The Pyrolysis of Organic Esters Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

The Pyrolysis of Organic Esters Dissertation THE PYROLYSIS OF ORGANIC ESTERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University RICHARD JUI-FU LEE, B.S y l f .■) ®rV'«\ a.i @@ :&f a■ ' Adviser * Department of Chemistry -i- ACKMOWLEDGMEMT My sincere and profound thanks to Dr. Christo­ pher L. Wilson for the suggestion of the problem and his inspiring guidance throughout the research. My gratitude to the B. F. Goodrich Company, whose Research Fellowship I held for the entire span of this work. Finally, but not least, my deepest appreciation to Mr. Daniel Loughran for his ever cooperative assistance in making the infra-red analyses. -ii- TABLE OF CONTENTS Page I. INTRODUCTION AND STATEMENT OF PROBLEM 1 II. HISTORICAL INTRODUCTION........ ........... 5 1. Pyrolysis of Organic Compounds........ 5 A. Berthelot's Theory......... 5 B . Haber' s Rule ........................ 6 C. Rule of Least Molecular Deformation........................ 7 D. Bredt's Rule........................ 8 E. Blanc’s Rule................ 8 F. Nef's Theory......................... 9 2. Theory of Pyrolysis of Esters....... 10 A. Bilger and Hibbert's Mechanism.... 11 B. Hurd's "Hydrogen Bridge" Cyclic Mechanism....................... 13 C. Ritchie's Dual Reactions........... 16 D. Htickel's Concept (Tsugaev Reaction) 19 E. Alexander's Cis-Elimination Studies 20 F. Kinetics on the Pyrolysis of Esters 22 G. Some Contributions from the Kinetic Study of Dehydrochlorination of Chloroparaffins ...... 24 3. The Cyclic Transition State in Other Processes........... 32 A. General Considerations.............. 32 B. The Concept of O'Connor and Nace... 34 C. The Pyrolysis of Sulfites.......... 37 iii £a^e III. Discussion of Earlier Work,.................... 42 1. Kinetics as a Method for Mechanism Study.. 42 2. Substitution Effects on the Cyclic Transition Complex............ 48 3. The Excited Triplet State as a Transi­ tion State in a Special Case ....... 63 IV. EXPERIMENTAL........ 88 1. Pyrolysis of Diacetyl Cyanide (D.A.C.).... 88 A. Reagents....... 88 B. Apparatus * 89 C. Decomposition of D.A.C.................. 92 D. Isolation and Estimation of Products.. 94 E. Results................................... 96 F. By-Products................. 101 G. Preparation and Pyrolysis of Pyruvic Nitrile ........ 102 2. Pyrolysis of Di-esters....................... 104 A. Preparation of Materials........ ....... 104 B. Procedure for Pyrolysis ...... 105 C. Collection and Identification of Products ......................... 106 3. Pyrolysis of Cellosolve Acetates......... 108 A. Preparation of Materials........ ....... 108 B. Pyrolysis Procedure..................... 108 C. Collection and Identification of Products .................. 109 V,. INFRA-RED SPECTROGRAMS....................... 110 -iv- Page VI. S UMMARY......... 128 VII. BIBLIOGRAPHY................................... 129 VIII. AUTOBIOGRAPHY.......... 135 INTRODUCTION AND STATEMENT OF PROBLEM Although much is known concerning the pyrolysis of esters, most of the evidence has not been correlated. The known facts about thermal decomposition of simple esters were recorded almost as far back as a century ago by Oppenheim and Precht (l). They found that when esters containing beta-hydrogen in the alcohol portion of the molecule were decomposed thermally, acids and olefins were generally the products of pyrolysis. Their work was principally confined to the acetates. Modifications in the acid and alcohol portions of the ester molecule were investigated in succeeding researches such as those of Engler and Low (2), Peytral (3), Bilger and Hibbert (4 ) and Hurd and Blunck (5). These workers changed the structure of the ester by varying the number of beta hydrogens available and the nature of the acidsj such as acetates to benzoates, phenyl-acetates, propionates, formates, etc. From these studies they interpreted the behavior of esters on pyrolysis. In the above cases the temperature entered as a factor to be considered in that it determined the nature of products to some considerable extent. These investigators did not significantly examine the -2- temperature dependency of the primary or succeeding processes of the reaction in the cases studied, having in mind the mechanism. The collection and detection of all products formed were not too explicitly and completely reported since the secondary decompositions accompanying a rise in temperature complicated, in most cases, the results obtained. Perhaps it was due to this factor that most investigators confined themselves to simple esters, or perhaps it was the simplicity of operations that led the workers to concentrate on the beta-hydrogen effect. Nevertheless the succeeding studies by Ettckel, Tappe, and Lengutke (6), Stevens and Richmond (7), Houtman, van Steenis and Heertijis (8), Wibaut and van Pelt (9), Ritchie, Jones and Burns (10), and many others, till the very recent studies of Bailey (ll) have been concentrated largely on the selectivity of the beta-hydrogen elimination phenomenon. Chronologically there has been no cessation of effort in the field of ester decomposition. But there were more prominent fads through certain periods of history than others, and these peaks gave welcomed respite for the researcher to stop and take inventory. As with all other well practiced reactions, pyrolysis of esters enjoyed and is enjoying today a very practi­ cal and industrialized position. The patents of Filachione, Fisher, Ratchford, Rehberg, Fein and Smith (12) and many others bear out that this unique elimination has been much favored for synthesis. It is not clear, however, why theoretical con­ siderations of ester pyrolysis have not kept pace with this practical application. Recently there has been some quantitative work, but very little of it concerns carboxylic esters. Some studies have been made of surface catalysis (8) rate measurements (13), homogeneity of the system and activation energies required (14), however some skepti­ cism remains about applying these data to the decompositi of esters in general. Hence prediction of products from the molecular structure of the ester or from a knoifledge of the mechanism of decomposition is still whimsical. We have tried in the present work to broaden the scope of the now fairly acceptable postulate of intra-molecular decomposition of esters by testing such a mechanism on species that do not undergo normal elimination, but decompose rather with some degree of rearrangement. The simple but different products from these reactions, taken together with what the litera­ ture has revealed concerning normal eliminations, should enlighten us about the transition state. It -4- should prove interesting to observe whether any of the postulated transition states will fulfill the needs of both normal and abnormal eliminations. -5- HISTORICAL INTRODUCTION Pyrolysis of Organic Compounds A . Berthelot*s Theory If one wishes to decide what was the beginning of the theory of pyrogenic reactions, Berthelot (15) may well be considered as the pioneer. His general theory may be summarized in three parts (l6 )~: (1 ) In addition to pyrolytic reactions of decom­ position, there are also reactions of synthesis. In the latter, there is progressive hydrogen elimination, accompanied by the gradual formation of complex hydro­ carbons which eventually may result in the deposition I of carbon. (2) The building-up processes and the tearing- down processes are considered to limit or oppose each other since the lower ones reform to produce the higher one. This leads to a complicated equilibrium between / an increasing number of hydrocarbons. Berthelot*s conception of the decomposition of methane is as follows: 2CH4 - ♦ CH2 =CH2 + 2H2 2CH4 - * chhch; + 3H2 ch2=ch2 ♦ GH=CH + H2 HChCH + h2 —* ch2 =ch2 -6- GH2=CH2 + H2 ------ f CH3-CH3 2 CH3-CH3 ______ , 2 CH^ + HC=CH + H2 (3 ) These reactions occur whether the hydrocarbon is in contact with hydrogen or with other hydrocarbons. B . Haber's Rule Considerable criticism of Berthelot's theory was made by Haber (17). He pointed out that Berthelot's first proposal was an arbitrary interpretation of the observation that in the gasification of hydrocarbons at progressively high temperatures, graphite always appeared; however the carbon was never free from hydro­ gen. Furthermore, am: equilibrium postulated by Berthe­ lot indicated a permanent slate eventually reached because of a permanent set of external conditions. Since the effect of temperature on the equilibrium was obscure, it is hard to accept Berthelot's "methane equilibria". Furthermore, the irreversibility of the formation of benzene from acetylene makes the explanation awkward. To supplant Berthelot's ideas Haber gave a general rule of his own. He concluded that the C-C linkage in the aromatic series is more stable than the C-H linkage and the reverse is true in the aliphatic series. This rule, however, failed to explain many embarrassing data such as the hydrogen production in preparing propylene from propane, the pyrolysis of diphenyl ethane, -7- and the pyrogenic reaction of ethane to yield hydrogen. Many more cases that the Haber Rule cannot predict make the usefulness of the concept limited. G. Rule of Least Molecular Deformation. The trend toward the importance of molecular structure initiated by the previous considerations led to the concept of "Least Molecular Deformation". Al­ though this general rule could have been demonstrated by the earlier works on pyrolysis it was not formulated until the early part
Recommended publications
  • Amyl Nitrite Or 'Jungle Juice'
    Young People and Other Drugs Amyl Nitrite or ‘Jungle Juice’ Amyl nitrite is an inhalant that belongs to a class As with any drug, the use of nitrites is not risk-free. of chemicals called alkyl nitrites. This group of Some of the harms associated with its use include: drugs can be called ‘poppers’. They are often injuries related to inhaling the vapour referred to by their brand name, with ‘Jungle (e.g., rashes, burns) Juice’ probably being the most well-known of these. allergic reactions accidents and falls Inhaling amyl nitrite relaxes the body and gives vision problems (isopropyl nitrite) a ‘rush’ that lasts for one to two minutes. It is commonly used to enhance sexual pleasure and in rare cases, blood disorders induce a feeling of euphoria and well-being. MOST IMPORTANTLY, AMYL NITRITE OR JUNGLE JUICE MUST NEVER BE DRUNK. Drinking amyl can result in death due to it interfering with the ability of the blood to transport oxygen. What is amyl nitrite? Over the years, to bypass legal restrictions, nitrites have been sold as such things as liquid incense or Amyl nitrite is an inhalant that belongs to a class of room odoriser. Jungle Juice, which can be sold as chemicals called alkyl nitrites. Amyl nitrite is a highly a leather cleaner, is a common product name of flammable liquid that is clear or yellowish in colour. amyl nitrite. It has a unique smell that is sometimes described as ‘dirty socks’. It is highly volatile and when exposed to the air evaporates almost immediately at How is Jungle Juice used? room temperature.
    [Show full text]
  • Primary-Explosives
    Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use.
    [Show full text]
  • 207/2015 3 Lääkeluettelon Aineet, Liite 1. Ämnena I
    207/2015 3 LÄÄKELUETTELON AINEET, LIITE 1. ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, Latinskt namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy- (N)-Hydroksietyyli- (N)-Hydroxietyl- (N)-Hydroxyethyl- aethylprometazinum prometatsiini prometazin promethazine 2,4-Dichlorbenzyl- 2,4-Diklooribentsyyli- 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcoholum alkoholi alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- ami- 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol nophenolum Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini
    [Show full text]
  • Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis. Carlos Roberto fontes Pinto Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Pinto, Carlos Roberto fontes, "Effects of Nitric Oxide Synthase Inhibitors on Equine and Bovine Follicular Dynamics and Steroidogenesis." (2001). LSU Historical Dissertations and Theses. 430. https://digitalcommons.lsu.edu/gradschool_disstheses/430 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Lääkealan Turvallisuus- Ja Kehittämiskeskuksen Päätös
    Lääkealan turvallisuus- ja kehittämiskeskuksen päätös N:o xxxx lääkeluettelosta Annettu Helsingissä xx päivänä maaliskuuta 2016 ————— Lääkealan turvallisuus- ja kehittämiskeskus on 10 päivänä huhtikuuta 1987 annetun lääke- lain (395/1987) 83 §:n nojalla päättänyt vahvistaa seuraavan lääkeluettelon: 1 § Lääkeaineet ovat valmisteessa suolamuodossa Luettelon tarkoitus teknisen käsiteltävyyden vuoksi. Lääkeaine ja sen suolamuoto ovat biologisesti samanarvoisia. Tämä päätös sisältää luettelon Suomessa lääk- Liitteen 1 A aineet ovat lääkeaineanalogeja ja keellisessä käytössä olevista aineista ja rohdoksis- prohormoneja. Kaikki liitteen 1 A aineet rinnaste- ta. Lääkeluettelo laaditaan ottaen huomioon lää- taan aina vaikutuksen perusteella ainoastaan lää- kelain 3 ja 5 §:n säännökset. kemääräyksellä toimitettaviin lääkkeisiin. Lääkkeellä tarkoitetaan valmistetta tai ainetta, jonka tarkoituksena on sisäisesti tai ulkoisesti 2 § käytettynä parantaa, lievittää tai ehkäistä sairautta Lääkkeitä ovat tai sen oireita ihmisessä tai eläimessä. Lääkkeeksi 1) tämän päätöksen liitteessä 1 luetellut aineet, katsotaan myös sisäisesti tai ulkoisesti käytettävä niiden suolat ja esterit; aine tai aineiden yhdistelmä, jota voidaan käyttää 2) rikoslain 44 luvun 16 §:n 1 momentissa tar- ihmisen tai eläimen elintoimintojen palauttami- koitetuista dopingaineista annetussa valtioneuvos- seksi, korjaamiseksi tai muuttamiseksi farmako- ton asetuksessa kulloinkin luetellut dopingaineet; logisen, immunologisen tai metabolisen vaikutuk- ja sen avulla taikka terveydentilan
    [Show full text]
  • Acetaldehyde 16.05.2020.Pdf
    Acetaldehyde Acetaldehyde (systematic name ethanal) is an organic chemical compound with the formula CH3CHO, sometimes abbreviated by chemists as MeCHO (Me = methyl). It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body. An aldehyde used as a starting material in the synthesis of 1-butanol (n-butyl alcohol), ethyl acetate, perfumes, flavourings, aniline dyes, plastics, synthetic rubber, and other chemical compounds. It has been manufactured by the hydration of acetylene and by the oxidation of ethanol (ethyl alcohol). Formula: C2H4O IUPAC ID: ethanal Boiling point: 20.2 °C Molar mass: 44.05 g/mol Density: 788 kg/m³ Melting point: -123.5 °C Preparation:- The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2=CH2 + O2 → 2 CH3CHO Smaller quantities can be prepared by the partial oxidation of ethanol in an exothermic reaction. This process typically is conducted over a silver catalyst at about 500–650 °C. 1 CH3CH2OH + ⁄2 O2 → CH3CHO + H2O This method is one of the oldest routes for the industrial preparation of acetaldehyde.
    [Show full text]
  • Working Fluid Selection for Space-Based Two-Phase Heat Transport Systems
    NBSIR 88-3812 Working Fluid Selection for Space-Based Two-Phase Heat Transport Systems Mark O. McLinden U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Gaithersburg, MD 20899 May 1988 Issued August 1988 75 Years Stimulating America's Progress 1913-1988 Prepared for: National Aeronautics and Space Administration Goddard Space Flight Center NBSIR 88-3812 WORKING FLUID SELECTION FOR SPACE-BASED TWO-PHASE HEAT TRANSPORT SYSTEMS Mark O. McLinden U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Gaithersburg, MD 20899 May 1988 Issued August 1988 Prepared for: National Aeronautics and Space Administration Goddard Space Flight Center U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director , ABSTRACT The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other non-thermal criteria ( f lagimability toxicity and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design. i * . I . INTRODUCTION In order to remove the heat generated by electronics and other payloads on spacecraft some type of heat transport system is required. The heat generating equipment is typically attached to a 'cold plate'.
    [Show full text]
  • Continuous-Flow Production of Alkyl Nitrites, Originally Designed by BIOS Chemicals
    FLOW CHEMISTRY Industry Perspective ● Peer reviewed Jean-Christophe M. Continuous-flow production Monbaliu of alkyl nitrites JEAN-CHRISTOPHE M. MONBALIU1*, JEREMY JORDA2, BÉRENGÈRE CHEVALIER2, CHRISTIAN V. STEVENS1, BERNARD MORVAN3 *Corresponding author 1. Ghent University, SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Coupure links 653, Gent, B-9000, Belgium 2. CORNING S.A.S, Corning European Technology Center, Avenue de Valvins 7 bis, Avon, F-77210, France 3. BIOS Chemicals, Plateforme technologique DELTA Sud, Verniolle, F- 09340, France the oxidation of olefins (6f, 7c). Recent publications reported ABSTRACT their use for the production of diazonium intermediates in the Alkyl nitrites are important building blocks for the chemical continuous production of synthesis of azo dyes (6c). and pharmaceutical industries. In this article, we report a case study for the continuous-flow production of alkyl nitrites, originally designed by BIOS Chemicals. The PREPARATION OF ALKYL NITRITES intrinsic advantages of a Corning® Advanced-Flow™ reactor system, including high versatility, high mixing, and Numerous methods have been developed at the lab scale heat-exchange efficiency under corrosive conditions, for preparing alkyl nitrites from alcohols: esterification with allowed the development of an economically viable and nitrous acid; transesterification from tert-butyl nitrite (8a) or from user-friendly process in a short period of time, leading to N-nitrosoamines (8b); and nitrosation with various nitrosating a throughput of 10t/year of processed material with high agents such as nitrosyl chloride (8c). Thiols and trimethylsilyl ethers purity (93-98 percent). can also be transformed in the corresponding nitrites (8d). Industrial processes can be divided into two categories: (a) 50 liquid phase processes and (b) vapour phase processes.
    [Show full text]
  • Public Submissions on Scheduling Matters Referred to the ACMS
    Thursday, 11 October 2018 Dear Sir/Madam, I am greatly concerned about the TGA’s recent interim decision at ACMS #24 to schedule Alkyl Nitrites as schedule 9. I do not support this decision and outline my reasoning below. Key concerns I have are: • Impact on the gay male population. • Potential to generate crime • Lack of evidence of significant harm. • Potential for increased harm due to product substitution. • A failure to consider ‘off label’ uses. Alkyl Nitrites have been used therapeutically for over 100 years and their use long predates the establishment of the TGA and its predecessors. Historically the main uses were to aid the treatment of angina and cyanide poisoning however for the last 50 years the primary use has been by gay men who use the muscle relaxant properties to aid sexual intimacy with their partners. A recent survey found that 40% of Australian gay men have used Alkyl Nitrites in the last six months this is 89,600 Australians, when their partners are accounted for this is an impact on 170,000 Australians.(Ref 1) It may be argued that this is an unscheduled use and should not be considered as part of the decision but when we account for the historical attitudes towards homosexuality and the taboos associated with sex, especially gay sex it is discriminatory not to properly address this usage as part of a scheduling decision. Applications to schedule a new therapeutic use are generally submitted by commercial entities looking to sell and market a product. This has never happened for Alkyl Nitrites for use by gay men as the product cannot be patented as it is not novel and has been known and marketed for over 100 years, this is also due to the perceived reputation damage a company would receive for marketing a “gay sex drug”.
    [Show full text]
  • Poppers‘ Products and Analytical Detectability of a Single Use of ‘Poppers‘
    Toxichem Krimtech 2015;82(Special Issue):218 Analysis of ‘poppers‘ products and analytical detectability of a single use of ‘poppers‘ Susanne Vogt*, Verena Angerer, Jürgen Kempf, Volker Auwärter Universitätsklinikum Freiburg, Institut für Rechtsmedizin, Forensische Toxikologie, Albert- straße 9, D–79104 Freiburg; *corresponding author: [email protected] Aims: Alkyl nitrites, also known as ‘poppers’, have a long history as medical drugs and ’aph- rodisiacs’. Typical effects include vasodilation, hypotension, methaemoglobinaemia and re- duction of smooth muscle tonus. To our knowledge analytical verification of ‘poppers’ use by detection of the corresponding alcohols was only described in post mortem cases so far. We aimed to develop a method for detection of a modest ‘poppers’ dose and apply it to samples taken after inhalation of “Rush Ultra Strong” containing isopropyl, isobutyl, n-pentyl and 2- methylbutyl nitrite. In addition, several ‘poppers’ products were analysed to determine their ingredients. Methods: Analysis was performed on a Clarus gas chromatograph using a capil- lary column (RTX®-502.2, Restek, 60 m, 0.53 mm ID, 3 µm film thickness) fitted with a headspace autosampler and a flame ionisation detector. Carrier gas was H2 at a flow rate of 45 mL/min. A split flow of 10 mL/min was applied for analysis of body fluids, to analyse the pure nitrites and ‘poppers’ products the split flow was increased. Results: 76 different ‘pop- pers’ flasks were analysed. In 51.3 % of the products the declared contents differed from the analytical results. After modest use of ‘poppers’ 2-Methyl-1-butanol could be detected in the first 3 serum samples.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0312247 A1 Gant Et Al
    US 2008.0312247A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0312247 A1 Gant et al. (43) Pub. Date: Dec. 18, 2008 (54) SUBSTITUTED PIPERAZINES Publication Classification (51) Int. Cl. (75) Inventors: Thomas G. Gant, Carlsbad, CA A63/495 (2006.01) (US); Sepehr Sarshar, Cardiff by A6IP 9/00 (2006.01) the Sea, CA (US) A6IP 9/10 (2006.01) C07D 24I/04 (2006.01) Correspondence Address: (52) U.S. Cl. .................................... 514/252.12:544/400 GLOBAL PATENT GROUP - APX (57) ABSTRACT Ms. LaVern Hall Disclosed herein are substituted piperazine late Na" channel 10411 Clayton Road, Suite 304 modulators of Formula I, process of preparation thereof, ST. LOUIS, MO 63131 (US) pharmaceutical compositions thereof, and methods of use thereof. (73) Assignee: AUSPEX PHARMACEUTICALS, INC., Formula I Vista, CA (US) Rs R14 Ris R10 R R31 (21) Appl. No.: 12/138,169 R6 R4 R11 R 23. R24V > R9 N N R O R56 N (22) Filed: Jun. 12, 2008 R O 2K O R30 R 8 R2 R ". 20R,\ R. R. Related U.S. Application Data R. R3 19 R22 R4 R29 (60) Provisional application No. 60/943,731, filed on Jun. R28 13, 2007. US 2008/0312247 A1 Dec. 18, 2008 SUBSTITUTED PPERAZINES nal of Clinical Pharmacology 2005, 45,802-09; Chaitman et al, Journal of the Americal College of Cardiology 2004, 43(8), 1375-82; Opie, European Heart Journal 2003, 24, 0001. This application claims the benefit of priority of 1854-56: Anderson et al, Heart Disease 2001, 3, 263-69; U.S. provisional application No.
    [Show full text]
  • Ligand 960 Accessible Molecular Surfa
    1699 Index a acrylate 199, 1612 abiraterone 426 – derivatives 1115, 1117 abnormal lactone (AL) 1495, 1496 – esters, synthesis of 1610 π-acceptors 828 acrylic acid 126, 1612 – π*-acceptor 810 – based on CO2 1610 – ligand 960 – thermodynamic situation 1611 accessible molecular surface (AMS) 834 acrylonitrile-butadiene-polystyrene acenaphthene imine derivative ligands 257 microencapsulated Os 1514 acetaldehyde 508 actinides 1071 – from ethylene 500 activated carbon 1343 – oxidation 95 activation energy 963 acetamide, transamidation of activation reaction 233 – amino acid catalyzed 1436 active catalyst system 283 acetic acid 93, 709, 1526 active noble metal complexes, reoxidation – nickel-based catalysts 105 1264 acetic anhydride 110, 111 acyclic diene metathesis polymerization 2´-acetonaphthone 735 (ADMET) 824 acetonitrile 708, 1547 acyclic ketones, BV oxidation of 1502 acetophenones 726, 730, 732, 734, 738, 1047 acyclic precursors 1343 – derivatives 726 N-acyl-α-amino acid derivatives acetylcholinesterase (AChE) inhibitor 1496 – synthesis 1197 acetylide ligand acylamidines 1469 – on photocatalytic H2 production 1668 N-acyl amino acids 1535 N-acetylmannosamine (ManNAc) 920 acylases 913 (+)-achalensolide, asymmetric synthesis 1300 N-acyl cyclic amines 1535 acid–amine coupling 1429 acyl hydrazones, with Rh/duphos 633 – boron derivative 1429 acyl ligand 103 acid–base interactions 860 acyl palladium complex 169 acid halides 525 acylphosphite 838 acidic hydrogen ion 492 1-adamantanol 1533 π-acidic ligands 1404 adapalene 429 acidic phosphate electrolyte, electrochemical adenine-thymine (A-T) 858 properties 1142 adiabatic flash 100 acids, promotor effect 1268 adipic acid Acinetobacter calcoaceticus 908 – fermentation of 1617 – NCIMB 9871 909 – production from LA 1629 acridine-based bisphosphine ligand 1629 aerobic oxidation 1057 acrolein acetal, Heck arylation of 974 Ag/Al2O3 catalyst 1445 acrolein, arylation 974 alcohol dehydrogenase (ADH) 901, 903 Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, Third Edition.
    [Show full text]