Multiple Patterns of Scaling of Sexual Size Dimorphism with Body Size in Orthopteroid Insects Revista De La Sociedad Entomológica Argentina, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Patterns of Scaling of Sexual Size Dimorphism with Body Size in Orthopteroid Insects Revista De La Sociedad Entomológica Argentina, Vol Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina Bidau, Claudio J.; Taffarel, Alberto; Castillo, Elio R. Breaking the rule: multiple patterns of scaling of sexual size dimorphism with body size in orthopteroid insects Revista de la Sociedad Entomológica Argentina, vol. 75, núm. 1-2, 2016, pp. 11-36 Sociedad Entomológica Argentina Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=322046181002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Trabajo Científico Article ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Revista de la Sociedad Entomológica Argentina 75 (1-2): 11-36, 2016 Breaking the rule: multiple patterns of scaling of sexual size dimorphism with body size in orthopteroid insects BIDAU, Claudio J. 1, Alberto TAFFAREL2,3 & Elio R. CASTILLO2,3 1Paraná y Los Claveles, 3304 Garupá, Misiones, Argentina. E-mail: [email protected] 2,3Laboratorio de Genética Evolutiva. Instituto de Biología Subtropical (IBS) CONICET-Universi- dad Nacional de Misiones. Félix de Azara 1552, Piso 6°. CP3300. Posadas, Misiones Argentina. 2,3Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT) Felix de Azara 1890, Piso 5º, Posadas, Misiones 3300, Argentina. Quebrando la regla: multiples patrones alométricos de dimorfismo sexual de tama- ño en insectos ortopteroides RESUMEN. El dimorfismo sexual de tamaño (SSD por sus siglas en inglés) es un fenómeno ampliamente distribuido en los animales y sin embargo, enigmático en cuanto a sus causas últimas y próximas y a las relaciones alométricas entre el SSD y el tamaño corporal (regla de Rensch). Analizamos el SSD a niveles intra- e interes- pecíficos en un número de especies y géneros representativos de los órdenes or- topteroides mayores: Orthoptera, Phasmatodea, Mantodea, Blattodea, Dermaptera, Isoptera, y Mantophasmatodea. La vasta mayoría de las especies mostraron SSD sesgado hacia las hembras, pero numerosas excepciones ocurren en cucarachas y dermápteros. La regla de Rensch y su inversa no constituyeron patrones comunes, tanto a nivel intraespecífico como interespecífico, con la mayoría de las especies y géneros mostrando una relación isométrica entre los tamaños de macho y hembra. En algunos casos, los patrones alométricos hallados podrían relacionarse con la va- riación geográfica del tamaño corporal. También demostramos que no todos los es- timadores de tamaño corporal producen el mismo grado de SSD y que el dimorfismo puede estar influenciado por un gran número de condiciones de vida y patrones de desarrollo ninfal. Finalmente, discutimos nuestros resultados en relación a modelos actuales de la evolución del dimorfismo sexual de tamaño en animales. PALABRAS CLAVE. Tamaño corporal. Blattodea. Dermaptera. Mantodea. Man- tophasmatodea. Caracteres morfométricos. Orthoptera. Phasmatodea. Regla de Rensch. Alometría. ABSTRACT. Sexual size dimorphism (SSD) although a widespread phenomenon among animals, is both enigmatic as to its proximate and ultimate causes and the scaling relationships between SSD and body size (Rensch’s rule). We analyzed SSD at the intra- and interspecific levels in a number of representative species and genera of the major orthopteroid orders: Orthoptera, Phasmatodea, Mantodea, Blat- todea, Dermaptera, Isoptera, and Mantophasmatodea. The vast majority of the spe- cies showed female biased SSD but numerous exceptions occur in cockroaches and earwigs. Rensch’s rule and its converse are not common patterns at both, intra- and cross-species level, most species and genera showing an isometric relation- ship between male and female body sizes. In some but not all cases, the demon- strated allometric patterns could be related to geographic body size variation. We also showed that not all body size estimators produce the same degree of SSD and that dimorphism can be strongly influenced by a number of living conditions and the patterns of nymphal development. Finally, we discuss our results in relation to Recibido: 14-I-2016; aceptado: 17-III-2016 11 Revista de la Sociedad Entomológica Argentina 75 (1-2): 11-36, 2016 current models of the evolution of sexual size dimorphism in animals. KEY WORDS. Body size. Blattodea. Dermaptera. Mantodea. Mantophasmatodea. Morphometric traits. Orthoptera. Phasmatodea. Rensch’s rule. Scaling. INTRODUCTION son, 1994; Fairbairn, 2013). SSD is a controversial aspect of evolutionary biology for several reasons. The length range of living systems is aston- On one side, although sexual selection has tradi- ishing: it spans 17 orders of magnitude from tionally been assumed as the key process behind DNA molecules to ecosystems; while organisms SSD, it is now well known that natural selection vary 7 orders of magnitude in length and 21 in can also produce size differences between males mass (Ellers, 2001). Insects have an impressive and females and that both processes are not com- body size range, from less than 0.2 mm in the pletely independent from one another (e.g. Isaac, parasitic wasp Dicopomorpha echmepterygis 2005; Carranza, 2009). This problem includes (Mymaridae) to ca. 360 mm in the stick-insect the study of the adaptive significance of SSD, the Phobaeticus chani (Phasmatidae). Body mass genetic constraints to its evolution, and its proxi- varies accordingly with females of the giant mate and ultimate causes (Fairbairn, 1997, 2007). weta, Deinacrida heteracantha (Anostostoma- Secondly, a problem which has not received a tidae) weighing more than 70 g (Björkman et satisfactory explanation is that of the allometric al., 2009). The enormous amount of scientific scaling of SSD with body size. Bernhard Rensch literature relative to animal body size reflects (1950, 1960) proposed that in phylogenetically re- the importance of this trait in biology. Almost lated species, SSD increases with general body every life history and ecological characteristic size when males are larger than females and of animals is correlated with body size (LaBar- decreases when females are larger. This pattern bera, 1986, 1989; Calder, 1996; Smith & Lyons, was termed Rensch´s rule by Abouheif & Fair- 2013) and in turn body size is strongly affected bairn (1997) but despite numerous studies in very by most ambient abiotic and biotic factors (Gas- diverse taxa (Fairbairn et al., 2007) there is little ton, 1991; Chown & Gaston, 2010, 2013; Price evidence to support this rule and no convincing et al., 2011). Thus, most physical, physiologi- mechanism for its operation has been proposed cal, ecological, and evolutionary processes are (Reiss, 1989; Webb & Freckleton, 2007; Bidau & highly dependent on size; these relationships Martí, 2008a; Martínez et al., 2014). are called scale effects or scaling. As defined Further problems regarding the scaling of by Barenblatt (2003), scaling “… describes a SSD with body size remain. In the first place, seemingly very simple situation: the existence there is the question of the taxonomic level at of a power-law relationship between certain which it is studied, and if Rensch’s rule operates variables y and x, y = Axα, where A, α are con- (if it does) in any taxonomic entity. Most studies stants.” This so-called allometric equation is of the scaling of SSD with body size either phylo- usually expressed in logarithmic form as log y = genetically-based or not have been performed log A + αlog x. The concept of allometric scal- across species at different levels (Fairbairn et ing was initially developed by Otto Snell (1892), al., 2007), and only a few intraspecifically as for D’Arcy Wentworth Thompson (1917), and Julian example, in insects, some grasshoppers and Huxley (1932) and resulted in numerous theo- beetles (e.g. Bidau & Martí, 2008b; Stillwell & retical and empirical investigations of the scal- Fox, 2009; Blanckenhorn et al., 2007a,b). An ing laws regulating the allometric relationship additional problem is that of the appropriate of many organismic traits with body size (e.g. measurements for analyzing SSD (Fairbairn, Schmidt-Nielsen, 1975, 1984; Brown & West, 2007). Is it the same using body mass or body 2005; Hoppeler & Weibel, 2005). length, or some other measurement (e.g. pro- Differences in body size between sexes (sexu- notum width, wing length) as a proxy for body al size dimorphism, SSD) are pervasive in the ani- size? Are SSDs for different measurements sig- mal kingdom and thus, a fundamental component nificantly correlated? (Martínez et al., 2014). of body size variation (e. g. Darwin, 1871; Anders- Orthopteroids do not only vary greatly in 12 BIDAU, C. J. et al. Sexual size dimorphism in orthopteroid insects size (Nasrecki, 2004; Bell et al., 2007; Whit- cliens (Stål) (6 populations, 56♂/58♀) (Table 1). man, 2008; Brock & Hasenpusch, 2009) but Most studies of geographic variation of body size also in the magnitude of SSD and in body of orthopteroids are based on different linear mea- shape (Hochkirch & Gröning, 2008; Bidau et surements. However, different authors use different al., 2013; Bidau, 2014). Furthermore, many estimators of body size. For example, body length species are fairly common, easy to collect, and and length of hind femur are commonly used mea- have large geographic distributions that allow surements but in some groups (e.g. Gryllidae and the sampling of several
Recommended publications
  • Literature Cited
    LITERATURE CITED Abercrombie, M., C. J. Hichman, and M. L. Johnson. 1962. A Dictionary of Biology. Chicago: Aldine Publishing Company. Adkisson, C. S. 1996. Red Crossbill (Loxia curvirostra). In The Birds of North America, No. 256 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and the American Ornithologists’ Union, Washington, D.C. Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Covelo, CA. Albert, S. K., N. Luna, and A. L. Chopito. 1995. Deer, small mammal, and songbird use of thinned piñon–juniper plots: preliminary results. Pages 54–64 in Desired future conditions for piñon–juniper ecosystems (D. W. Shaw, E. F. Aldon, and C. LaSapio, eds.). Gen. Tech. Rep. GTR–RM–258. Fort Collins, CO: Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture. Aldrich, J. W. 1946. New subspecies of birds from western North America. Proceedings of the Biological Society of Washington 59:129–136. Aldrich, J. W. 1963. Geographic orientation of American Tetraonidae. Journal of Wildlife Management 27:529–545. Allen, R. K. 1984. A new classification of the subfamily Ephemerellinae and the description of a new genus. Pan–Pacific Entomologist 60(3): 245–247. Allen, R. K., and G. F. Edmunds, Jr. 1976. A revision of the genus Ametropus in North America (Ephemeroptera: Ephemerellidae). Journal of the Kansas Entomological Society 49:625–635. Allen, R. P. 1958. A progress report on the wading bird survey. National Audubon Society, unpubl. rep., Tavernier, FL. American Ornithologists’ Union. 1931. Check–list of North American birds. 4th ed. American Ornithologists’ Union, Lancaster, PA.
    [Show full text]
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Locusts in Queensland
    LOCUSTS Locusts in Queensland PEST STATUS REVIEW SERIES – LAND PROTECTION by C.S. Walton L. Hardwick J. Hanson Acknowledgements The authors wish to thank the many people who provided information for this assessment. Clyde McGaw, Kevin Strong and David Hunter, from the Australian Plague Locust Commission, are also thanked for the editorial review of drafts of the document. Cover design: Sonia Jordan Photographic credits: Natural Resources and Mines staff ISBN 0 7345 2453 6 QNRM03033 Published by the Department of Natural Resources and Mines, Qld. February 2003 Information in this document may be copied for personal use or published for educational purposes, provided that any extracts are fully acknowledged. Land Protection Department of Natural Resources and Mines GPO Box 2454, Brisbane Q 4000 #16401 02/03 Contents 1.0 Summary ................................................................................................................... 1 2.0 Taxonomy.................................................................................................................. 2 3.0 History ....................................................................................................................... 3 3.1 Outbreaks across Australia ........................................................................................ 3 3.2 Outbreaks in Queensland........................................................................................... 3 4.0 Current and predicted distribution ........................................................................
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • An Inventory of Short Horn Grasshoppers in the Menoua Division, West Region of Cameroon
    AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.3.291.299 © 2013, ScienceHuβ, http://www.scihub.org/ABJNA An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon Seino RA1, Dongmo TI1, Ghogomu RT2, Kekeunou S3, Chifon RN1, Manjeli Y4 1Laboratory of Applied Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 353 Dschang, Cameroon, 2Department of Plant Protection, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. 3 Département de Biologie et Physiologie Animale, Faculté des Sciences, Université de Yaoundé 1, Cameroun 4 Department of Biotechnology and Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. ABSTRACT The present study was carried out as a first documentation of short horn grasshoppers in the Menoua Division of Cameroon. A total of 1587 specimens were collected from six sites i.e. Dschang (265), Fokoue (253), Fongo – Tongo (267), Nkong – Ni (271), Penka Michel (268) and Santchou (263). Identification of these grasshoppers showed 28 species that included 22 Acrididae and 6 Pyrgomorphidae. The Acrididae belonged to 8 subfamilies (Acridinae, Catantopinae, Cyrtacanthacridinae, Eyprepocnemidinae, Oedipodinae, Oxyinae, Spathosterninae and Tropidopolinae) while the Pyrgomorphidae belonged to only one subfamily (Pyrgomorphinae). The Catantopinae (Acrididae) showed the highest number of species while Oxyinae, Spathosterninae and Tropidopolinae showed only one species each. Ten Acrididae species (Acanthacris ruficornis, Anacatantops sp, Catantops melanostictus, Coryphosima stenoptera, Cyrtacanthacris aeruginosa, Eyprepocnemis noxia, Gastrimargus africanus, Heteropternis sp, Ornithacris turbida, and Trilophidia conturbata ) and one Pyrgomorphidae (Zonocerus variegatus) were collected in all the six sites.
    [Show full text]
  • (Raats) for Management of Grasshoppers on South Dakota Rangeland, 1997-1999
    Field and Economic Evaluation of Operational Scale Reduced Agent and Reduced Area Treatments (RAATs) for Management of Grasshoppers on South Dakota Rangeland, 1997-1999 R. Nelson Foster1, K. Chris Reuter1, K. Fridley2, D. Kurtenbach2, R. Flakus2, R. Bohls3, B. Radsick4, J. B. Helbig5, A. Wagner2 and L. Jech6 1Phoenix Plant Protection Center United States Department of Agriculture Animal and Plant Health Inspection Service 3645 E. Wier Ave. Phoenix, AZ 85040 2South Dakota Department of Agriculture 523 E. Capitol Ave. Foss Bldg. Pierre, SD 57501-3182 31123 St. Charles St. Rapid City, SD 57701 4Aircraft and Equipment Operations United States Department of Agriculture Animal and Plant Health Inspection Service Moore Air Field Mission, TX 5Plant Protection and Quarantine United States Department of Agriculture Animal and Plant Health Inspection Service P.O. Box 250 Pierre, SD 57501-0250 611416 West Hidalgo Tolleson, AZ 85353 1 Abstract Strategies that utilize lower than traditional doses of insecticides in combination with swaths of applied insecticide that leave untreated areas between each swath are one way to significantly reduce the cost of controlling grasshoppers on rangeland. By leaving untreated areas, this strategy provides reserves for naturally occurring biological control agents and facilitates an economical integrated management approach for dealing with damaging populations of grasshoppers on rangeland. This three year study was conducted in different locations and years to develop and demonstrate on a large scale operational level, the utility of reduced area / agent treatments (RAATs) for significantly reducing costs to manage damaging populations of grasshoppers. In 1997 these reduced agent/area treatments (RAATs) resulted in about 15% lower mortality than traditional treatments while reducing pesticide use and cost by 60% with malathion and 75% with carbaryl.
    [Show full text]
  • Comparative FISH Analysis in Five Species of Eyprepocnemidine
    Heredity (2003) 90, 377–381 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers J Cabrero1, A Bugrov2,3, E Warchałowska-S´liwa4,MDLo´pez-Leo´n1, F Perfectti1 and JPM Camacho1 1Departamento de Gene´tica, Universidad de Granada, 18071 Granada, Spain; 2Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091 Novosibirsk, Russia; 3Novosibirsk State University, 630090 Novosibirsk, Russia; 4Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 31-016 Krako´w, Poland The chromosomal localization of ribosomal DNA, and a species, however, lacked the 180 bp tandem repeat, and 180 bp satellite DNA isolated from Spanish Eyprepocnemis showed rDNA clusters in one (S9 in Thisoicetrinus pteros- plorans specimens, has been analysed in five Eyprepocne- tichus), two (S9 and S10 in Eyprepocnemis unicolor;M8 and midinae species collected in Russia and Central Asia. S11 in Heteracris adspersa), or three (S9,S10, and S11 in Caucasian E. plorans individuals carried each of the two Shirakiacris shirakii) chromosome pairs. The implications of DNAs, but the rDNA was limited to only two chromosomes these findings for the evolution of these two chromosome (S9 and S11) in sharp contrast to Spanish specimens that markers in this group of species are discussed. show 4–8 rDNA clusters and to Moroccan specimens which Heredity (2003) 90, 377–381. doi:10.1038/sj.hdy.6800255 carry rDNA in almost all chromosomes. The four remaining Keywords: rDNA; satDNA; heterochromatin; grasshopper; nucleolus organizer region Introduction change (Maggini et al, 1991), and the amplification of minor rDNA loci (Dubcovsky and Dvo¨rak, 1995).
    [Show full text]
  • Orthopteran Diversity of the Cowling Arboretum and Mcknight Prairie In
    Orthopteran Diversity of the Cowling Arboretum and McKnight Prairie in Northfield, MN Alexander Forde Elisabeth Sederberg and Mark McKone 5 McKnight Prairie Carleton College. Northfield, MN Arb Prairie 4 Restorations Results and 3 Discussion A. The 2006 Orthoptera biodiversity survey for the Cowling Arboretum and Figure 1. Examples of per trap 2 McKnight Prairie found a total of 36 unique species across both sites Orthopterans from various (Figure 3). 29 species were collected at the arboretum while 20 species were C. taxonomic groups: 1 collected at McKnight Prairie. The higher absolute species number at the Average number of subfamilies arboretum can be mostly attributed to a greater number of katydid species A. a grasshopper (Acrididae) found there compared to McKnight. This difference in katydid diversity B. a katydid (Tettigonidae) 0 makes sense, since Tettigonids prefer more forested habitats (Capinera, 2004), C. a cricket (Gryllidae) of which there are none at McKnight. The Gryllidae and Acrididae identified were more consistent between locations, in terms of the absolute number of Figure 5. Average number of species in the groups, though there were important differences in the different groups of Orthopteran particular species represented within these families. taxa (shown in Figure 4) per trap In the pitfall trap experiment, there were significantly more Gomphocerinae B. at McKnight Prairie and the (U=30, P =0.002), and Raphidophoridae (U=43, P =0.037) observed per trap arboretum prairie restorations. at McKnight (Figure 4). The average number of Oecanthinae per trap was higher for the arboretum (U=49.5, P =0.088) and the average number of Error bars represent ± standard Oedipodinae was higher for McKnight (U=54, P =0.07), though these error relationships were only marginally significant (Figure 4).
    [Show full text]
  • Clubhorned Grasshopper Aeropedellus Clavatus (Thomas)
    Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet September 1994 Clubhorned Grasshopper Aeropedellus clavatus (Thomas) Distribution and Habitat and North Dakota it is frequently abundant in The clubhorned grasshopper, Aeropedellus clavatus grasshopper assemblages infesting rangeland. (Thomas), inhabits grasslands of western Canada and the northern United States and extends its range into Food Habits mountainous areas as far south as Arizona and New The clubhorned grasshopper feeds on grasses and Mexico. In Colorado, one resident population survives sedges. Examinations of crop contents show that in above timberline at 13,600 feet in a rocky, grass-sedge mixedgrass prairie this grasshopper feeds on western habitat. In the prairie provinces of Canada it is the most wheatgrass, prairie junegrass, Sandberg bluegrass, widely distributed and abundant of the grassland species, needleandthread, threadleaf sedge, and needleleaf sedge. occurring on all dry and somewhat sandy areas south of the In mountain meadows and parks different groups of boreal forest. In four of ten years it was the dominant grasses and sedges are used for food. Wherever species of a grasshopper assemblage inhabiting the sand Kentucky bluegrass has invaded an area, it is a preferred prairie of southeastern North Dakota. host plant. When grass seeds and glumes become available in the habitat, they are fed upon heavily. The Economic Importance clubhorned grasshopper is known to feed upon 28 The clubhorned grasshopper is primarily a pest of species of grasses and six species of sedges. Small grasses and sedges in the mixedgrass and bunchgrass amounts of forbs, fungi, pollen, and arthropod parts prairies and in mountain meadows and parks.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]