Biological Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984). -
Elements for the Sustainable Management of Acridoids of Importance in Agriculture
African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention. -
Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period. -
(Insecta) and Their Natural Enemies from Iranian Rice Fields and Surrounding Grasslands 639-672 © Biologiezentrum Linz/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2009 Band/Volume: 0041_1 Autor(en)/Author(s): Ghahari Hassan, Havaskary Mohammad, Tabari Mehrdad, Ostovan Hadi, Sakenin Hamid, Satar Ali Artikel/Article: An annotated catalogue of Orthoptera (Insecta) and their natural enemies from Iranian rice fields and surrounding grasslands 639-672 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 41/1 639-672 30.8.2009 An annotated catalogue of Orthoptera (Insecta) and their natural enemies from Iranian rice fields and surrounding grasslands H. GHAHARI, M. HAVASKARY, M. TABARI, H. OSTOVAN, H. SAKENIN & A. SATAR Abstract: The fauna of Iranian Orthoptera is very diverse in almost agroecosystems, especially rice fields. In a total of 74 species from 36 genera, and 8 families including, Acrididae, Catantopidae, Gryllidae, Gryllotalpidae, Pamphagidae, Pyrgomorphidae, Tetrigidae, and Tettigoniidae were collected from rice fields of Iran. In addition to the Orthoptera fauna, their predators (including Asilidae, Bombyliidae, Carabidae, Meloidae, Sphecidae, Staphylinidae and Tenebrionidae) and parasitoids (Scelionidae and Sarcophagidae) are studied and discussed in this paper. Totally 75 predators and 9 parasitoids were identified as the natural enemies of Iranian Orthoptera. Key words: Orthoptera, Predator, Parasitoid, Fauna, Rice field, Iran. Introduction The Orthoptera are a group of large and easily recognized insects which includes the Grasshoppers, Locusts, Groundhoppers, Crickets, Katydids, Mole-crickets and Camel- crickets as well as some lesser groups. These insects can be found in various habitats, as well as the more familiar species found in grasslands and forests (PEVELING et al. -
Arthropod-Pathogenic Entomophthorales from Switzerland
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2007 Band/Volume: 59 Autor(en)/Author(s): Keller Siegfried Artikel/Article: Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. 75-113 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions Siegfried Keller Federal Research Station Agroscope Reckenholz-TaÈnikon ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland Keller S. (2007) Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. ± Sydowia 59 (1): 75±113. Twenty-nine species of arthropod-pathogenic Entomophthorales new to Switzerland are described. Nine are described as new species, namely Batkoa hydrophila from Plecoptera, Conidiobolus caecilius from Psocoptera, Entomophaga antochae from Limoniidae (Diptera), E. thuricensis from Cicadellidae (Homo- ptera), Erynia fluvialis from midges (Diptera), E. tumefacta from Muscidae (Dip- tera), Eryniopsis rhagonidis from Rhagionidae (Diptera), Pandora longissima from Limoniidae (Diptera) and Strongwellsea pratensis from Muscidae (Diptera). Pan- dora americana, P. sciarae, Zoophthora aphrophorae and Z. rhagonycharum are new combinations. Eleven species are first records since the original description. The list of species recorded from Switzerland amounts to 90 species representing 38% of the world-wide known species of arthropod-pathogenic Entomophthorales. Part I of this monograph (Keller 1987) treated the genera Con- idiobolus, Entomophaga [including the species later transferred on to the new genus Batkoa Humber (1989)], and Entomophthora. Part II (Keller 1991) treated the genera Erynia sensu lato (now subdivided into the genera Erynia, Furia and Pandora), Eryniopsis, Neozygites, Zoophthora and Tarichium. So far 51 species including 8new ones have been listed. -
Abiotic and Pathogen Factors of Entomophaga Grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus Differentialis (Thomas)
Abiotic and Pathogen Factors of Entomophaga grylli (Fresenius) Batko Pathotype 2 Infections in Melanoplus differentialis (Thomas) by DWIGHT KEITH TILLOTSON B.S., Kansas State University, 1973 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Entomology KANSAS STATE UNIVERSITY Manhattan, Kansas 1988 Approved: David C. Margolies Major Professor ^O ' AllSQfl 130711 FMTrT) 'X.V TABLE OF CONTENTS 75M List of Figures ii c, 2- Acknowledgements ^^^ Background and Literature Review 1- Part I Effects of temperature and photoperiod on percent mortality, time to mortality and mature resting spore production in Melanoplus differentialis infected by Entomophaga grvlli pathotype 2 Introduction o Materials and Methods 10 Results 15 Discussion i7 Part II Effect of cadaver age on cryptoconidia production in Melanoplus differentialis infected by Entomophaga grylli pathotype 2 Introduction 21 Materials and Methods 24 Results 27 Discussion 28 Summary and Conclusion 29 Figures 32 Literature Cited 50 LIST OF FIGURES Fig. 1 Graph of mortality data grouped by temperature 33 Fig. 2 Graph of mortality data grouped by photoperiod 33 Fig. 3 Graph of disease length data grouped by temperature 35 Fig. 4 Graph of disease length data grouped by photoperiod 35 Fig. 5 Graph of mature resting spore proportion data grouped by temperature 37 Fig. 6 Graph of mature resting spore proportion data grouped by photoperiod 37 Fig. 7 Hourly cryptoconidia production 39 Fig. 8 Number of mature resting spores 41 Fig. 9 Number of hyphal bodies + immature resting spores 43 Fig. 10 Number of cryptoconidia 45 Fig. 11 Cryptoconidia as percentage of number of hyphal bodies + immature resting spores on agar plate 47 Fig. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions
United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S. -
The Tachinid Times
The Tachinid Times ISSUE 19 February 2006 Jim O’Hara, editor Invertebrate Biodiversity Agriculture & Agri-Food Canada C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] or [email protected] This year’s issue of The Tachinid Times is one of the missions, and the newsletter as a whole is reviewed largest yet, with a variety of articles and notes on the internally within my organization before it is posted on the Tachinidae by a number of contributors. Following the Internet and distributed in hardcopy. Articles in The articles, I have as usual gathered together as much of the Tachinid Times are cited in Zoological Record. tachinid literature published since the last issue as I could I would like to thank Dave Ladd and Shannon find by database searches and other means. The biblio- Mahony for their assistance with the preparation of this graphy is followed by the mailing list of this year’s issue. issue, especially the bibliography. I would also like to The Tachinid Times is primarily an online newsletter thank Bruce Cooper for his 16 years of assistance with this but continues to be offered in hardcopy to provide a newsletter and wish him well for a long and enjoyable permanent record in a few libraries around the world and retirement after 40 years of employment with Agriculture for persons wishing to receive a print copy for their own and Agri-Food Canada. files. Both versions are based on the same PDF original and have the same pagination and appearance except that the Phytomyptera nigrina (Meigen), a parasite of first figures are in colour in the online version and in black and generation European grapevine moth larvae in several white in the printed version. -
State of Knowledge of the Tachinid Fauna of Eastern Asia, with New Data from North Korea
Fragm entaFaunistica 54(2): 157-177, 2011 PL ISSN 0015-9301 O M useum a n d I n s titu te o f Z o o lo g y PAS State of knowledge of the tachinid fauna of Eastern Asia, with new data from North Korea. Part IE. Tachininae Agnieszka D r a b e r -M o ń k o Museum and Institute o f Zoology, PAS, Wilcza 64, 00-679 Warszawa; e-mail:[email protected] Abstract: The present paper is a continuation of an earlier paper concerned with the Tachinidae collected in North Korea by five expeditions of researchers from the Institute of Zoology PAS, Warsaw, Poland and is specifically concerned with the second part of the collections - the subfamily Tachininae. Twenty nine species representing 15 genera were identified in the material. Twenty four species are reported for the first time in the fauna of Korea. Among these species were 3 very rare, known only from original descriptions: Nigara gracilis Richter, Peleteriapallida Zimin and Tachina (Tachina) majae (Zimin).Ten rarely registered species are illustrated. Key words:Diptera, Tachinidae, Tachininae, North Korea Introduction The first part of this paper (Draber-Mohko 2008) was concerned with the Tachinidae belonging to the subfamily Phasiinae. Thirteen species of the phasiine flies were identified and most of them had been previously unknown from the territory of Korea. Two new species are described and illustrated: Dionaea karinae Draber-Mohko and Hemvda dominikae Draber- Mohko. The first part also contains a discussion of the present state of knowledge of the Tachinidae fauna of the Far East and an exhaustive list of relevant papers concerned with this region. -
Deep Phylogeographic Divergence and Cytonuclear Discordance in the Grasshopper Oedaleus Decorus
Molecular Phylogenetics and Evolution 65 (2012) 695–704 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Deep phylogeographic divergence and cytonuclear discordance in the grasshopper Oedaleus decorus ⇑ Eveline Kindler a, Raphaël Arlettaz b, Gerald Heckel a,c, a Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland b Conservation Biology, Institute of Ecology and Evolution, University of Bern, Erlachstrasse 9a, 3012 Bern, Switzerland c Swiss Institute of Bioinformatics, Genopode, 1015 Lausanne, Switzerland article info abstract Article history: The grasshopper Oedaleus decorus is a thermophilic insect with a large, mostly south-Palaearctic distribu- Received 22 December 2011 tion range, stretching from the Mediterranean regions in Europe to Central-Asia and China. In this study, Revised 6 July 2012 we analyzed the extent of phylogenetic divergence and the recent evolutionary history of the species Accepted 23 July 2012 based on 274 specimens from 26 localities across the distribution range in Europe. Phylogenetic relation- Available online 4 August 2012 ships were determined using sequences of two mitochondrial loci (ctr, ND2) with neighbour-joining and Bayesian methods. Additionally, genetic differentiation was analyzed based on mitochondrial DNA and Keywords: 11 microsatellite markers using F-statistics, model-free multivariate and model-based Bayesian cluster- Cytonuclear discordance ing approaches. Phylogenetic analyses detected consistently two highly divergent, allopatrically distrib- Phylogeography Introgression uted lineages within O. decorus. The divergence among these Western and Eastern lineages meeting in the Orthoptera region of the Alps was similar to the divergence of each lineage to the sister species O. -
Entomophthorales
USDA-ARS Collection of Entomopathogenic Fungal Cultures Entomophthorales Emerging Pests and Pathogens Research Unit L. A. Castrillo (Acting Curator) Robert W. Holley Center for Agriculture & Health June 2020 539 Tower Road Fully Indexed Ithaca, NY 14853 Includes 1901 isolates ARSEF COLLECTION STAFF Louela A. Castrillo, Ph.D. Acting Curator and Insect Pathologist/Mycologist [email protected] (alt. email: [email protected]) phone: [+1] 607 255-7008 Micheal M. Wheeler Biological Technician [email protected] (alt. e-mail: [email protected]) phone: [+1] 607 255-1274 USDA-ARS Emerging Pests and Pathogens Research Unit Robert W. Holley Center for Agriculture & Health 538 Tower Road Ithaca, NY 14853-2901 USA Front cover: Rhagionid fly infected with Pandora blunckii. Specimen collected by Eleanor Spence in Ithaca, NY, in June 2019. Photograph and fungus identification by LA Castrillo. i New nomenclatural rules bring new challenges, and new taxonomic revisions for entomopathogenic fungi Richard A. Humber Insect Mycologist and Curator, ARSEF (Retired August, 2017) February 2014 (updated June 2020)* The previous (2007) version of this introductory material for ARSEF catalogs sought to explain some of the phylogenetically-based rationale for major changes to the taxonomy of many key fungal entomopathogens, especially those involving some key conidial and sexual genera of the ascomycete order Hypocreales. Phylogenetic revisions of the taxonomies of entomopathogenic fungi continued to appear, and the results of these revisions are reflected