A Review of Introductions of Pathogens and Nematodes for Classical Biological Control of Insects and Mites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geostatistical Analysis of Spatial Distribution of Therioaphis Maculata (Hemiptera: Aphididae) and Coccinellid Lady Beetles (Coleoptera: Coccinellidae)
J. Crop Prot. 2019, 8 (1): 103-115______________________________________________________ Research Article Geostatistical analysis of spatial distribution of Therioaphis maculata (Hemiptera: Aphididae) and coccinellid lady beetles (Coleoptera: Coccinellidae) Hakimeh Shayestehmehr and Roghaiyeh Karimzadeh* Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. Abstract: Understanding the spatial dynamics of insect distributions provides useful information about their ecological requirements and can also be used in site-specific pest management programs. Interactions between prey and predator are spatially and temporally dynamic and can be affected by several factors. In this study, geostatistics was used to characterize the spatial variability of spotted alfalfa aphid, Therioaphis maculata Buckton and coccinellid lady beetles in alfalfa fields. Global positioning and geographic information systems were used for spatial sampling and mapping the distribution pattern of these insects. This study was conducted in three alfalfa fields with areas of 7.3, 3.1 and 0.5 ha and two growing seasons, 2013 and 2014. The 0.5 ha field was divided into 10 × 10m grids and 3.1 and 7.3 ha fields were divided into 30 × 30m grids. Weekly sampling began when height of alfalfa plants reached about 15cm and was continued until the cuttings of alfalfa hay. For sampling, 40 and 10 stems were chosen randomly in 30 × 30m and 10 × 10m grids, respectively and shaken into a white pan three times. Aphids and coccinellids fallen in the pan were counted and recorded. Semivariance analysis indicated that distribution of T. maculata and coccinellids was aggregated in the fields. Comparison of the distribution maps of aphid and lady beetles indicated that there was an overlap between the maps, but they did not coincide completely. -
Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984). -
A Contribution to the Aphid Fauna of Greece
Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively). -
Abiotic and Pathogen Factors of Entomophaga Grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus Differentialis (Thomas)
Abiotic and Pathogen Factors of Entomophaga grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus differentialis (Thomas) by DWIGHT KEITH TILLOTSON B.S., Kansas State University, 1973 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Entomology KANSAS STATE UNIVERSITY Manhattan, Kansas 1988 Approved: David C. Margolies Major Professor ^O ' AllSQfl 130711 FMTrT) 'X.V TABLE OF CONTENTS 75M List of Figures ii c, 2- Acknowledgements ^^^ Background and Literature Review 1- Part I Effects of temperature and photoperiod on percent mortality, time to mortality and mature resting spore production in Melanoplus differentialis infected by Entomophaga grvlli pathotype 2 Introduction o Materials and Methods 10 Results 15 Discussion i7 Part II Effect of cadaver age on cryptoconidia production in Melanoplus differentialis infected by Entomophaga grylli pathotype 2 Introduction 21 Materials and Methods 24 Results 27 Discussion 28 Summary and Conclusion 29 Figures 32 Literature Cited 50 LIST OF FIGURES Fig. 1 Graph of mortality data grouped by temperature 33 Fig. 2 Graph of mortality data grouped by photoperiod 33 Fig. 3 Graph of disease length data grouped by temperature 35 Fig. 4 Graph of disease length data grouped by photoperiod 35 Fig. 5 Graph of mature resting spore proportion data grouped by temperature 37 Fig. 6 Graph of mature resting spore proportion data grouped by photoperiod 37 Fig. 7 Hourly cryptoconidia production 39 Fig. 8 Number of mature resting spores 41 Fig. 9 Number of hyphal bodies + immature resting spores 43 Fig. 10 Number of cryptoconidia 45 Fig. 11 Cryptoconidia as percentage of number of hyphal bodies + immature resting spores on agar plate 47 Fig. -
Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions
United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S. -
Biological Control
I. Biological Control Many wildlife species, like this lark bunting, choose grasshoppers as food for their young. Favoring bird populations can help limit grasshoppers in a complementary effort with other control methods. (Photograph by chapter author Lowell C. McEwen, of Colorado State University; used by permission.) I.1 Biological Control: An Introduction D. A. Streett DeBach (1964) defined biological control as “the action control agents causing a more immediate reduction in the of parasites, predators, or pathogens (disease-causing pest population but lacking the ability to persist or spread organisms) in maintaining another organism’s population in the environment. density at a lower average than would occur in their • In the classical approach, exotic (not native) pest spe- absence.” A more recent definition proposed by the cies are controlled by the introduction and establishment National Academy of Sciences (1987) for biological con- of exotic biological control agents. Classical biological trol is “the use of natural or modified organisms, genes, control has been extremely successful at controlling or gene products to reduce the effects of undesirable pests, and current Federal regulations are adequate to organisms (pests), and to favor desirable organisms such monitor and safeguard the importation of biological con- as crops, trees, animals, and beneficial insects and micro- trol agents (Soper 1992). organisms.” The approach to classical biological control proposed by While many people may share the wider view of biologi- Hokkanen and Pimentel (1984, 1989) involves the selec- cal control that encompasses the methods broadly defined tion of promising biological control agents from exotic by the National Academy of Sciences, Garcia et al. -
Entomophthorales
USDA-ARS Collection of Entomopathogenic Fungal Cultures Entomophthorales Emerging Pests and Pathogens Research Unit L. A. Castrillo (Acting Curator) Robert W. Holley Center for Agriculture & Health June 2020 539 Tower Road Fully Indexed Ithaca, NY 14853 Includes 1901 isolates ARSEF COLLECTION STAFF Louela A. Castrillo, Ph.D. Acting Curator and Insect Pathologist/Mycologist [email protected] (alt. email: [email protected]) phone: [+1] 607 255-7008 Micheal M. Wheeler Biological Technician [email protected] (alt. e-mail: [email protected]) phone: [+1] 607 255-1274 USDA-ARS Emerging Pests and Pathogens Research Unit Robert W. Holley Center for Agriculture & Health 538 Tower Road Ithaca, NY 14853-2901 USA Front cover: Rhagionid fly infected with Pandora blunckii. Specimen collected by Eleanor Spence in Ithaca, NY, in June 2019. Photograph and fungus identification by LA Castrillo. i New nomenclatural rules bring new challenges, and new taxonomic revisions for entomopathogenic fungi Richard A. Humber Insect Mycologist and Curator, ARSEF (Retired August, 2017) February 2014 (updated June 2020)* The previous (2007) version of this introductory material for ARSEF catalogs sought to explain some of the phylogenetically-based rationale for major changes to the taxonomy of many key fungal entomopathogens, especially those involving some key conidial and sexual genera of the ascomycete order Hypocreales. Phylogenetic revisions of the taxonomies of entomopathogenic fungi continued to appear, and the results of these revisions are reflected -
Reconstructing the Phylogeny of Aphids
Molecular Phylogenetics and Evolution 68 (2013) 42–54 Contents lists available at SciVerse ScienceDirect Molecul ar Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola ⇑ Eva Nováková a,b, , Václav Hypša a, Joanne Klein b, Robert G. Foottit c, Carol D. von Dohlen d, Nancy A. Moran b a Faculty of Science, University of South Bohemia, and Institute of Parasitology, Biology Centre, ASCR, v.v.i., Branisovka 31, 37005 Ceske Budejovice, Czech Republic b Department of Ecology and Evolutionary Biology, Yale University, 300 Heffernan Dr., West Haven, CT 06516-4150, USA c Agriculture & Agri-Food Canada, Canadian National Collection of Insects, K.W. Neatby Bldg., 960 Carling Ave. Ottawa, Ontario, Canada K1A 0C6 d Department of Biology, Utah State University, UMC 5305, Logan, UT 84322-5305, USA article info abstract Article history: Reliable phylogene tic reconstruction, as a framework for evolutionary inference, may be difficult to Received 21 August 2012 achieve in some groups of organisms. Particularly for lineages that experienced rapid diversification, lack Revised 7 March 2013 of sufficient information may lead to inconsistent and unstable results and a low degree of resolution. Accepted 13 March 2013 Coincident ally, such rapidly diversifying taxa are often among the biologically most interesting groups. Available online 29 March 2013 Aphids provide such an example. Due to rapid adaptive diversification, they feature variability in many interesting biological traits, but consequently they are also a challenging group in which to resolve phy- Keywords: logeny. Particularly within the family Aphididae, many interesting evolutionary questions remain unan- Aphid swered due to phylogene tic uncertainties.In this study, we show that molecular data derived from the Evolution Buchnera symbiotic bacteria of the genus Buchnera can provide a more powerful tool than the aphid-derived Phylogeny sequences. -
CALS Faculty CV Outline
AUGUST 2019 CURRICULUM VITAE NAME: Ann E. Hajek DEPARTMENT: Entomology, Cornell University TITLE: Professor CAMPUS ADDRESS: 6126 Comstock Hall PHONE: 607-254-4902 (office) or 4992 (lab) E-MAIL: [email protected] WEBSITE: http://entomology.cals.cornell.edu/people/ann-hajek http://blogs.cornell.edu/hajek/ BACKGROUND EDUCATION Year Degree Institution 1984 Ph.D. University of California, Berkeley (Entomology & Parasitology) 1980 M.S. University of California, Berkeley (Entomology & Parasitology) 1974 B.A./B.S. University of California, Berkeley (Conservation of Natural Resources) ACADEMIC RANKS (60% Research, 40% Teaching): Full Professor April 1, 2005 Associate Professor: July 1, 2000 Assistant Professor: Sept. 1, 1994 DEPARTMENT & AFFILIATIONS Entomology (primary department) Environmental Science and Sustainability (ESS) 2013-present Cornell Institute of Host-Microbe Interactions and Disease (CIHMID) 2016-present Cornell University Insect Collection (CUIC) 2016-2018 [Associate Curator of Invasive Species] Science of Natural and Environmental Systems (SNES) 2010-2013 Biology & Society 2006-2012 AREAS OF EXPERTISE Ecology of infectious disease, invertebrate pathology, biological control, insect ecology 2 PROFESSIONAL EXPERIENCE Year Experience 5/90-8/94 BOYCE THOMPSON INSTITUTE, Ithaca, NY Senior Research Associate & Research Associate 1/85-1/90 USDA, ARS, PLANT PROTECTION RESEARCH, Boyce Thompson Inst. Research Entomologist & Research Affiliate 10/77-6/84 DEPT. OF ENTOMOLOGY & PARASITOLOGY, U.C. Berkeley, CA Graduate Research Assistant 12/76-10/77 GREENFIELD, ATTAWAY & TYLER, 91 Larkspur St., San Rafael, CA Research Assistant 4/76-12/76 DEPT. OF ENTOMOLOGY & PARASITOLOGY, U.C. Berkeley, CA Laboratory Assistant 4/76-5/76 LICK OBSERVATORY, U.C. Santa Cruz, CA Consulting Invertebrate Field Biologist 5/75-6/75 THE NATURE CONSERVANCY, San Francisco, CA Field Entomologist 5/74-4/75 DEPT. -
The Occurrence and Effects of Entomophaga Grylli on Grasshopper Populations in South Dakota
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1982 The Occurrence and Effects of Entomophaga grylli on Grasshopper Populations in South Dakota Roger Allen Bohls Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Bohls, Roger Allen, "The Occurrence and Effects of Entomophaga grylli on Grasshopper Populations in South Dakota" (1982). Electronic Theses and Dissertations. 4128. https://openprairie.sdstate.edu/etd/4128 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. THE OCCURRENCE AND EFFECTS OF ENTOMOPHAGA GRYLLI ON G RA ~ S HOPPER POPULATIONS IN SOUTH DAKOTA By Roger Allen Bahls A thesis submitted in partial fulfillment of the requirements for the degree Master of Science Major in Entomology South Dakota State University 1982 THE OCCURRENCE AND EFFECTS OF ENTOMOPHAGA GRYLLI ON GRASSHOPPER POPULATIONS IN SOUTH DAKOTA This thesis is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Burruss McDaniel /Date Thesis Adviser f Maur1ce Horton ·oate Head, Department of Plant Science ACKNOWLEDGEMENTS The author extends his sincere appreciation to Dr. -
4 Economic Value of Arthropod Biological Control
©CAB International – for Steven Naranjo 4 Economic Value of Arthropod Biological Control STEVEN E. NARANJO1*, GEORGE B. FRISVOLD2 AND PETER C. ELLSWORTH3 1USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA; 2Department of Agricultural and Resource Economics, University of Arizona, Tucson, AZ, USA; 3Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ, USA Integrated pest management (IPM) is the strategic control are very low, successful programmes have integration of multiple control tactics resulting in the resulted in essentially permanent pest control with amelioration of pest damage that takes into consid- very favourable economic outcomes (Cock et al., eration environmental safety, and the reduction of 2015; Naranjo et al., 2015). risk and favourable economic outcomes for growers A second approach – augmentative biological and society at large. For thousands of years, natural control – involves the initial (inoculation) or enemies of pests have been harnessed for crop pro- repeated (inundation) introduction of native or tection (Simmonds et al., 1976). Maximizing this exotic natural enemies to suppress pest populations. source of natural control is a foundational element Augmentative biological control has been widely in IPM for suppressing the growth of incipient pest and successfully deployed in many parts of the populations (Stern et al., 1959). Biological control world. It is perhaps most well known in protected has been defined as the purposeful use of natural agricultural production, particularly in Europe and enemies, such as predators, parasitoids and patho- in developing regions such as China, India and gens, to regulate another organism’s populations to Latin America (van Lenteren et al., 2017). -
Climate Change and Micro-Organism Genetic Resources for Food and Agriculture: State of Knowledge, Risks and Opportunities
BACKGROUND STUDY PAPER NO. 57 May 2011 E COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE CLIMATE CHANGE AND MICRO-ORGANISM GENETIC RESOURCES FOR FOOD AND AGRICULTURE: STATE OF KNOWLEDGE, RISKS AND OPPORTUNITIES by Fen Beed1, Anna Benedetti2, Gianluigi Cardinali3, Sukumar Chakraborty4, Thomas Dubois,5 Karen Garrett6 and Michael Halewood7 This document has been prepared at the request of the Secretariat of the FAO Commission on Genetic Resources for Food and Agriculture, as a contribution to the crosssectoral theme, Consideration of scoping study on climate change and genetic resources for food and agriculture, which the Commission will consider at its Thirteenth Regular Session. The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 IITA, United Republic of Tanzania 2 Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Italy 3 Università degli Studi di Perugia, Italy 4 CSIRO, Australia 5 IITA, Uganda 6 Kansas State University, United States of America 7 Bioversity International, Italy. For resaons of economy, this document is produced in a limited number of copies. Delegates and observers are kindly requested to bring their copies to meetings and to refrain from asking for additional copies, unless strictly necessary. The documents for this meeting are available on Internet at: http://www.fao.org ii BACKGROUND STUDY PAPER NO. 57 TABLE OF CONTENTS Page Executive Summary .....................................................................................................................................