Continuous-Flow Production of Alkyl Nitrites, Originally Designed by BIOS Chemicals

Total Page:16

File Type:pdf, Size:1020Kb

Continuous-Flow Production of Alkyl Nitrites, Originally Designed by BIOS Chemicals FLOW CHEMISTRY Industry Perspective ● Peer reviewed Jean-Christophe M. Continuous-flow production Monbaliu of alkyl nitrites JEAN-CHRISTOPHE M. MONBALIU1*, JEREMY JORDA2, BÉRENGÈRE CHEVALIER2, CHRISTIAN V. STEVENS1, BERNARD MORVAN3 *Corresponding author 1. Ghent University, SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Coupure links 653, Gent, B-9000, Belgium 2. CORNING S.A.S, Corning European Technology Center, Avenue de Valvins 7 bis, Avon, F-77210, France 3. BIOS Chemicals, Plateforme technologique DELTA Sud, Verniolle, F- 09340, France the oxidation of olefins (6f, 7c). Recent publications reported ABSTRACT their use for the production of diazonium intermediates in the Alkyl nitrites are important building blocks for the chemical continuous production of synthesis of azo dyes (6c). and pharmaceutical industries. In this article, we report a case study for the continuous-flow production of alkyl nitrites, originally designed by BIOS Chemicals. The PREPARATION OF ALKYL NITRITES intrinsic advantages of a Corning® Advanced-Flow™ reactor system, including high versatility, high mixing, and Numerous methods have been developed at the lab scale heat-exchange efficiency under corrosive conditions, for preparing alkyl nitrites from alcohols: esterification with allowed the development of an economically viable and nitrous acid; transesterification from tert-butyl nitrite (8a) or from user-friendly process in a short period of time, leading to N-nitrosoamines (8b); and nitrosation with various nitrosating a throughput of 10t/year of processed material with high agents such as nitrosyl chloride (8c). Thiols and trimethylsilyl ethers purity (93-98 percent). can also be transformed in the corresponding nitrites (8d). Industrial processes can be divided into two categories: (a) 50 liquid phase processes and (b) vapour phase processes. Among liquid phase processes, alkyl nitrites are produced by ALKYL NITRITES: AN OVERVIEW OF THEIR APPLICATIONS reacting alcohols with nitrous acid in water or with different nitrogen oxides (NO, NO2, N2O4 and N2O3), eventually in rganic nitrites (RONO) are the esters of nitrous acid the presence of nitric acid or oxygen (9). These processes are generally characterized by laborious extraction of (HNO2). In particular, alkyl nitrites have been used for therapeutic applications for over a century. Amyl the processed alkyl nitrites and prolonged reaction times, O leading to undesired oxidation by-products. A distillation nitrite was used for treating angina pectoris by L. Burton in 1867 (1). RONO have remained over the years prominent step is generally required for further purification, increasing therapeutics (2) since they belong to a main class of nitrogen the industrial hazard and cost. The vapour process consists in oxide (NO) donors (3). Alkyl nitrites are also used in part for vaporizing an alcohol and NO2/NO in the presence of water. the treatment against poisoning with cyanhydric or sulfhydric These processes are characterized by very short contact times acid (4). However, chronic exposure to aliphatic nitrous esters between the chemicals (1-10s) at elevated temperatures has been reported to cause hypoxic condition in vital organs (>100°C) (10). The reported processes used counter flow, batch (5). or trickle bed reactors (11). These processes are generally In addition to their physiological use, alkyl nitrites have also reported as being strongly exothermic (12). been included as useful reagents for organic synthesis at the lab-scale. They are powerful agents for the nitrosation of a wide range of functional groups (6a), for reductive deamination of OBJECTIVES & CHEMISTRY aromatic derivatives (6b) and for the preparation of diazonium compounds (6c). The Barton reaction, i.e. the photocatalytic This work is aimed at the development of an economically cleavage of nitrous esters, has been extensively studied, even viable industrial process for the continuous production of under flow conditions (6d). Alkyl nitrites have also shown utility alkyl nitrites from commercially available alcohols under in azido peptide synthesis (6e) and are efficient reoxidizing flow conditions, with the final objective of processing 10 tons agents in catalytic Pd-based processes (6f). a year. The esterification of alcohols with nitrous acid is a Organic nitrites are also important industrial intermediates. rather straightforward reaction in liquid phase (Scheme 1). The Ube process (7a) is a striking example of their industrial Free nitrous acid is highly unstable and decomposes rapidly. potential: this oxidative carbonylation converts alkyl nitrites HONO has a higher stability in an aqueous media, while and carbon monoxide into dialkyloxalates, which are concentrated solutions are also unstable, leading to the useful intermediates as an alternative entry (non-petroleum formation of nitrogen oxides, essentially NO and NO2. dependent) to ethylene glycol. Accordingly, the best way to carry out this reaction is to Dialkylcarbonates were also prepared from lower RONO, generate in situ nitrous acid in the presence of an alcohol, at low temperatures. Nitrous acid is generated in solution by the carbon monoxide and a PdCl2-CuCl2 catalyst (7b). Alkyl nitrites Wacker-type reactions were successfully developed for reaction of a strong mineral acid and an alkyl nitrite. chimica oggi/Chemistry Today - vol. 29 n. 3 May/June 2011 FLOW CHEMISTRY In this project, hydrochloric acid (HCl) was selected to avoid Flow reactors are especially advantageous for industrial any oxidation of the parent alcohol, while working with HCl applications, as demonstrated by the increasing number of reports precluded the use of any metal part in contact with the flow in that area (13). Most notably, they offer easy scalability (scale- of chemicals. Sodium nitrite was selected as an appropriate out and numbering-up, Figure 1), adaptability to market demand source of nitrous acid. Additionally, the generation of sodium and particularly short transitions between R&D and production. chloride as a side product was found to offer a convenient In this case, the reactor equipment has been engineered and and efficient salting out procedure, allowing easy separation manufactured by Corning. The Corning® Advanced-Flow™ of the nitrous esters. reactors are made of glass fluidic modules (FMs) assembled with Beyond safety issues, efficient temperature control was critical appropriate connectors, tubing and support frames (Figure 2). to the salt solubility. Scheme 1. Esterification of alcohols with nitrous acid. FLOW REACTOR & PROCESS DESIGN To prepare nitrous esters in high yield within short residence time, an efficient mass transfer and close control of reaction temperature are paramount to avoid a reckless run due to the Figure 1. An example (left) of scale-out: from Gen1 to Gen3 fluidic modules, the total processed throughput ranges from 10 to 200 kg/h. high exothermicity. After review of state-of-the-art techniques, An example (right) of numbering-up: several identical reactors it became obvious that flow reactors can contribute to the operated in parallel (production bank) give through as well. In all development of an efficient and versatile industrial process for the situations, identical performances in terms of heat exchange and preparation of nitrous esters of commercial interest. mixing efficiency are conserved. 51 chimica oggi/Chemistry Today - vol. 29 n. 3 May/June 2011 FLOW CHEMISTRY GEN1 reactor) with a minimum cooling of the reactor (18°C), while working under safe and environmental- friendly conditions. This provided an additional breakthrough by comparison with a classical batch process. Figure 2. Flow chart for the flow production of alkyl nitrites from alcohols. Feed A & B are aqueous solutions. The optimal control Pumps, valves, pressure and temperature sensors and auxiliaries have been omitted for clarity. of the operating parameters and the local stoichiometry In the illustrated project, FMs are GenI-type fluidic modules allowed the development of an atom-efficient process with (Figure 1). They can manage several unit operations such as minimal waste effluents. feeding, premixing, preheating, reagent mixing and provide different residence times depending on their relative position in the reactor, the number of inlets, and their internal design. ACKNOWLEDGMENTS Each FM is integrated with heat transfer, allowing a precise temperature control (Figure 2) along the whole reactor Jean-Christophe M. Monbaliu is Postdoctoral Fellow of the path. FM01&02 are used as pre-cooling and FM 03&04 are Research Foundation Flanders (FWO-Vlaanderen). integrated with highly efficient static mixing zones ensuring high mass transfer via a continuous mixing along the reaction path for residence time. REFERENCES AND NOTES The outlet of the reactor was connected to a continuous liquid-liquid decantation apparatus. The organic layer, 1. T.L. Brunton, Lancet, 2, pp. 97-98 (2009). essentially pure alkyl nitrite, was collected in a tank at -5°C 2. A.C. Nicolescu, J.N. Reynolds et al., Chem. Res. Toxicol., 17, pp. 185- and further washed in batch with saturated aqueous sodium 196 (2004). carbonate and brine. 3. B. Clement, J. Boucher et al., Biochem. Pharmacol., 58, pp. 439-445 The mother liquor, essentially containing the excess of (1999). 52 unreacted nitrous acid, was neutralized in a separate tank 4. T.J. Haley, J. Toxicol. Clin. Toxicol., 16, pp. 317-329 (1980). containing aqueous urea (14). Careful
Recommended publications
  • S J. Braz. Chem. Soc., Vol. 22, No. 2, 352-358, 2011
    J. Braz. Chem. Soc., Vol. 22, No. 2, 352-358, 2011. Printed in Brazil - ©2011 Sociedade Brasileira de Química S 0103 - 5053 $6.00+0.00 Short Report Synthesis and Antileishmanial Activity of New 1-Aryl-1H-Pyrazole-4- Carboximidamides Derivatives Maurício S. dos Santos,a Adriana O. Gomes,a Alice M. R. Bernardino,*,a Marcos C. de Souza,a Misbahul A. Khan,b Monique A. de Brito,c Helena C. Castro,d Paula A. Abreu,d Carlos R. Rodrigues,e Rosa M. M. de Léo,f Leonor L. Leonf and Marilene M. Canto-Cavalheirof aPrograma de Pós-Graduação em Química Orgânica and dLABioMol, GCM - IB, Universidade Federal Fluminense, Outeiro de São João Baptista, 24020-150 Niterói-RJ, Brazil bChemistry Department, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan cLaboratório de Química Medicinal Computacional, Faculdade de Farmácia, Universidade Federal Fluminense, 24241-000 Niterói-RJ, Brazil eFaculdade de Farmácia, ModMolQSAR, Universidade Federal do Rio de Janeiro, 24020-150 Rio de Janeiro-RJ, Brazil fLaboratório de Bioquímica de Tripanosomatídeos, IOC, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro-RJ, Brazil A quimioterapia para as leishmanioses, doenças causadas por protozoários do gênero Leishmania, ainda permanece ineficiente em diversos tratamentos. Portanto, existe a necessidade de pesquisa por novos fármacos. Nesse trabalho, foram sintetizados derivados 1-aril-1H-pirazol- 4-carboximidamidas, avaliadas as atividades leishmanicida e os efeitos citotóxicos in vitro, e realizado um estudo de relação estrutura-atividade (REA) com a série de compostos. O composto 2 apresentou um perfil de atividade que pode ser melhorado através de estratégias de modificação molecular da química medicinal.
    [Show full text]
  • Amyl Nitrite Or 'Jungle Juice'
    Young People and Other Drugs Amyl Nitrite or ‘Jungle Juice’ Amyl nitrite is an inhalant that belongs to a class As with any drug, the use of nitrites is not risk-free. of chemicals called alkyl nitrites. This group of Some of the harms associated with its use include: drugs can be called ‘poppers’. They are often injuries related to inhaling the vapour referred to by their brand name, with ‘Jungle (e.g., rashes, burns) Juice’ probably being the most well-known of these. allergic reactions accidents and falls Inhaling amyl nitrite relaxes the body and gives vision problems (isopropyl nitrite) a ‘rush’ that lasts for one to two minutes. It is commonly used to enhance sexual pleasure and in rare cases, blood disorders induce a feeling of euphoria and well-being. MOST IMPORTANTLY, AMYL NITRITE OR JUNGLE JUICE MUST NEVER BE DRUNK. Drinking amyl can result in death due to it interfering with the ability of the blood to transport oxygen. What is amyl nitrite? Over the years, to bypass legal restrictions, nitrites have been sold as such things as liquid incense or Amyl nitrite is an inhalant that belongs to a class of room odoriser. Jungle Juice, which can be sold as chemicals called alkyl nitrites. Amyl nitrite is a highly a leather cleaner, is a common product name of flammable liquid that is clear or yellowish in colour. amyl nitrite. It has a unique smell that is sometimes described as ‘dirty socks’. It is highly volatile and when exposed to the air evaporates almost immediately at How is Jungle Juice used? room temperature.
    [Show full text]
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers
    Struct Bond (2014) 154: 99–136 DOI: 10.1007/430_2013_117 # Springer-Verlag Berlin Heidelberg 2013 Published online: 5 October 2013 Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers Peter C. Ford, Jose Clayston Melo Pereira, and Katrina M. Miranda Abstract Here, we present an overview of mechanisms relevant to the formation and several key reactions of nitric oxide (nitrogen monoxide) complexes with biologically relevant metal centers. The focus will be largely on iron and copper complexes. We will discuss the applications of both thermal and photochemical methodologies for investigating such reactions quantitatively. Keywords Copper Á Heme models Á Hemes Á Iron Á Metalloproteins Á Nitric oxide Contents 1 Introduction .................................................................................. 101 2 Metal-Nitrosyl Bonding ..................................................................... 101 3 How Does the Coordinated Nitrosyl Affect the Metal Center? .. .. .. .. .. .. .. .. .. .. .. 104 4 The Formation and Decay of Metal Nitrosyls ............................................. 107 4.1 Some General Considerations ........................................................ 107 4.2 Rates of NO Reactions with Hemes and Heme Models ............................. 110 4.3 Mechanistic Studies of NO “On” and “Off” Reactions with Hemes and Heme Models ................................................................................. 115 4.4 Non-Heme Iron Complexes ..........................................................
    [Show full text]
  • Nitrosamines EMEA-H-A5(3)-1490
    25 June 2020 EMA/369136/2020 Committee for Medicinal Products for Human Use (CHMP) Assessment report Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products Procedure number: EMEA/H/A-5(3)/1490 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................... 2 1. Information on the procedure ............................................................... 7 2. Scientific discussion .............................................................................. 7 2.1. Introduction......................................................................................................... 7 2.2. Quality and safety aspects ..................................................................................... 7 2.2.1. Root causes for presence of N-nitrosamines in medicinal products and measures to mitigate them............................................................................................................. 8 2.2.2. Presence and formation of N-nitrosamines
    [Show full text]
  • 2011/149921 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . _ 1 December 2011 (01.12.2011) 2011/149921 Al (51) International Patent Classification: Rahway, New Jersey 07065-0907 (US). HAN, Xiaoqing A01N 43/90 (2006.01) A61K 31/519 (2006.01) [CN/US]; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US). GUO, Jian [CN/US]; 126 East Lin (21) International Application Number: coln Avenue, Rahway, New Jersey 07065-0907 (US). PCT/US201 1/037718 GROEPER, Jonathan, A. [US/US]; 126 East Lincoln (22) International Filing Date: Avenue, Rahway, New Jersey 07065-0907 (US). 24 May 201 1 (24.05.201 1) BROCKUNIER, Linda, L. [US/US]; 126 East Lincoln Avenue, Rahway, New Jersey 07065-0907 (US). (25) Filing Language: English ROSAUER, Keith [US/US]; 126 East Lincoln Avenue, (26) Publication Langi English Rahway, New Jersey 07065-0907 (US). PARMEE, Emma, R. [US/US]; 770 Sumneytown Pike, West Point, (30) Priority Data: Pennsylvania 19486 (US). 61/349,065 27 May 2010 (27.05.2010) US (74) Common Representative: MERCK SHARP & (71) Applicant (for all designated States except US): MER¬ DOHME CORP.; 126 East Lincoln Avenue, Rahway, CK SHARP & DOHME CORP. [US/US]; 126 East New Jersey 07065-0907 (US). Lincoln Avenue, Rahway, New Jersey 07065-0907 (US). (81) Designated States (unless otherwise indicated, for every (72) Inventors; and kind of national protection available): AE, AG, AL, AM, (75) Inventors/Applicants (for US only): RAGHAVAN, Sub- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, harekha [US/US]; 126 East Lincoln Avenue, Rahway, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, New Jersey 07065-0907 (US).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,365,574 B2 Raghavan Et Al
    USOO9365574B2 (12) United States Patent (10) Patent No.: US 9,365,574 B2 Raghavan et al. (45) Date of Patent: Jun. 14, 2016 (54) SOLUBLE GUANYLATE CYCLASE (52) U.S. Cl. ACTIVATORS CPC ............ C07D 487/04 (2013.01); A61K3I/519 (2013.01); C07D 519/00 (2013.01) (75) Inventors: Subharekha Raghavan, Teaneck, NJ (58) Field of Classification Search (US); John E. Stelmach, Westfield, NJ CPC ... C07D 487/04; C07D 51.9/00; A61 K31/519 (US); Cameron J. Smith, Lawrenceville, USPC ........................................ 544/280; 514/265.1 NJ (US); Hong Li, Edison, NJ (US); See application file for complete search history. Alan Whitehead, Scotch Plains, NJ (56) References Cited (US); Sherman T. Waddell, Westfield, NJ (US); Yi-Heng Chen, Whippany, NJ U.S. PATENT DOCUMENTS (US); Shouwu Miao, Edison, NJ (US); Olga A. Orinoski, Teaneck, NJ (US); E. A 13:38 SR et al 1 Joie Garfunkle, Metuchen, N(US); 67 A 556 S.E." Xibin Liao, Edison, NJ (US), Jiang 663,772 B1 92003 Schindler et al. Chang, Westfield, NJ (US); Xiaoqing 6,693,102 B2 2/2004 Stasch et al. Han, Edison, NJ (US); Jian Guo, Scotch 6,743,798 B1 6/2004 Straub et al. Plains, NJ (US); Jonathan A. Groeper, 6,844,347 B1 1/2005 Schmidler et al. Metuchen, NJ (US); Linda L. (Continued) Brockunier, Orange, NJ (US); Keith Rosauer, New Hampton, IA (US); FOREIGN PATENT DOCUMENTS Emma R. Parmee, Doylestown, PA (US) CA 2743864 A1 6, 2010 DE 19744O27 A1 10, 1997 (73) Assignee: Merck Sharp & Dohme Corp., (Continued) Rahway, NJ (US) OTHER PUBLICATIONS ( c ) Notice: Subject to any disclaimer, the term of this Search Report and Written Opinion for PCT/US09/064570 filed on patent is extended or adjusted under 35 Nov.
    [Show full text]
  • A Nitric Oxide/Cysteine Interaction Mediates the Activation of Soluble Guanylate Cyclase
    A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase Nathaniel B. Fernhoffa,1, Emily R. Derbyshirea,1,2, and Michael A. Marlettaa,b,c,3 Departments of aMolecular and Cell Biology and bChemistry, University of California, Berkeley, CA 94720; and cCalifornia Institute for Quantitative Biosciences and Division of Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Michael A. Marletta, October 1, 2009 (sent for review August 22, 2009) Nitric oxide (NO) regulates a number of essential physiological pro- high activity of the xsNO state rapidly reverts to the low activity of cesses by activating soluble guanylate cyclase (sGC) to produce the the 1-NO state. Thus, all three sGC states (basal, 1-NO, and xsNO) second messenger cGMP. The mechanism of NO sensing was previ- can be prepared and studied in vitro (7, 8). Importantly, these ously thought to result exclusively from NO binding to the sGC heme; results define two different states of purified sGC with heme bound however, recent studies indicate that heme-bound NO only partially NO (7, 8), one with a high activity and one with a low activity. activates sGC and additional NO is involved in the mechanism of Further evidence for a non-heme NO binding site was obtained maximal NO activation. Furthermore, thiol oxidation of sGC cysteines by blocking the heme site with the tight-binding ligand butyl results in the loss of enzyme activity. Herein the role of cysteines in isocyanide, and then showing that NO still activated the enzyme NO-stimulated sGC activity investigated. We find that the thiol mod- (14).
    [Show full text]
  • Doctor of Philosophy University of London
    ASPECTS OF THIONITRITES AND NITRIC OXIDE IN CHEMISTRY AND BIOLOGY A Thesis Presented by Marta Cavero Tomas In Partial Fulfilment of the Requirements for the Award of the Degree of DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON Christopher Ingold Laboratories, Department of Chemistry, University College London, London WC IN OAJ October 1999 ProQuest Number: 10797749 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797749 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT This thesis is divided into three parts: Part one is comprised of six chapters and provides a topical review of the main aspects of the chemistry and biology of nitric oxide and of thionitrites. The first chapter is a general introduction to the topic. The second chapter reviews the biology of nitric oxide. The third chapter provides a survey of some of the known chemistry of nitric oxide, with particular emphasis on those aspects which might be relevant in biological systems. The fourth chapter describes the biology of thionitrites in relation to NO.
    [Show full text]
  • WEST VIRGINIA LEGISLATURE House Bill 2526
    WEST VIRGINIA LEGISLATURE 2017 REGULAR SESSION ENROLLED Committee Substitute for House Bill 2526 BY DELEGATES ELLINGTON, SUMMERS, SOBONYA AND ROHRBACH [Passed April 8, 2017; in effect ninety days from passage.] Enr. CS for HB 2526 1 AN ACT to amend and reenact §60A-2-201, §60A-2-204, §60A-2-206, §60A-2-210 and §60A-2- 2 212 of the Code of West Virginia, 1931, as amended, all relating to classifying additional 3 drugs to Schedules I, II, IV and V of controlled substances; and adding a provision relating 4 to the scheduling of a cannabidiol in a product approved by the Food and Drug 5 Administration. Be it enacted by the Legislature of West Virginia: 1 That §60A-2-201, §60A-2-204, §60A-2-206, §60A-2-210 and §60A-2-212 of the Code of 2 West Virginia, 1931, as amended, be amended and reenacted, all to read as follows: ARTICLE 2. STANDARDS AND SCHEDULES. §60A-2-201. Authority of state Board of Pharmacy; recommendations to Legislature. 1 (a) The state Board of Pharmacy shall administer the provisions of this chapter. It shall 2 also, on the first day of each regular legislative session, recommend to the Legislature which 3 substances should be added to or deleted from the schedules of controlled substances contained 4 in this article or reschedule therein. The state Board of Pharmacy shall also have the authority 5 between regular legislative sessions, on an emergency basis, to add to or delete from the 6 schedules of controlled substances contained in this article or reschedule such substances based 7 upon the recommendations and approval of the federal food, drug and cosmetic agency, and shall 8 report such actions on the first day of the regular legislative session immediately following said 9 actions.
    [Show full text]