Dielectric Constant (DC Value) Compendium Level 2 DC Compendium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1998 LIST of PUBLICATIONS
Instytut Niskich Temperatur i Badań Strukturalnych PAN Wrocław, 31 sierpnia 2007 LISTA PUBLIKACJI 1998 LIST of PUBLICATIONS KSIĄŻKI, MONOGRAFIE i ARTYKUŁY PRZEGLĄDOWE Books, Monographs & Reviews 1. D.Aoki, Y.Katayama, S.Nojiri, R.Settai, Y.Inada, K.Sugiyama, Y.Onuki,¯ H.Harima, Z. Kletowski, Antiferroquadrupolar Ordering and Fermi Surface Property in PrPb3 . In: Japanese Journal of Applied Physics, Series 11., ed. by *** (Tokyo: The Institute of Pure and Applied Physics, 1999) pp. 188–90. 2. E. Gałdecka, X-ray Diffraction Methods: Single Crystal. In: International Tables for Crystallography, Vol. C, 2nd ed., ed. by E. Prince & A.J.C. Wilson (Dordrecht: Kluwer Acad. 1998) Ch. 5.3, pp. 501–31. 3. M. Kazimierski (Editor) Proceedings of 11th Seminar on Phase Transitions & Critical Phenomena (Wrocław & Polanica Zdrój, Poland, May 1998) (Wrocław: Inst. of Low Temperature and Structure Research, 1998) 198pp. 4. K. Maruszewski, Spektroskopia aktywowanych zeolitów i materiałów zol–żelowych. [Spectroscopic Investigation of Activated Molecular Sieves and Sol–Gel Materials.] (Wrocław: Instytut Niskich Temperatur i Badań Strukturalnych., 1998) 126 pp [in Polish]. 5. W. Suski, T.Palewski, [1 Magnetic and Related Properties of Pnictides and Chalcogenides. 1.2 Pnictides and chalcogenides based on lanthanides.] 1.2.1 Lanthanide monopnictides. In: Landolt–Börnstein Numerical Data and Functional Relationship in Science and Technology, New Series, ed. by W.Martienssen, Group III: Condensed Matter, Vol. 27: Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements, Subvol. B1: Pnictides and Chalcogenides I, ed. by H.P.J. Wijn (Berlin: Springer-Vg 1998) pp. 1–428. 6. W. Suski, T.Palewski, [1 Magnetic and Related Properties of Pnictides and Chalcogenides. -
Amyl Nitrite Or 'Jungle Juice'
Young People and Other Drugs Amyl Nitrite or ‘Jungle Juice’ Amyl nitrite is an inhalant that belongs to a class As with any drug, the use of nitrites is not risk-free. of chemicals called alkyl nitrites. This group of Some of the harms associated with its use include: drugs can be called ‘poppers’. They are often injuries related to inhaling the vapour referred to by their brand name, with ‘Jungle (e.g., rashes, burns) Juice’ probably being the most well-known of these. allergic reactions accidents and falls Inhaling amyl nitrite relaxes the body and gives vision problems (isopropyl nitrite) a ‘rush’ that lasts for one to two minutes. It is commonly used to enhance sexual pleasure and in rare cases, blood disorders induce a feeling of euphoria and well-being. MOST IMPORTANTLY, AMYL NITRITE OR JUNGLE JUICE MUST NEVER BE DRUNK. Drinking amyl can result in death due to it interfering with the ability of the blood to transport oxygen. What is amyl nitrite? Over the years, to bypass legal restrictions, nitrites have been sold as such things as liquid incense or Amyl nitrite is an inhalant that belongs to a class of room odoriser. Jungle Juice, which can be sold as chemicals called alkyl nitrites. Amyl nitrite is a highly a leather cleaner, is a common product name of flammable liquid that is clear or yellowish in colour. amyl nitrite. It has a unique smell that is sometimes described as ‘dirty socks’. It is highly volatile and when exposed to the air evaporates almost immediately at How is Jungle Juice used? room temperature. -
United States Patent (19) (11) 4,161,571 Yasui Et Al
United States Patent (19) (11) 4,161,571 Yasui et al. 45 Jul. 17, 1979 (54) PROCESS FOR PRODUCTION OF THE 4,080,493 3/1978 Yasui et al. .......................... 260/879 MALE CANHYDRDE ADDUCT OF A 4,082,817 4/1978 Imaizumi et al. ...................... 526/46 LIQUID POLYMER 4,091,198 5/1978 Smith ..................................... 526/56 75 Inventors: Seimei Yasui, Takarazuka; Takao FOREIGN PATENT DOCUMENTS Oshima, Sonehigashi, both of Japan 2262677 2/1975 France ....................................... 526/56 73) Assignee: Sumitomo Chemical Company, 44-1989 1/1969 Japan ......................................... 526/56 Limited, Osaka, Japan Primary Examiner-William F. Hamrock Attorney, Agent, or Firm-Birch, Stewart, Kolasch and 21 Appl. No.: 843,311 Birch 22 Filed: Oct. 18, 1977 57 ABSTRACT Related U.S. Application Data A process for production of the maleic anhydride ad duct of a liquid polymer having a maleic anhydride 62 Division of Ser. No. 733,914, Oct. 19, 1976, Pat, No. addition amount of 2 to 70% by weight, which com 4,080,493. prises reacting a liquid polymer having a molecular 51 Int. C.’................................................ CO8F 8/46 weight of 150 to 5,000 and a viscosity of 2 to 50,000 cp (52) U.S. C. ...................................... 526/90; 526/192; at 30 C. in the presence of at least one compound, as a 526/209; 526/213; 526/193; 526/195; 526/226; gelation inhibitor, selected from the group consisting of 526/233; 526/237; 526/238; 526/272; 525/285; imidazoles, thiazoles, metallic salts of mercapto 525/249; 525/251; 525/255; 525/245; 525/248 thiazoles, urea derivatives, naphthylamines, nitrosa (58) Field of Search ................ -
Primary-Explosives
Improvised Primary Explosives © 1998 Dirk Goldmann No part of the added copyrighted parts (except brief passages that a reviewer may quote in a review) may be reproduced in any form unless the reproduced material includes the following two sentences: The copyrighted material may be reproduced without obtaining permission from anyone, provided: (1) all copyrighted material is reproduced full-scale. WARNING! Explosives are danegerous. In most countries it's forbidden to make them. Use your mind. You as an explosives expert should know that. 2 CONTENTS Primary Explosives ACETONE PEROXIDE 4 DDNP/DINOL 6 DOUBLE SALTS 7 HMTD 9 LEAD AZIDE 11 LEAD PICRATE 13 MEKAP 14 MERCURY FULMINATE 15 "MILK BOOSTER" 16 NITROMANNITE 17 SODIUM AZIDE 19 TACC 20 Exotic and Friction Primers LEAD NITROANILATE 22 NITROGEN SULFIDE 24 NITROSOGUANIDINE 25 TETRACENE 27 CHLORATE-FRICTION PRIMERS 28 CHLORATE-TRIMERCURY-ACETYLIDE 29 TRIHYDRAZINE-ZINC (II) NITRATE 29 Fun and Touch Explosives CHLORATE IMPACT EXPLOSIVES 31 COPPER ACETYLIDE 32 DIAMMINESILVER II CHLORATE 33 FULMINATING COPPER 33 FULMINATING GOLD 34 FULMINATING MERCURY 35 FULMINATING SILVER 35 NITROGEN TRICHLORIDE 36 NITROGEN TRIIODIDE 37 SILVER ACETYLIDE 38 SILVER FULMINATE 38 "YELLOW POWDER" 40 Latest Additions 41 End 3 PRIMARY EXPLOSIVES ACETONE PEROXIDE Synonyms: tricycloacetone peroxide, acetontriperoxide, peroxyacetone, acetone hydrogen explosive FORMULA: C9H18O6 VoD: 3570 m/s @ 0.92 g/cc. 5300 m/s @ 1.18 g/cc. EQUIVALENCE: 1 gram = No. 8 cap .75 g. = No. 6 cap SENSITIVITY: Very sensitive to friction, flame and shock; burns violently and can detonate even in small amounts when dry. DRAWBACKS: in 10 days at room temp. 50 % sublimates; it is best made immediately before use. -
Chemical Chemical Hazard and Compatibility Information
Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine -
Catalysis of the Oxygen Evolution Reaction by 4–10 Nm Cobalt Nanoparticles
Topics in Catalysis https://doi.org/10.1007/s11244-018-0923-4 ORIGINAL PAPER Catalysis of the Oxygen Evolution Reaction by 4–10 nm Cobalt Nanoparticles Edward Locke1 · Shan Jiang1 · Simon K. Beaumont1 © The Author(s) 2018 Abstract Electrolysis of water is key technology, not only for clean energy production, but to ensure a continued supply of hydrogen beyond fossil resources, essential to the manufacture of many chemical goods other than fuels. Cobalt nanomaterials have been widely identified as a promising candidate for the anode (oxygen evolution) reaction in this process, but much work has focused on applied materials or electrode design. Given the importance of oxidation state changes Co(III) → Co(IV) in the accepted reaction mechanism, in this work we look at size effects in small (4–10 nm) cobalt nanoparticles, where the ease of oxidation for lower cobalt oxidation states is known to change with particle size. To discriminate between geometric and chemical effects we have compared the catalysts in this study to others in the literature by turnover frequency (widely used in other areas of catalysis), in addition to the more commonly employed performance metric of the overpotential required to produce a current density of 10 mA cm−2. Comparisons are drawn to key examples of using well defined nanomaterials (where the surface are of cobalt sites can be estimated). This has enabled an estimated intrinsic turnover rate of ~ 1 O2 mol- ecule per surface Co atom per second at an overpotential of 500 mV in the oxygen evolution reaction under typical alkaline reaction conditions (pH 14.0) to be identified. -
Potential Ivvs.Gelbasedre
US010644304B2 ( 12 ) United States Patent ( 10 ) Patent No.: US 10,644,304 B2 Ein - Eli et al. (45 ) Date of Patent : May 5 , 2020 (54 ) METHOD FOR PASSIVE METAL (58 ) Field of Classification Search ACTIVATION AND USES THEREOF ??? C25D 5/54 ; C25D 3/665 ; C25D 5/34 ; ( 71) Applicant: Technion Research & Development HO1M 4/134 ; HOTM 4/366 ; HO1M 4/628 ; Foundation Limited , Haifa ( IL ) (Continued ) ( 72 ) Inventors : Yair Ein - Eli , Haifa ( IL ) ; Danny (56 ) References Cited Gelman , Haifa ( IL ) ; Boris Shvartsev , Haifa ( IL ) ; Alexander Kraytsberg , U.S. PATENT DOCUMENTS Yokneam ( IL ) 3,635,765 A 1/1972 Greenberg 3,650,834 A 3/1972 Buzzelli ( 73 ) Assignee : Technion Research & Development Foundation Limited , Haifa ( IL ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 CN 1408031 4/2003 U.S.C. 154 ( b ) by 56 days . EP 1983078 10/2008 (21 ) Appl. No .: 15 /300,359 ( Continued ) ( 22 ) PCT Filed : Mar. 31 , 2015 OTHER PUBLICATIONS (86 ) PCT No .: PCT/ IL2015 /050350 Hagiwara et al. in ( Acidic 1 - ethyl - 3 -methylimidazoliuum fluoride: a new room temperature ionic liquid in Journal of Fluorine Chem $ 371 (c ) ( 1 ), istry vol . 99 ( 1999 ) p . 1-3 ; ( Year: 1999 ). * (2 ) Date : Sep. 29 , 2016 (Continued ) (87 ) PCT Pub . No .: WO2015 / 151099 Primary Examiner — Jonathan G Jelsma PCT Pub . Date : Oct. 8 , 2015 Assistant Examiner Omar M Kekia (65 ) Prior Publication Data (57 ) ABSTRACT US 2017/0179464 A1 Jun . 22 , 2017 Disclosed is a method for activating a surface of metals , Related U.S. Application Data such as self- passivated metals , and of metal -oxide dissolu tion , effected using a fluoroanion -containing composition . -
Pacs by Chemical Name (Mg/M3) (Pdf)
Table 4: Protective Action Criteria (PAC) Rev 25 based on applicable 60-minute AEGLs, ERPGs, or TEELs. Values are presented in mg/m3. August 2009 Table 4 is an alphabetical listing of the chemicals in the PAC data set. It provides Chemical Abstract Service Registry Numbers (CASRNs)1, PAC values, and technical information on the source of the PAC values. Table 4 presents all values for TEEL-0, PAC-1, PAC-2, and PAC-3 in mg/m3. The conversion of ppm to mg/m3 is calculated assuming 25 ºC and 760 mm Hg. The columns presented in Table 4 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical Name The chemical name given to the PAC Development Team. CASRN The Chemical Abstract Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no adverse health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-2 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Source of PACs: Technical comments provided by the PAC development team that TEEL-0, PAC-1, indicate the source of the data used to derive PAC values. Future efforts PAC-2, PAC-3 are directed at reviewing, revising, and enhancing this information. -
Nitrato Complexes of Manganese
NITFLAT0 COMPLEXES OF MANGANESE (II I ) DAVID WILLIAM JOHNSON B.Sc., University of Alberta, Calgary, 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF Tm REQUIREMENTS FOR THE3 DEGRE3E OF DOCTOR OF PHILOSOPHY in the Department of Chemistry 0 DAVID WILLIAM JOHNSON SIMON FRASER UNIVERSITY AUGUST, 1972, APPROVAL Name: David William Johnson Degree : Doctor of Philosophy Title of Thesis: Nitrato Complexes of ~snganese(111) Examining Committee : Chairman: T.N. Bell D. Sutton, denior Supervisor F.W.B, Einstein C.H,W, Jones L.K. Peterson - - N. Paddock, Professor, University of British Columbia Vancouver, B .C . Date Approved : I! Abstract The thesis describes a study of the reactions of a variety of manganese compounds with N204 or N205 leading to the synthesis of new manganese compounds with coordinated nitrate groups and other ligands, The aim of this work, to synthesise the first reported nitrato-complexes of manganese in an oxidation state higher than the common state (II), has been achieved, Manganese(II1) trinitrate, M~L(NO~)~,has been prepared by reaction of manganese(II1) trifluoride and dinitrogen pentoxide in dinltrogen tetroxide, Manganese (111) trinitrate is stable indefinitely below -14OC, but rapidly evolves N204 at room temperature and fumes in moist alr, The properties indicate that all nitrate groups are strongly coordinated and suggest that the compound fs polymeric with bridging nitrate groups. The bipyridyl, -o-phenanthroline, triphenylphosphine oxide and acetonitrile complexes of Mn(N0 have been prepared; all are stable at -
An Efficient, Heterogeneous and Green Catalyst for Organic Synthesis
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(2):991-1015 ISSN : 0975-7384 Review Article CODEN(USA) : JCPRC5 Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis Navjeet Kaur and Dharma Kishore Department of Chemistry, Banasthali University, Banasthali (Rajasthan), India ______________________________________________________________________________ ABSTRACT Reactions of organic molecules on Montmorillonite clay mineral have been investigated from various aspects. These include catalytic reactions for organic synthesis, chemical evolution, the mechanism of humus-formation, and environmental problems. Catalysis by clay minerals has attracted much interest recently, and many reports including the catalysis by synthetic or modified clays have been published. In this review, we will limit the review to organic reactions using Montmorillonite clay as catalyst. Keywords: Montmorillonite, catalysis, clay, organic synthesis, green chemistry. ______________________________________________________________________________ INTRODUCTION One of the major current challenges before chemists is to develop synthetic methods that are less polluting, i.e., to design clean or 'green' chemical transformations. The chemical manufacturing processes should be such that they do not cause permanent damage to the environment or disturb the ecological balance. Ways to minimize the consumption of energy and raw materials used in synthesis must be devised so that optimal value of resources could be realized. Thereby environmentally benign products are obtained at affordable costs. Such a concept, though not new, has received enormous attention in recent times. The desire to make chemical manufacturing environmental friendly is not a new one. Such awareness was there even among the nineteenth century chemists, industrialists and lawmakers. The problem has become more acute in recent times and has received wider attention because of our better understanding of the causes of environmental degradation. -
Rearrangement of Allylic Alcohols Herbert Barbehenn
Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 1-1-1971 Rearrangement of allylic alcohols Herbert Barbehenn Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Barbehenn, Herbert, "Rearrangement of allylic alcohols" (1971). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. REARRANGEMENT OF ALLYLIC ALCOHOLS HERBERT S. BARBEHENN JANUARY, 1971 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE APPROVED: Dr. Jerry Adduci Project Adviser Department Head Library Rochester Institute of Technology Rochester, New York To Rath, my wife - - - for the many lonely nights, for the many unfinished chores and for being herself. Acknowledgements Grateful appreciation is tendered to the many faculty members with whom it has been my pleasure to be associated with during the past eleven years at Rochester Institute of Technology. Special thanks are expressed to Dr. Jerry Adduci for his guidance and patience in seeing this endeavor to its conclusion. While it may have taken a little longer than the norm, much of the credit for this thesis must be ascribed to his dedication to complete and conclusive research. I also wish to thank Dr. Earl Krakower for the many nuclear magnetic resonance spectra he so graciously completed in the course of elucidating the many structures formed and to Dr. -
207/2015 3 Lääkeluettelon Aineet, Liite 1. Ämnena I
207/2015 3 LÄÄKELUETTELON AINEET, LIITE 1. ÄMNENA I LÄKEMEDELSFÖRTECKNINGEN, BILAGA 1. Latinankielinen nimi, Suomenkielinen nimi, Ruotsinkielinen nimi, Englanninkielinen nimi, Latinskt namn Finskt namn Svenskt namn Engelskt namn (N)-Hydroxy- (N)-Hydroksietyyli- (N)-Hydroxietyl- (N)-Hydroxyethyl- aethylprometazinum prometatsiini prometazin promethazine 2,4-Dichlorbenzyl- 2,4-Diklooribentsyyli- 2,4-Diklorbensylalkohol 2,4-Dichlorobenzyl alcoholum alkoholi alcohol 2-Isopropoxyphenyl-N- 2-Isopropoksifenyyli-N- 2-Isopropoxifenyl-N- 2-Isopropoxyphenyl-N- methylcarbamas metyylikarbamaatti metylkarbamat methylcarbamate 4-Dimethyl- ami- 4-Dimetyyliaminofenoli 4-Dimetylaminofenol 4-Dimethylaminophenol nophenolum Abacavirum Abakaviiri Abakavir Abacavir Abarelixum Abareliksi Abarelix Abarelix Abataceptum Abatasepti Abatacept Abatacept Abciximabum Absiksimabi Absiximab Abciximab Abirateronum Abirateroni Abirateron Abiraterone Acamprosatum Akamprosaatti Acamprosat Acamprosate Acarbosum Akarboosi Akarbos Acarbose Acebutololum Asebutololi Acebutolol Acebutolol Aceclofenacum Aseklofenaakki Aceklofenak Aceclofenac Acediasulfonum natricum Asediasulfoni natrium Acediasulfon natrium Acediasulfone sodium Acenocoumarolum Asenokumaroli Acenokumarol Acenocumarol Acepromazinum Asepromatsiini Acepromazin Acepromazine Acetarsolum Asetarsoli Acetarsol Acetarsol Acetazolamidum Asetatsoliamidi Acetazolamid Acetazolamide Acetohexamidum Asetoheksamidi Acetohexamid Acetohexamide Acetophenazinum Asetofenatsiini Acetofenazin Acetophenazine Acetphenolisatinum Asetofenoli-isatiini