The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers

Total Page:16

File Type:pdf, Size:1020Kb

The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers Dissertation To Fulfil the Requirements for the Degree of “Doctor of Philosophy” (PhD) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena by Bachelor of Science, Master of Science, Abhijeet Shah born on 7th November 1984, Hyderabad, India 1 Academic reviewers: 1. Prof. Holger Schielzeth, Friedrich Schiller University Jena 2. Prof. Manja Marz, Friedrich Schiller University Jena 3. Prof. Rolf Beutel, Friedrich Schiller University Jena 4. Prof. Frieder Mayer, Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin 5. Prof. Steve Hoffmann, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena 6. Prof. Aletta Bonn, Friedrich Schiller University Jena Date of oral defense: 24.02.2020 2 Table of Contents Abstract ........................................................................................................................... 5 Zusammenfassung............................................................................................................ 7 Introduction ..................................................................................................................... 9 Genetic polymorphism ............................................................................................................. 9 Lewontin’s paradox ....................................................................................................................................... 9 The evolution of genome size ................................................................................................. 11 Computational tools for de novo TE and repetitive DNA discovery ............................................................ 15 De novo discovery, classification and annotation of transposable elements ............................................. 16 The Acrididae Grasshoppers ................................................................................................... 17 Gene expression analysis and de novo transcriptome assembly .............................................. 22 Orthopteran transcriptomes ....................................................................................................................... 22 Transcript analysis using RNA-seq............................................................................................................... 23 De novo transcriptome assembly ................................................................................................................ 24 Overview of the Oases assembler ............................................................................................................... 25 Overview of Trinity assembler .................................................................................................................... 26 Overview of SOAPdenvo-trans transcriptome assembler ........................................................................... 27 Challenges and overview ........................................................................................................ 28 Objectives and Structure ........................................................................................................ 30 Manuscript Overview ..................................................................................................... 31 Manuscript I ................................................................................................................................................ 31 Manuscript II ............................................................................................................................................... 31 Manuscript III .............................................................................................................................................. 32 Manuscript I ................................................................................................................... 33 Manuscript II .................................................................................................................. 44 Manuscript III ................................................................................................................. 55 Abstract ................................................................................................................................. 56 Introduction .......................................................................................................................... 57 Results ................................................................................................................................... 60 Repetitive content and genome size ........................................................................................................... 60 Characterization of repeat content within species ..................................................................................... 61 Divergences within clusters of transposable elements ............................................................................... 62 Variation in repeat content across species ................................................................................................. 62 Intra-specific differences in Gomphocerus sibiricus .................................................................................... 63 Species differences explored by cluster painting ........................................................................................ 64 Discussion .............................................................................................................................. 64 Methods ................................................................................................................................ 68 Species and sample collection .................................................................................................................... 68 Genome size determination by flow cytometry ......................................................................................... 68 High throughput sequencing and short read pre-processing ..................................................................... 69 Phylogenetic analysis .................................................................................................................................. 70 De novo repeat identification ..................................................................................................................... 70 Iterative repeat identification and filtering................................................................................................. 71 Repeat content estimation ......................................................................................................................... 72 Joint repeat clustering and comparison across species .............................................................................. 72 3 Cluster annotation ...................................................................................................................................... 73 Ancestral state reconstruction .................................................................................................................... 74 Comparative analysis of the migratory locust............................................................................................. 74 Data access .................................................................................................................................................. 75 Tables and Figures ................................................................................................................. 75 Figure legends ............................................................................................................................................. 75 Figure 1 ....................................................................................................................................................... 77 Figure 2 ....................................................................................................................................................... 78 Figure 3 ....................................................................................................................................................... 79 Figure 4 ....................................................................................................................................................... 80 Figure 5 ....................................................................................................................................................... 81 Figure 6 ....................................................................................................................................................... 82 Supplementary Material for Manuscript III ............................................................................. 83 Figure S1 ...................................................................................................................................................... 83 Figure S2 ...................................................................................................................................................... 84 Figure S3 ...................................................................................................................................................... 85 Figure S4 .....................................................................................................................................................
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Articulata 2012 27 (1/2): 17௅28 Zoogeographie
    © Deutsche Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/; www.zobodat.at ARTICULATA 2012 27 (1/2): 17௅28 ZOOGEOGRAPHIE Small scale ecological zoogeographic methods in explanation of the distribution patterns of grasshoppers Kenyeres, Z., & Rácz, I.A. Abstract We examined in this study, in a Central-European low mountain range, whether methods of ecological zoogeography can explain better the distribution patterns of grasshopper species and species-groups, than the methods of the historical zoogeography. Our results showed that zoogeographically defined microregions could be specified more precisely by the distribution of species groups of differ- ent eco-types than the distribution of species groups of the different faunal-types. We found that the macroclimate elements and landscape features determine the regional distribution patterns of the orthopteran species and species-groups with similar thermal and humidity requirements. Our case study revealed the impor- tant role of the ecological zoogeography in zoogeographical analyses of Orthop- tera fauna at small geographical scale. Zusammenfassung Wir haben untersucht, ob man mit ökologisch-tiergeographischen Methoden die Verteilungsmuster von Heuschrecken in einem mitteleuropäischen Mittelgebirge analysieren kann. Unsere Ergebnisse zeigen, dass die Unterschiede auf dem Niveau der Mikroregion bei den Heuschrecken nicht in den Fauna-Typen, son- dern in der Verteilung von Tierarten bzw. Tiergruppen mit unterschiedlichen öko- logischen Ansprüchen zu finden sind. Wir können somit die Elemente des Makro- klimas und die Merkmale der Landschaft identifizieren, die das lokale Vertei- lungsmuster von Artengruppen mit ähnlichen ökologischen Ansprüchen, bezie- hungsweise von bestimmten Tierarten bestimmen. Introduction Questions and methodology in the biogeographical searching have been domi- nated by the conceptions of the historical biogeography for a long time.
    [Show full text]
  • Grasshopper Strips Prove Effective in Enhancing Grasshopper Abundance in Rivenhall Churchyard, Essex, England
    Conservation Evidence (2011) 8, 31-37 www.ConservationEvidence.com Grasshopper strips prove effective in enhancing grasshopper abundance in Rivenhall Churchyard, Essex, England Tim Gardiner 1* , Michelle Gardiner 1 & Nigel Cooper 2 12 Beech Road, Rivenhall, Witham, Essex CM8 3PF, UK 2Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK *Corresponding author e-mail: [email protected] SUMMARY Grasshopper strips (alternate, 1-m wide strips of uncut and cut grassland) are a novel conservation feature in a rural churchyard in the village of Rivenhall (Essex), southeast England. The effectiveness of these strips in enhancing the abundance of grasshoppers (Acrididae) was investigated during the summer of 2010 using sweep-net surveys. Two grasshopper species were recorded. The meadow grasshopper Chorthippus parallelus was significantly more abundant in the cut grasshopper strips than in nearby short grassland (control) plots regularly mown throughout the summer. The field grasshopper Chorthippus brunneus was contrastingly more abundant in the uncut grasshopper strips than in the controls. The grasshopper strips appear to provide a mosaic of short and tall grassland in close proximity which is required for nymphs and adults of both C. parallelus and C. brunneus . BACKGROUND grasshoppers (and also butterflies and dragonflies) in Essex, southeast England There are over 20,000 churchyards in England (Gardiner & Pye 2001). For example, in All and Wales, and they can be havens for wildlife Saints Churchyard in the village of Writtle, as well as burial grounds (Greenoak 1993). five species of Orthoptera (grasshoppers and Churchyards provide wildlife habitats both in bush-crickets) were recorded in a conservation built-up and rural areas, assuming increasing area managed by a traditional hay-cut in conservation importance as urban areas August, but were absent from adjacent short expand and ‘greenspace’ is lost, and as grassland sward mown regularly (every 2-3 agricultural practices intensify (Rackham weeks) throughout the summer.
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Catalogue of the Type Specimens Deposited in the Department of Entomology, National Museum, Prague, Czech Republic*
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.iv.2014 Volume 54(1), pp. 399–450 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:7479D174-4F1D-4465-9EEA-2BBB5E1FC2A2 Catalogue of the type specimens deposited in the Department of Entomology, National Museum, Prague, Czech Republic* Polyneoptera Lenka MACHÁýKOVÁ & Martin FIKÁýEK Department of Entomology, National Museum in Prague, Kunratice 1, CZ-148 00 Praha 4-Kunratice, Czech Republic & Department of Zoology, Faculty of Sciences, Charles University in Prague, Viniþná 7, CZ-128 43, Praha 2, Czech Republic; e-mails: [email protected]; m¿ [email protected] Abstract. Type specimens from the collection of the polyneopteran insect orders (Dermaptera, Blattodea, Orthoptera, Phasmatodea) deposited in the Department of Entomology, National Museum, Prague are catalogued. We provide precise infor- mation about types of 100 taxa (5 species of Dermaptera, 3 species of Blattodea, 4 species of Phasmatodea, 55 species of Caelifera, and 33 species of Ensifera), including holotypes of 38 taxa. The year of publication of Calliptamus tenuicer- cis anatolicus MaĜan, 1952 and Calliptamus tenuicercis iracus MaĜan, 1952 are corrected. The authorship of the names traditionally ascribed to J. Obenberger is discussed in detail. Only the name Podisma alpinum carinthiacum Obenberger, 1926 is available since the publication by OBENBERGER (1926a). ‘Stenobothrus (Stauroderus) biguttulus ssp. bicolor Charp. 1825’ and ‘Stenobothrus (Stau- roderus) ssp. collinus Karny’ sensu OBENBERGER (1926a,b) refer to Gryllus bicolor Charpentier, 1825 and Stauroderus biguttulus var. collina Karny, 1907, respectively, which both have to be considered available already since their original descriptions by CHARPENTIER (1825) and KARNY (1907). Key words.
    [Show full text]
  • Recognition of a Two-Element Song in the Grasshopper <Emphasis Type="Italic">Chorthippus Dorsatus</Emphasis&G
    J Comp Physiol A (1992) 171:405-412 Joul~l of Comparative .....,, Physiology A ~%", Springer-Verlag 1992 Recognition of a two-element song in the grasshopper Chorthippus dorsatus (Orthoptera: Gomphocerinae) Andreas Stumpner 1 and Otto von Helversen Institut fiir Zoologie II, Friedrich-Alexander Universit~it Erlangen-Nfirnberg, Staudtstr. 5, W 8520 Erlangen, FRG Accepted June 6, 1992 Summary. Males of the grasshopper Chorthippus dor- by the second note "qui" (Narins and Capranica 1976, satus produce songphrases which contain two differently 1978). Calling songs of the cricket Teleogryllus oceanicus structured elements - pulsed syllables in the first part (A) also consist of two distinctly different elements, "chirp" and ongoing noise in the second part (B). Females of Ch. and "trill". T. oceanicus females prefer song models com- dorsatus answer to artificial song models only if both prising chirps but no trills over 100% trill models, while elements A and B are present. Females strongly prefer males show the reversed preference (Pollack and Hoy song models in which the order of elements is A preced- 1979, 1981; Pollack 1982). Also, in the seventeen-year ing B. Females discriminate between the two elements cicada Magicicada cassini the first calling song element mainly by the existence of gaps within A-syllables. Pulses "tick" obviously is used for synchronizing male chorus- of 5-8 ms separated by gaps of 8-15 ms make most ing, while the second element "buzz" effectively elicits effective A-syllables, while syllable duration and syllable phonotaxis in females (Huber et al. 1990). intervals are less critical parameters. Females respond to In addition to frogs, crickets and cicadas, many spe- models which contain more than 3 A-syllables with high cies of grasshoppers have evolved complex acoustic com- probability.
    [Show full text]
  • A Comparative Analysis of the Orthoptera (Insecta) from the Republic of Moldova and Some Regions of Palaearctic
    Muzeul Olteniei Craiova. Oltenia. Studii i comunicri. tiinele Naturii. Tom. 26, No. 2/2010 ISSN 1454-6914 A COMPARATIVE ANALYSIS OF THE ORTHOPTERA (INSECTA) FROM THE REPUBLIC OF MOLDOVA AND SOME REGIONS OF PALAEARCTIC STAHI Nadejda Abstract. In this work, it is given a comparative analysis of the species belonging to the Orthoptera order (Insecta) from the Republic of Moldova with other regions and countries of the Palaearctic region like: Romania, Ukraine, Slovenia, Czech Republic, Slovak Republic, Bulgaria, Catalonia (Spain), Switzerland, Turkey, Baikal Regions (Russia), and S-W Tajikistan. The highest percentage of similarity between the Orthoptera fauna of the Republic of Moldava and the surrounding countries, proved to be with the Orthoptera fauna from Ukraine and Romania. Keywords: comparative analysis, Orthoptera, Palaearctic, similarity. Rezumat. Analiza comparativ a ortopterelor (Insecta) din Republica Moldova i unele regiuni din Palearctica. În lucrare este prezentat analiza comparativ a faunei insectelor ordinului Orthoptera (Insecta) din Republica Moldova cu cea a unor regiuni sau ;ri din regiunea Palearctic: România, Ucraina, Slovenia, Cehia, Slovacia, Bulgaria, Catalonia (Spania), Elveia, Turcia, Regiunea Baical (Russia) i S-V Tadjikistan. Cel mai înalt procent de similaritate privind fauna ortopterelor Republicii Moldova cu rile i regiunile cercetate, s-a dovedit a fi cu fauna ortopterelor din Ucraina i România. Cuvinte cheie: analiza comparativ, Orthoptera, Palearctica, similaritate. INTRODUCTION The Republic of Moldova is situated in the southeastern part of Europe, at the junction of the great geobotanical regions: Euro-Asiatic, European, and Mediterranean (GHEIDEMAN, 1986). The whole surface of the country is 33,700 km2. In accordance with the territorial surface, the republic of Moldova is one of the smallest countries of Europe.
    [Show full text]
  • (Raats) for Management of Grasshoppers on South Dakota Rangeland, 1997-1999
    Field and Economic Evaluation of Operational Scale Reduced Agent and Reduced Area Treatments (RAATs) for Management of Grasshoppers on South Dakota Rangeland, 1997-1999 R. Nelson Foster1, K. Chris Reuter1, K. Fridley2, D. Kurtenbach2, R. Flakus2, R. Bohls3, B. Radsick4, J. B. Helbig5, A. Wagner2 and L. Jech6 1Phoenix Plant Protection Center United States Department of Agriculture Animal and Plant Health Inspection Service 3645 E. Wier Ave. Phoenix, AZ 85040 2South Dakota Department of Agriculture 523 E. Capitol Ave. Foss Bldg. Pierre, SD 57501-3182 31123 St. Charles St. Rapid City, SD 57701 4Aircraft and Equipment Operations United States Department of Agriculture Animal and Plant Health Inspection Service Moore Air Field Mission, TX 5Plant Protection and Quarantine United States Department of Agriculture Animal and Plant Health Inspection Service P.O. Box 250 Pierre, SD 57501-0250 611416 West Hidalgo Tolleson, AZ 85353 1 Abstract Strategies that utilize lower than traditional doses of insecticides in combination with swaths of applied insecticide that leave untreated areas between each swath are one way to significantly reduce the cost of controlling grasshoppers on rangeland. By leaving untreated areas, this strategy provides reserves for naturally occurring biological control agents and facilitates an economical integrated management approach for dealing with damaging populations of grasshoppers on rangeland. This three year study was conducted in different locations and years to develop and demonstrate on a large scale operational level, the utility of reduced area / agent treatments (RAATs) for significantly reducing costs to manage damaging populations of grasshoppers. In 1997 these reduced agent/area treatments (RAATs) resulted in about 15% lower mortality than traditional treatments while reducing pesticide use and cost by 60% with malathion and 75% with carbaryl.
    [Show full text]
  • Bulgaria 17-24 June 2015
    The Western Rhodope Mountains of Bulgaria 17-24 June 2015 Holiday participants Peter and Elonwy Crook Helen and Malcolm Crowder Val Appleyard and Ron Fitton David Nind and Shevaun Mendelsohn George and Sue Brownlee Colin Taylor Sue Davy Judith Poyser Marie Watt Leaders Vladimir (Vlado) Trifonov and Chris Gibson Report by Chris Gibson and Judith Poyser. Our hosts at the Hotel Yagodina are Mariya and Asen Kukundjievi – www.yagodina-bg.com Cover: Large Skipper on Dianthus cruentus (SM); Scarce Copper on Anthemis tinctoria (RF); mating Bee-chafers (VA); Yagodina from St. Ilya and the cliffs above Trigrad (CG); Geum coccineum (HC); Red-backed Shrike (PC); Slender Scotch Burnet on Carduus thoermeri (JP). Below: In the valley above Trigrad (PC). As with all Honeyguide holidays, part of the price of the holiday was put towards local conservation work. The conservation contributions from this holiday raised £700, namely £40 per person topped up by Gift Aid through the Honeyguide Wildlife Charitable Trust. Honeyguide is committed to supporting the protection of Lilium rhodopaeum. The Rhodope lily is a scarce endemic flower of the Western Rhodopes, found on just a handful of sites in Bulgaria and just over the border in Greece, about half of which have no protection. Money raised in 2014 was enough to fund Honeyguide leader Vlado Trifonov, who is recognised as the leading authority on the Rhodope lily, for monitoring and mowing for two years at the location visited by Honeyguiders. That includes this year (2015). That work is likely to continue for some years, but other conservation needs in the future are uncertain.
    [Show full text]
  • Local Nature Reserve Management Plan 2020 – 2024
    Bisley Road Cemetery, Stroud Local Nature Reserve Management Plan 2020 – 2024 Prepared for Stroud Town Council CONTENTS 1 VISION STATEMENT 2 POLICY STATEMENTS 3 GENERAL DESCRIPTION 3.1 General background information 3.1.1 Location and site boundaries Map 1 Site Location 3.1.2 Tenure Map 2 Schedule Plan 3.1.3 Management/organisational infrastructure 3.1.4 Site infrastructure 3.1.5 Map coverage 3.2 Environmental information 3.2.1 Physical 3.2.2 Biological 3.2.2.1 Habitats Map 3 Compartment Map – Old Cemetery Map 4 Compartment Map – New Cemetery 3.2.2.2 Flora 3.2.2.3 Fauna 3.3 Cultural 3.3.1 Past land use 3.3.2 Present land use 3.3.3 Past management for nature conservation 3.3.4 Present legal status 4 NATURE CONSERVATION FEATURES OF INTEREST 4.1 Identification and confirmation of conservation features 4.2 Objectives 4.2.1 Unimproved grassland 4.2.1.1 Summary description 4.2.1.2 Management objectives 4.2.1.3 Performance indicators 4.2.1.4 Conservation status 4.2.1.5 Rationale 4.2.1.6 Management projects 4.2.2 Trees and Woodland 4.2.2.1 Summary description 4.2.2.2 Management objectives 4.2.2.3 Performance indicators 4.2.2.4 Conservation status 4.2.2.5 Rationale 4.2.2.6 Management projects 4.2.3 Lichens 4.2.3.1 Summary description 4.2.3.2 Management objectives 4.2.3.3 Performance indicators 4.2.3.4 Conservation status 4.2.3.5 Rationale 4.2.3.6 Management projects 4.3 Rationale & Proposals per compartment Bisley Rd Cemetery Mgmt Plan 2020-2024 2 5 HISTORIC INTEREST 5.1 Confirmation of conservation features 5.2 Objectives 5.3 Rationale 6 STAKEHOLDERS 6.1 Evaluation 6.2 Management projects 7 ACCESS / TOURISM 7.1 Evaluation 7.2 Management objectives 8 INTERPRETATION 8.1 Evaluation 8.2 Management Projects 9 OPERATIONAL OBJECTIVES 9.1 Operational objectives 9.2 Management projects 10 WORK PLAN Appendix 1 Species List Bisley Rd Cemetery Mgmt Plan 2020-2024 3 1 VISION STATEMENT Stroud Town Council are committed to conserving Stroud Cemetery to: • Enable the people of Stroud to always have a place of peace and quiet reflection and recreation.
    [Show full text]
  • Clubhorned Grasshopper Aeropedellus Clavatus (Thomas)
    Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet September 1994 Clubhorned Grasshopper Aeropedellus clavatus (Thomas) Distribution and Habitat and North Dakota it is frequently abundant in The clubhorned grasshopper, Aeropedellus clavatus grasshopper assemblages infesting rangeland. (Thomas), inhabits grasslands of western Canada and the northern United States and extends its range into Food Habits mountainous areas as far south as Arizona and New The clubhorned grasshopper feeds on grasses and Mexico. In Colorado, one resident population survives sedges. Examinations of crop contents show that in above timberline at 13,600 feet in a rocky, grass-sedge mixedgrass prairie this grasshopper feeds on western habitat. In the prairie provinces of Canada it is the most wheatgrass, prairie junegrass, Sandberg bluegrass, widely distributed and abundant of the grassland species, needleandthread, threadleaf sedge, and needleleaf sedge. occurring on all dry and somewhat sandy areas south of the In mountain meadows and parks different groups of boreal forest. In four of ten years it was the dominant grasses and sedges are used for food. Wherever species of a grasshopper assemblage inhabiting the sand Kentucky bluegrass has invaded an area, it is a preferred prairie of southeastern North Dakota. host plant. When grass seeds and glumes become available in the habitat, they are fed upon heavily. The Economic Importance clubhorned grasshopper is known to feed upon 28 The clubhorned grasshopper is primarily a pest of species of grasses and six species of sedges. Small grasses and sedges in the mixedgrass and bunchgrass amounts of forbs, fungi, pollen, and arthropod parts prairies and in mountain meadows and parks.
    [Show full text]
  • Comparison of Gene Expression in the Red Imported Fire Ant, Solenopsis Invicta, in Different Temperature Conditions
    Comparison of Gene Expression in the Red Imported Fire Ant, Solenopsis Invicta, in Different Temperature Conditions Youngjin Park ( [email protected] ) Animal and Plant Quarantine Agency Mohammad Vatanparast Animal and Plant Quarantine Agency Robert Puckett Texas A&M University Deuk-Soo Choi Animal and Plant Quarantine Agency Research Article Keywords: Solenopsis invicta, RIFA, transcriptome, RNA-seq, KEGG pathway, differentially expressed gene Posted Date: March 1st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-255031/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on August 13th, 2021. See the published version at https://doi.org/10.1038/s41598-021-95779-w. Page 1/21 Abstract The red imported re ant (RIFA), Solenopsis invicta Buren is native to South America and is known as a global problematic invasive species. This study focused on the molecular response of RIFA by comparing gene expression proles after exposing ants to low (10℃) and high (40℃) temperature stress and comparing to untreated controls (30℃). A total of 99,085 unigenes were obtained, of which 19,154 were annotated with gene descriptions, gene ontology terms, and metabolic pathways. 86 gene ontology (GO) functional sub-groups and 23 EggNOG terms resulted. Differentially expressed genes (DEGs) with log2FC ≥ 10 were screened and were compared at different temperatures. We found 203, 48, and 66 specic DEGs co-regulated at 10, 20, and 40℃. Comparing transcriptome proles for differential gene expression resulted in various DE proteins and genes, including cytochrome P450, NADH dehydrogenase subunit 1, cuticle protein and heat shock protein (HSP) which have previously been reported to be involved in cold and high temperature resistance.
    [Show full text]