the intramolecular conjugation.......... 39 2.3 Aldehyde substrates amenable to the conjugation............ 41 3.1 Substrate screen of the proline-based phosphoramidate coupling.. 56 viii LIST OF FIGURES Page 1.1 Seminal nitrosation of phenyl mercaptan................2 1.2 Resonance description of S-Nitrosothiols................5 1.3 The cis-trans isomerization of t-butyl-S-nitrosothiol..........7 1.4 Mechanism of the Staudinger Reaction.................. 18 1.5 Radical TrSNO addition to olefins.................... 29 2.1 General form of the aldehyde & SNO coupling............. 34 2.2 Benzoisothiazole containing pharmaceuticals.............. 42 3.1 General form of the proline based phosphoramidite coupling..... 49 3.2 S-N linkages in pharmaceuticals..................... 50 ix LIST OF SCHEMES Page 1.1 Glutathione and cysteine SNO......................4 1.2 Synthesis of a stable S-nitrosothiol iridium complex..........6 1.3 Formation of a thio-azaylide........................ 17 1.4 Trapping of a nitrene derived from TrSNO................ 17 1.5 Proposed nitrene mechanism pathway A................. 18 1.6 Proposed 3-membered ring mechanism pathways B1 & B2...... 19 1.7 Fast reductive ligation........................... 19 1.8 Mechanism of the reductive ligation................... 20 1.9 Traceless ligations using phosphine esters/thioesters.......... 20 1.10 Mechanism of the traceless ligation.................... 21 1.11 Formation of thioimidates from phosphine thioesters......... 22 1.12 One-step reductive disulfide formation................. 22 1.13 One-step disulfide formation from SNO................ 23 1.14 SNO labeling with the traceless ligation reagent............ 24 1.15 One-pot thioether formation....................... 24 1.16 Mechanism of the one-pot thioether formation............ 25 1.17 Bis-ligation of primary SNO....................... 26 1.18 Dehydroalanine formation........................ 26 1.19 Determination of the intra-molecular elimination........... 27 1.20 A water soluble phosphine........................ 27 1.21 One-pot formation of benzoisothiazoles................. 28 1.22 Synthesis of α-tritylthio oximes..................... 29 x 1.23 Dimerization of allyl SNO compounds................. 29 1.24 Thiosulfonates from sulfenic acids and S-nitrosothiols......... 30 1.25 Cross-reactivity profile of SNO and sulfenic acids........... 30 1.26 Asymmetrical disulfide formation from SNO.............. 31 1.27 Amines converted to their corresponding aryl halides......... 32 1.28 Yields of 2-aryl-1-haloethanes...................... 33 2.1 Inspiration for aldehyde conjugation from our previous work.... 35 2.2 Proposed mechanism of an intramolecular conjugation of an alde- hyde and SNO................................ 36 2.3 Synthesis of 2-(diphenylphosphaneyl) benzaldehyde......... 37 2.4 Benzaldehyde fails to couple with TrSNO................ 40 2.5 Cinnamaldehyde successfully undergoes the intermolecular conjuga- tion...................................... 40 2.6 One-pot synthesis of benzoisothiazole.................. 43 3.1 Phosphine based reductive ligation.................... 52 3.2 General form of the proline-based ligation............... 53 3.3 Preparation of the proline-phosphoramidate - esterification...... 53 3.4 Preparation of the proline-phosphoramidate - phosphoramidite
Recommended publications
  • Novel Antagonists for the Human Adenosine
    UvA-DARE (Digital Academic Repository) Novel antagonists for the human adenosine A2A and A3 receptor via purine nitration: synthesis and biological evaluation of C2-substituted 6- trifluoromethylpurines and 1-deazapurines Koch, M. Publication date 2011 Document Version Final published version Link to publication Citation for published version (APA): Koch, M. (2011). Novel antagonists for the human adenosine A2A and A3 receptor via purine nitration: synthesis and biological evaluation of C2-substituted 6-trifluoromethylpurines and 1- deazapurines. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:05 Oct 2021 Novel antagonists for the human adenosine A Novel antagonists for the human adenosine Uitnodiging Novel antagonists for the voor het bijwonen van human adenosine de openbare verdediging van het proefschrift van A2A and A3 receptor via purine nitration Melle Koch op vrijdag 21 oktober 2011 om 14:00 uur in de Agnietenkapel van de Universiteit van Amsterdam Synthesis and biological evaluation Oudezijds Voorburgwal 231 of C2-substituted te Amsterdam 2A Na afloop van de promotie and A 6-trifluoromethylpurines zal hier tevens de receptie .
    [Show full text]
  • Nitroso and Nitro Compounds 11/22/2014 Part 1
    Hai Dao Baran Group Meeting Nitroso and Nitro Compounds 11/22/2014 Part 1. Introduction Nitro Compounds O D(Kcal/mol) d (Å) NO NO+ Ph NO Ph N cellular signaling 2 N O N O OH CH3−NO 40 1.48 molecule in mammals a nitro compound a nitronic acid nitric oxide b.p = 100 oC (8 mm) o CH3−NO2 57 1.47 nitrosonium m.p = 84 C ion (pKa = 2−6) CH3−NH2 79 1.47 IR: υ(N=O): 1621-1539 cm-1 CH3−I 56 Nitro group is an EWG (both −I and −M) Reaction Modes Nitro group is a "sink" of electron Nitroso vs. olefin: e Diels-Alder reaction: as dienophiles Nu O NO − NO Ene reaction 3 2 2 NO + N R h 2 O e Cope rearrangement υ O O Nu R2 N N N R1 N Nitroso vs. carbonyl R1 O O O O O N O O hυ Nucleophilic addition [O] N R2 R O O R3 Other reaction modes nitrite Radical addition high temp low temp nitrolium EWG [H] ion brown color less ion Redox reaction Photochemical reaction Nitroso Compounds (C-Nitroso Compounds) R2 R1 O R3 R1 Synthesis of C-Nitroso Compounds 2 O R1 R 2 N R3 3 R 3 N R N R N 3 + R2 2 R N O With NO sources: NaNO2/HCl, NOBF4, NOCl, NOSbF6, RONO... 1 R O R R1 O Substitution trans-dimer monomer: blue color cis-dimer colorless colorless R R NOBF OH 4 - R = OH, OMe, Me, NR2, NHR N R2 R3 = H or NaNO /HCl - para-selectivity ΔG = 10 Kcal mol-1 Me 2 Me R1 NO oxime R rate determining step Blue color: n π∗ absorption band 630-790 nm IR: υ(N=O): 1621-1539 cm-1, dimer υ(N−O): 1300 (cis), 1200 (trans) cm-1 + 1 Me H NMR (α-C-H) δ = 4 ppm: nitroso is an EWG ON H 3 Kochi et al.
    [Show full text]
  • Amyl Nitrite Or 'Jungle Juice'
    Young People and Other Drugs Amyl Nitrite or ‘Jungle Juice’ Amyl nitrite is an inhalant that belongs to a class As with any drug, the use of nitrites is not risk-free. of chemicals called alkyl nitrites. This group of Some of the harms associated with its use include: drugs can be called ‘poppers’. They are often injuries related to inhaling the vapour referred to by their brand name, with ‘Jungle (e.g., rashes, burns) Juice’ probably being the most well-known of these. allergic reactions accidents and falls Inhaling amyl nitrite relaxes the body and gives vision problems (isopropyl nitrite) a ‘rush’ that lasts for one to two minutes. It is commonly used to enhance sexual pleasure and in rare cases, blood disorders induce a feeling of euphoria and well-being. MOST IMPORTANTLY, AMYL NITRITE OR JUNGLE JUICE MUST NEVER BE DRUNK. Drinking amyl can result in death due to it interfering with the ability of the blood to transport oxygen. What is amyl nitrite? Over the years, to bypass legal restrictions, nitrites have been sold as such things as liquid incense or Amyl nitrite is an inhalant that belongs to a class of room odoriser. Jungle Juice, which can be sold as chemicals called alkyl nitrites. Amyl nitrite is a highly a leather cleaner, is a common product name of flammable liquid that is clear or yellowish in colour. amyl nitrite. It has a unique smell that is sometimes described as ‘dirty socks’. It is highly volatile and when exposed to the air evaporates almost immediately at How is Jungle Juice used? room temperature.
    [Show full text]
  • ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity
    ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM) Nitrate/Nitrite Toxicity Course: WB2342 CE Original Date: December 5, 2013 CE Expiration Date: December 5, 2015 Key • Nitrate toxicity is a preventable cause of Concepts methemoglobinemia. • Infants younger than 4 months of age are at particular risk of nitrate toxicity from contaminated well water. • The widespread use of nitrate fertilizers increases the risk of well-water contamination in rural areas. About This This educational case study document is one in a series of and Other self-instructional modules designed to increase the primary Case Studies care provider’s knowledge of hazardous substances in the in environment and to promote the adoption of medical Environmen- practices that aid in the evaluation and care of potentially tal Medicine exposed patients. The complete series of Case Studies in Environmental Medicine is located on the ATSDR Web site at URL: http://www.atsdr.cdc.gov/csem/csem.html In addition, the downloadable PDF version of this educational series and other environmental medicine materials provides content in an electronic, printable format. Acknowledgements We gratefully acknowledge the work of the medical writers, editors, and reviewers in producing this educational resource. Contributors to this version of the Case Study in Environmental Medicine are listed below. Please Note: Each content expert for this case study has indicated that there is no conflict of interest that would bias the case study content. CDC/ATSDR Author(s): Kim Gehle MD, MPH CDC/ATSDR Planners: Charlton Coles, Ph.D.; Kimberly Gehle, MD; Sharon L.
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers
    Struct Bond (2014) 154: 99–136 DOI: 10.1007/430_2013_117 # Springer-Verlag Berlin Heidelberg 2013 Published online: 5 October 2013 Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers Peter C. Ford, Jose Clayston Melo Pereira, and Katrina M. Miranda Abstract Here, we present an overview of mechanisms relevant to the formation and several key reactions of nitric oxide (nitrogen monoxide) complexes with biologically relevant metal centers. The focus will be largely on iron and copper complexes. We will discuss the applications of both thermal and photochemical methodologies for investigating such reactions quantitatively. Keywords Copper Á Heme models Á Hemes Á Iron Á Metalloproteins Á Nitric oxide Contents 1 Introduction .................................................................................. 101 2 Metal-Nitrosyl Bonding ..................................................................... 101 3 How Does the Coordinated Nitrosyl Affect the Metal Center? .. .. .. .. .. .. .. .. .. .. .. 104 4 The Formation and Decay of Metal Nitrosyls ............................................. 107 4.1 Some General Considerations ........................................................ 107 4.2 Rates of NO Reactions with Hemes and Heme Models ............................. 110 4.3 Mechanistic Studies of NO “On” and “Off” Reactions with Hemes and Heme Models ................................................................................. 115 4.4 Non-Heme Iron Complexes ..........................................................
    [Show full text]
  • Nitrosamines EMEA-H-A5(3)-1490
    25 June 2020 EMA/369136/2020 Committee for Medicinal Products for Human Use (CHMP) Assessment report Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products Procedure number: EMEA/H/A-5(3)/1490 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................... 2 1. Information on the procedure ............................................................... 7 2. Scientific discussion .............................................................................. 7 2.1. Introduction......................................................................................................... 7 2.2. Quality and safety aspects ..................................................................................... 7 2.2.1. Root causes for presence of N-nitrosamines in medicinal products and measures to mitigate them............................................................................................................. 8 2.2.2. Presence and formation of N-nitrosamines
    [Show full text]
  • A Nitric Oxide/Cysteine Interaction Mediates the Activation of Soluble Guanylate Cyclase
    A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase Nathaniel B. Fernhoffa,1, Emily R. Derbyshirea,1,2, and Michael A. Marlettaa,b,c,3 Departments of aMolecular and Cell Biology and bChemistry, University of California, Berkeley, CA 94720; and cCalifornia Institute for Quantitative Biosciences and Division of Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Michael A. Marletta, October 1, 2009 (sent for review August 22, 2009) Nitric oxide (NO) regulates a number of essential physiological pro- high activity of the xsNO state rapidly reverts to the low activity of cesses by activating soluble guanylate cyclase (sGC) to produce the the 1-NO state. Thus, all three sGC states (basal, 1-NO, and xsNO) second messenger cGMP. The mechanism of NO sensing was previ- can be prepared and studied in vitro (7, 8). Importantly, these ously thought to result exclusively from NO binding to the sGC heme; results define two different states of purified sGC with heme bound however, recent studies indicate that heme-bound NO only partially NO (7, 8), one with a high activity and one with a low activity. activates sGC and additional NO is involved in the mechanism of Further evidence for a non-heme NO binding site was obtained maximal NO activation. Furthermore, thiol oxidation of sGC cysteines by blocking the heme site with the tight-binding ligand butyl results in the loss of enzyme activity. Herein the role of cysteines in isocyanide, and then showing that NO still activated the enzyme NO-stimulated sGC activity investigated. We find that the thiol mod- (14).
    [Show full text]
  • 1,3-Oxazolidin-2-One Derivatives Useeful As Cetp Inhibitors
    (19) TZZ Z Z_T (11) EP 2 029 560 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 263/22 (2006.01) C07D 413/04 (2006.01) 24.04.2013 Bulletin 2013/17 C07D 413/10 (2006.01) C07D 417/10 (2006.01) C07D 417/14 (2006.01) A61K 31/421 (2006.01) (2006.01) (2006.01) (21) Application number: 06849136.4 A61K 31/422 A61K 31/427 A61K 31/443 (2006.01) A61P 9/00 (2006.01) (22) Date of filing: 29.12.2006 (86) International application number: PCT/US2006/049494 (87) International publication number: WO 2007/079186 (12.07.2007 Gazette 2007/28) (54) 1,3-OXAZOLIDIN-2-ONE DERIVATIVES USEEFUL AS CETP INHIBITORS 1,3-OXAZOLIDIN-2-ON-DERIVATIVE, DIE ZUR VERWENDUNG ALS CETP-INHIBITOREN GEEIGNET SIND DERIVES DE 1,3-OXAZOLIDIN-2-ONE EN TANT QU’INHIBITEURS DE CETP (84) Designated Contracting States: • SINCLAIR, Peter, J. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Rahway, New Jersey 07065-0907 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • CHEN, Yi-Heng SK TR Rahway, New Jersey 07065-0907 (US) • SMITH, Cameron, J. (30) Priority: 30.12.2005 US 755284 P Rahway, New Jersey 07065-0907 (US) • LI, Hong (43) Date of publication of application: Rahway, New Jersey 07065-0907 (US) 04.03.2009 Bulletin 2009/10 (74) Representative: Hussain, Deeba (73) Proprietor: Merck Sharp & Dohme Corp. Merck & Co., Inc. Rahway, NJ 07065-0907 (US) Patent Department Hertford Road (72) Inventors: Hoddesdon • ALI, Amjad Hertfordshire EN11 9BU (GB) Rahway, New Jersey 07065-0907 (US) • LU, Zhijian (56) References cited: Rahway, New Jersey 07065-0907 (US) EP-A1- 0 294 995 EP-A1- 0 605 729 WO-A-2006/014413 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Doctor of Philosophy University of London
    ASPECTS OF THIONITRITES AND NITRIC OXIDE IN CHEMISTRY AND BIOLOGY A Thesis Presented by Marta Cavero Tomas In Partial Fulfilment of the Requirements for the Award of the Degree of DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON Christopher Ingold Laboratories, Department of Chemistry, University College London, London WC IN OAJ October 1999 ProQuest Number: 10797749 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797749 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT This thesis is divided into three parts: Part one is comprised of six chapters and provides a topical review of the main aspects of the chemistry and biology of nitric oxide and of thionitrites. The first chapter is a general introduction to the topic. The second chapter reviews the biology of nitric oxide. The third chapter provides a survey of some of the known chemistry of nitric oxide, with particular emphasis on those aspects which might be relevant in biological systems. The fourth chapter describes the biology of thionitrites in relation to NO.
    [Show full text]
  • Systems Biology Reveals Reprogramming of the S-Nitroso
    www.nature.com/scientificreports OPEN Systems biology reveals reprogramming of the S‑nitroso‑proteome in the cortical and striatal regions of mice during aging process Maryam Kartawy, Igor Khaliulin & Haitham Amal* Cell aging depends on the rate of cumulative oxidative and nitrosative damage to DNA and proteins. Accumulated data indicate the involvement of protein S‑nitrosylation (SNO), the nitric oxide (NO)-mediated posttranslational modifcation (PTM) of cysteine thiols, in diferent brain disorders. However, the changes and involvement of SNO in aging including the development of the organism from juvenile to adult state is still unknown. In this study, using the state‑of‑the‑ art mass spectrometry technology to identify S‑nitrosylated proteins combined with large‑scale computational biology, we tested the S‑nitroso‑proteome in juvenile and adult mice in both cortical and striatal regions. We found reprogramming of the S‑nitroso‑proteome in adult mice of both cortex and striatum regions. Signifcant biological processes and protein–protein clusters associated with synaptic and neuronal terms were enriched in adult mice. Extensive quantitative analysis revealed a large set of potentially pathological proteins that were signifcantly upregulated in adult mice. Our approach, combined with large scale computational biology allowed us to perform a system‑level characterization and identifcation of the key proteins and biological processes that can serve as drug targets for aging and brain disorders in future studies. Nitric oxide (NO) is produced in diferent organs and tissues, including the central and peripheral nervous sys- tem, and is one of the most important signaling molecules in the body1,2. At low concentrations, it participates in cell signaling and may have therapeutic value for brain injury 3.
    [Show full text]
  • Accelerating Effect of Ascorbic Acid on A/-Nitrosamine Formation and Nitrosation by Oxyhyponitrite1
    [CANCER RESEARCH 39, 3871-3874, October 1979] 0008-5472/79/0039-OOOOS02.00 Accelerating Effect of Ascorbic Acid on A/-Nitrosamine Formation and Nitrosation by Oxyhyponitrite1 Shaw-Kong Chang,2 George W. Harrington,5 Marc Rothstein,3 William A. Shergalis,4 Daniel Swern, and Saroj K. Vohra. Department of Chemistry, Temple University. Philadelphia. Pennsylvania 19122, and the Fels Research Institute. Temple University, Philadelphia. Pennsylvania 19140 ABSTRACT ments to be made readily during the initial and intermediate stages of reaction. DPP as used in this study avoids this The reaction of nitrite ion with ascorbic acid and its effect on difficulty and allows reactions to be studied in situ, yielding the rate of nitrosation of secondary amines have been investi interesting results. The use of DPP as an analytical method for gated by differential pulse polarography in aqueous acidic A/-nitrosamines and as a technique to study some of the chem solution. Ascorbic acid shows nonuniform behavior: it accel istry of W-nitrosamines has been previously reported by us (6- erates the nitrosation of N-methylaniline between pH 1.00 and 8, 31, 32). 1.95, allows the nitrosation of diphenylamine and iminodiace- tonitrile, but inhibits the nitrosation of secondary amines, such MATERIALS AND METHODS as dimethylamine, diethylamine, proline, hydroxyproline, N- methylaminoacetonitrile, N-methylaminopropionitrile, and sar- Instrumentation. The instrumentation, cells, and conditions cosine. The nitrosating agent generated by the reaction be used for DPP and spectral studies have been previously de tween ascorbic acid and nitrite ion appears to be oxyhyponitrite scribed (6, 7). The pH was measured with a Leeds & Northrup ion (N2CV2).
    [Show full text]