The Occurrence and Effects of Entomophaga Grylli on Grasshopper Populations in South Dakota
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Acridiidae of Minnesota
Wqt 1lluitttr11ity nf :!alliuur11nta AGRICULTURAL EXPERIMENT STATION BULLETIN 141 TECHNICAL THE ACRIDIIDAE OF MINNESOTA BY M. P. SOMES DIVISION OF ENTOMOLOGY UNIVERSITY FARM, ST. PAUL. JULY 1914 THE UNIVERSlTY OF l\ll.'\1\ESOTA THE 130ARD OF REGENTS The Hon. B. F. :.JELsox, '\finneapolis, President of the Board - 1916 GEORGE EDGAR VINCENT, Minneapolis Ex Officio The President of the l.:niversity The Hon. ADOLPH 0. EBERHART, Mankato Ex Officio The Governor of the State The Hon. C. G. ScnuLZ, St. Paul l'.x Oflicio The Superintendent of Education The Hon. A. E. RICE, \Villmar 191.3 The Hon. CH.\RLES L. Sol\DfERS, St. Paul - 1915 The Hon. PIERCE Bun.ER, St. Paul 1916 The Hon. FRED B. SNYDER, Minneapolis 1916 The Hon. W. J. J\Lwo, Rochester 1919 The Hon. MILTON M. \NILLIAMS, Little Falls 1919 The Hon. }OIIN G. vVILLIAMS, Duluth 1920 The Hon. GEORGE H. PARTRIDGE, Minneapolis 1920 Tl-IE AGRICULTURAL C0:\1MITTEE The Hon. A. E. RrCE, Chairman The Hon. MILTON M. vVILLIAMS The Hon. C. G. SCHULZ President GEORGE E. VINCENT The Hon. JoHN G. \VrLLIAMS STATION STAFF A. F. VlooDs, M.A., D.Agr., Director J. 0. RANKIN, M.A.. Editor HARRIET 'vV. SEWALL, B.A., Librarian T. J. HORTON, Photographer T. L.' HAECKER, Dairy and Animal Husbandman M. H. REYNOLDS, B.S.A., M.D., D.V.:'d., Veterinarian ANDREW Boss, Agriculturist F. L. WASHBURN, M.A., Entomologist E. M. FREEMAN, Ph.D., Plant Pathologist and Botanist JonN T. STEWART, C.E., Agricultural Engineer R. W. THATCHER, M.A., Agricultural Chemist F. J. -
Niche Breadth and Feeding in Tropical Grasshoppers
ar ,? ,* 4 ’ Insect Sci. Applic. Vol. 12, No. 11213, pp. 201-208, 1991 0191-9040/91 $3.00 + 0.00 Printed in Kenya. All rights reserved O 1991 ICIPE-ICIPE Science Press NICHE BREADTH AND FEEDING IN TROPICAL GRASSHOPPERS LE GALL PHILIPPE* ORSTOM, Institut Français de Recherches pour le Développement en Co-operation, _-Laboratoire d’Entomologie Bt 446, UniversitC Paris-Sud Orsay, 914105, Orsay (-./.- (Received 30 October 1990) Abstract-Consumption indices and apparent digestibility are measured for seven species of grasshoppers from Lamto (Ivory Coast), representative of different trophic specialization steps (Le Gall and Gillon, 1989). The consumption indices vary from 0.11 to 0.34 and the apparent digestibility from 30 to 65%. Specialists are not more efficient on their host plant than are generalists on convenient host plants, but some specialists fed on plants which are not convenient for generalists. Anthermus granosus and Eucoptacra spathulacauda feeding on Lippia multiflora is not convenient for a generalist like Eucoptera anguliflava. If feeding efficiency does not seem to be a real selective pressure, it can be an important step in specialization processes, when there is an adaptation to an unusable host plant for polyphagous species. Differences in the constitution of plant parts eaten by the grasshopper play an important role in the digestibility. The differences in the efficiency observed between the two specialists of Lippia are from their differences in feeding behaviour. Key Words: Grasshoppers, Orthoptera, Acrididae, Africa, plant-insects relationships, ecology, digestibility Résumé-Une Btude a été faite sur la consom’mation et la digestibilité apparente chez 7 espèces de sauterelles à Lamto (Côte d’Ivoire) représentant différents elements de spécialisation alimentaire (Le Gall et Gillon, 1989). -
(Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided. -
Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984). -
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects. -
1 Insects As Indicators of Habitat Quality, Ecological Integrity And
Insects as Indicators of Habitat Quality, Ecological Integrity and Restoration Success in Illinois Prairies, Savannas and Woodlands Project Number: T-92-R-1 Final Report Project Start Date: 9/1/2014 Project End Date: 7/1/2017 Sam W. Heads (Principal Investigator), Catherine E. Dana, Michael R. Jeffords, Susan L. Post, & Joseph L. Spencer Illinois Natural History Survey Prairie Research Institute, University of Illinois 1816 South Oak Street Champaign, IL 61820 1 Summary The typical methods that ecologists use for assessing habitat quality involves calculating quality based on primarily floristic data. This is true of evaluation of habitats in Illinois – although new methods have become available for assessing habitats based on other taxa. These alternative methods are often not in widespread use, especially in Illinois, and consist of using invertebrate indicator taxa to assess the ecological integrity of prairies, savannas, and woodlands (aquatic invertebrate survey tend to be more commonly used). There is a large diversity of invertebrates for which we have information on the life history, seasonality, and diet that live in these unique habitats. Critically, these organisms are often sensitive to environmental change and habitat fragmentation. Insects in particular can thus be valuable indicators of habitat quality and ecosystem integrity. For this study, we chose to look at four groups of insects as indicators, based on their life history, ease of identification, and knowledge of the co-authors. These groups are well represented in grassland biomes and include: (1) grasshoppers (Orthoptera: Acridoidea); (2) butterflies (Lepidoptera: Rhopalocera); (3) cicadas (Hemiptera: Cicadoidea); and (4) tiger beetles (Coleoptera: Carabidae). By looking at both the abundance and species diversity at a given site for each of these groups, we hoped to develop tools that would allow land managers to utilize these taxa as indicators of high quality prairie. -
A Computer Model of the Gypsy Moth and Its Fungal Pathogen 5
Abstract A one-host generation computer model, with a time-step of 1 day, has been developed to simulate the interaction between the very effective fungal pathogen, Entomophaga maimaiga, and its host, the gypsy moth. This publication describes the structure of the validated model, the kinds of model inputs needed and the outputs produced, and gives examples of model results. The model can be used to construct scenarios of future gypsy moth-fungus interactions and to evaluate the effectiveness of the fungus as a biological control agent. A Computer Model of the Gyl--, Moth and its Fungal Pathogen By Ronald M. Weseloh The gypsy moth fungal pathogen, Entomophaga rroper weather conditions are very impoftant for the maimaiga, was first found to be established in North fungus to be effective. Moist soil during the gypsy moth America in 1989 (Andreadis and Weseloh 1990), and larval season and adequate rainfall at the times of conidial positively identified as a species from Japan (Hajek et al. sporulation must occur for the fungus to infect larvae. The 1990). Since 1989, the fungus has significantly suppressed number of resting spores in the soil (resting spore load) and the gypsy moth in the generally infested areas of North the number of gypsy moths available for infection probably America. Numerous scenarios have been proposed for how it also influence hngus activity. Using these inputs, colleagues became established (Hajek et at. 1995), but we probably will and I have developed a computer model that simulates the never know for sure. infection, growth, and death of the host and pathogen over a Fortunately, E. -
The Taxonomy of Utah Orthoptera
Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College. -
Preliminary Checklist of the Orthopteroid Insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2001 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham Garland, TX Thomas A. Stidham University of California, Berkeley, CA Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Stidham, John A. and Stidham, Thomas A., "Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas" (2001). Insecta Mundi. 180. https://digitalcommons.unl.edu/insectamundi/180 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 15, No. 1, March, 2001 35 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham 301 Pebble Creek Dr., Garland, TX 75040 and Thomas A. Stidham Department of Integrative Biology, Museum of Paleontology, and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, Abstract: Texas has one of the most diverse orthopteroid assemblages of any state in the United States, reflecting the varied habitats found in the state. Three hundred and eighty-nine species and 78 subspecies of orthopteroid insects (Blattodea, Mantodea, Phasmatodea, and Orthoptera) have published records for the state of Texas. This is the first such comprehensive checklist for Texas and should aid future work on these groups in this area. Introduction (Flook and Rowell, 1997). -
Abiotic and Pathogen Factors of Entomophaga Grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus Differentialis (Thomas)
Abiotic and Pathogen Factors of Entomophaga grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus differentialis (Thomas) by DWIGHT KEITH TILLOTSON B.S., Kansas State University, 1973 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Entomology KANSAS STATE UNIVERSITY Manhattan, Kansas 1988 Approved: David C. Margolies Major Professor ^O ' AllSQfl 130711 FMTrT) 'X.V TABLE OF CONTENTS 75M List of Figures ii c, 2- Acknowledgements ^^^ Background and Literature Review 1- Part I Effects of temperature and photoperiod on percent mortality, time to mortality and mature resting spore production in Melanoplus differentialis infected by Entomophaga grvlli pathotype 2 Introduction o Materials and Methods 10 Results 15 Discussion i7 Part II Effect of cadaver age on cryptoconidia production in Melanoplus differentialis infected by Entomophaga grylli pathotype 2 Introduction 21 Materials and Methods 24 Results 27 Discussion 28 Summary and Conclusion 29 Figures 32 Literature Cited 50 LIST OF FIGURES Fig. 1 Graph of mortality data grouped by temperature 33 Fig. 2 Graph of mortality data grouped by photoperiod 33 Fig. 3 Graph of disease length data grouped by temperature 35 Fig. 4 Graph of disease length data grouped by photoperiod 35 Fig. 5 Graph of mature resting spore proportion data grouped by temperature 37 Fig. 6 Graph of mature resting spore proportion data grouped by photoperiod 37 Fig. 7 Hourly cryptoconidia production 39 Fig. 8 Number of mature resting spores 41 Fig. 9 Number of hyphal bodies + immature resting spores 43 Fig. 10 Number of cryptoconidia 45 Fig. 11 Cryptoconidia as percentage of number of hyphal bodies + immature resting spores on agar plate 47 Fig. -
Grasshoppers of the Choctaw Nation in Southeast Oklahoma
Oklahoma Cooperative Extension Service EPP-7341 Grasshoppers of the Choctaw Nation in Southeast OklahomaJune 2021 Alex J. Harman Oklahoma Cooperative Extension Fact Sheets Graduate Student are also available on our website at: extension.okstate.edu W. Wyatt Hoback Associate Professor Tom A. Royer Extension Specialist for Small Grains and Row Crop Entomology, Integrated Pest Management Coordinator Grasshoppers and Relatives Orthoptera is the order of insects that includes grasshop- pers, katydids and crickets. These insects are recognizable by their shape and the presence of jumping hind legs. The differ- ences among grasshoppers, crickets and katydids place them into different families. The Choctaw recognize these differences and call grasshoppers – shakinli, crickets – shalontaki and katydids– shakinli chito. Grasshoppers and the Choctaw As the men emerged from the hill and spread throughout the lands, they would trample many more grasshoppers, killing Because of their abundance, large size and importance and harming the orphaned children. Fearing that they would to agriculture, grasshoppers regularly make their way into all be killed as the men multiplied while continuing to emerge folklore, legends and cultural traditions all around the world. from Nanih Waiya, the grasshoppers pleaded to Aba, the The following legend was described in Tom Mould’s Choctaw Great Spirit, for aid. Soon after, Aba closed the passageway, Tales, published in 2004. trapping many men within the cavern who had yet to reach The Origin of Grasshoppers and Ants the surface. In an act of mercy, Aba transformed these men into ants, During the emergence from Nanih Waiya, grasshoppers allowing them to rule the caverns in the ground for the rest of traveled with man to reach the surface and disperse in all history. -
Discovery of Entomophaga Maimaiga in North American Gypsy Moth, Lymantria Dispar (Entomophthorales/Epizootic/Lymantriidae) THEODORE G
Proc. Natl. Acad. Sci. USA Vol. 87, pp. 2461-2465, April 1990 Population Biology Discovery of Entomophaga maimaiga in North American gypsy moth, Lymantria dispar (Entomophthorales/epizootic/Lymantriidae) THEODORE G. ANDREADIS AND RONALD M. WESELOH Department of Entomology, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven, CT 06504 Communicated by Paul E. Waggoner, January 9, 1990 ABSTRACT An entomopathogenic fungus, Entomophaga reported occurrence of this fungus in North American gypsy maimaiga, was found causing an extensive epizootic in outbreak moths. In this report we present a full description of the populations of the gypsy moth, Lymantia dispar, throughout fungus and its disease in native gypsy moths and further many forested and residential areas of the northeastern United recount its distribution, epizootiology, and impact on the States. This is the first recognized occurrence of this or any population. entomophthoralean fungus in North American gypsy moths, and its appearance was coincident with an abnormally wet MATERIALS AND METHODS spring. Most fungal-infected gypsy moth larvae were killed in mass during the fourth and fifth stadium and were character- Identification and Characterization of the Fungus. Charac- istically found clinging to the trunks of trees with their heads terization of the fungus was made from microscopic exami- pointed downward. The fungus produces thick-walled resistant nation of naturally infected L. dispar larvae collected from resting spores within dried gypsy moth cadavers and infectious several different locations in Connecticut during June and conidia when freshly killed larvae are held in a wet environ- July 1989. Observations were made from living host larvae ment.