127 Latiffah Z.Pmd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work. -
Diversity of Fungi in Sediments and Water Sampled from the Hot Springs of Lake Magadi and Little Magadi in Kenya
Vol. 10(10), pp. 330-338, 14 March, 2016 DOI: 10.5897/AJMR2015.7879 Article Number: 128717757661 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Diversity of fungi in sediments and water sampled from the hot springs of Lake Magadi and Little Magadi in Kenya Anne Kelly Kambura1*, Romano Kachiuru Mwirichia2, Remmy Wekesa Kasili1, Edward Nderitu Karanja3, Huxley Mae Makonde4 and Hamadi Iddi Boga5 1Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000 - 00200, Nairobi, Kenya. 2Embu University College, P. O. Box 6 - 60100, Embu, Kenya. 3International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772 - 00100, Nairobi, Kenya. 4Pure and Applied Sciences, Technical University of Mombasa, P. O. Box 90420 - 80100, GPO, Mombasa, Kenya. 5Taita Taveta University College, School of Agriculture, Earth and Environmental Sciences, P. O. Box 635-80300 Voi, Kenya. Received 9 December, 2015; Accepted 26 February, 2016 Lake Magadi and Little Magadi are saline, alkaline lakes lying in the southern part of Kenyan Rift Valley. Their solutes are supplied by a series of alkaline hot springs with temperatures as high as 86°C. Previous culture-dependent and independent studies have revealed diverse prokaryotic groups adapted to these conditions. However, very few studies have examined the diversity of fungi in these soda lakes. In this study, amplicons of Internal Transcribed Spacer (ITS) region on Total Community DNA using Illumina sequencing were used to explore the fungal community composition within the hot springs. -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104). -
EU Project Number 613678
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ ....................................................................... -
Aspergillus Oryzae) As a Modern Biotechnological Tool Ghoson M
Daba et al. Bioresour. Bioprocess. (2021) 8:52 https://doi.org/10.1186/s40643-021-00408-z REVIEW Open Access The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool Ghoson M. Daba* , Faten A. Mostafa* and Waill A. Elkhateeb Abstract Aspergillus oryzae (A. oryzae) is a flamentous micro-fungus that is used from centuries in fermentation of diferent foods in many countries all over the world. This valuable fungus is also a rich source of many bioactive secondary metabolites. Moreover, A. oryzae has a prestigious secretory system that allows it to secrete high concentrations of proteins into its culturing medium, which support its use as biotechnological tool in veterinary, food, pharmaceutical, and industrial felds. This review aims to highlight the signifcance of this valuable fungus in food industry, showing its generosity in production of nutritional and bioactive metabolites that enrich food fermented by it. Also, using A. oryzae as a biotechnological tool in the feld of enzymes production was described. Furthermore, domestication, functional genomics, and contributions of A. oryzae in functional production of human pharmaceutical proteins were presented. Finally, future prospects in order to get more benefts from A. oryzae were discussed. Keywords: Aspergillus oryzae, Food industry, Enzymes, Secondary metabolites, Functional genomics Introduction mold used for koji fermentation (Gomi 2019). A. oryzae Aspergillus oryzae (A. oryzae) is a multicellular fungus has been regarded as safe (GRAS) by the FDA, and this that is considered as one of the most important species mold safety has been approved also by the WHO (He used as biotechnological tool in many countries all over et al. -
Full-Text (PDF)
Vol. 9(5), pp. 301-306, 4 February, 2015 DOI: 10.5897/AJMR2014.7130 Article Number: FBC3F6550465 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2015 Author(s) retain the copyrighht of this article http://www.academicjournals.org/AJMR Full Length Research Paper Characterization ofo Aspergilluus section Nigri isolates from leaf litter and soil in the Atlantic Forest of Brazil Tatiana Faria Maia1, Jean Luiz Simões-Araújo2, Carlos Antonio Inácio3 and Marcelo Elias Fraga4* 1Programa de Pós-graduação em Fitossanidade e Biotecnologia Aplicada, Universidade Federal Rural do Rio de Janeiro, Brazil. 2Embrapa Agrobiologia, Brazil. 3Departamento de Entomologia e Fitopatologia, Universidade Federal Rural do Rio de Janeiro, Brazil. 4Departamento de Microbiologia e Imunologia Veterinária, Universidade Fedeeral Rural do Rio de Janeiro, Brazil. Received 17 September, 2014; Accepted 1 December, 2014 Section Nigri is among the most important from the genus Aspergillus, since it possesses economical and biotechnological properties. Its identification is considered quite hard and complex. Due to this fact, Aspergillus taxonomy has been carried out by morphological, biochemical and molecular data. Morphological characterization besides molecular analyses was performed to properly identify Aspergillus section Nigri. A set of 42 Aspergiillus section Nigri isolates were obtained from Brazilian Atlantic Rainforest. From these isolates, 16.7% originated from leaf litter layer and 83.3%, from soil. The isolates were divided into three different groups according to annalyzed characteristics. 26 were identified as Aspergillus aculeatus, 12 as Aspergillus aculeatinus and 4 belonged to a group called “Aspergillus niger Aggregate”, considered as biseriate. Key words: Fungi, taxonomy, morphological identification, polymerase chain reaction (PCR), ITS. -
Drivers of Genetic Diversity in Secondary Metabolic Gene Clusters in a Fungal Population 5 6 7 8 Abigail L
bioRxiv preprint doi: https://doi.org/10.1101/149856; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 Drivers of genetic diversity in secondary metabolic gene clusters in a fungal population 5 6 7 8 Abigail L. Lind1, Jennifer H. Wisecaver2, Catarina Lameiras3, Philipp Wiemann4, Jonathan M. 9 Palmer5, Nancy P. Keller4, Fernando Rodrigues6,7, Gustavo H. Goldman8, Antonis Rokas1,2 10 11 12 1. Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, 13 Tennessee, USA. 14 2. Department of Biology, Vanderbilt University, Nashville, Tennessee, USA. 15 3. Department of Microbiology, Portuguese Oncology Institute of Porto, Porto, Portugal 16 4. Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, 17 Madison, Wisconsin, USA 18 5. Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, 19 Wisconsin, USA 20 6. Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 21 Braga, Portugal 22 7. ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. 23 8. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São 24 Paulo, Brazil 25 †Corresponding author and lead contact: [email protected] 26 bioRxiv preprint doi: https://doi.org/10.1101/149856; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Phylogeny, Identification and Nomenclature of the Genus Aspergillus
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 141–173. Phylogeny, identification and nomenclature of the genus Aspergillus R.A. Samson1*, C.M. Visagie1, J. Houbraken1, S.-B. Hong2, V. Hubka3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, A. Susca5, J.B. Tanney6, J. Varga7, S. Kocsube7, G. Szigeti7, T. Yaguchi8, and J.C. Frisvad9 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea; 3Department of Botany, Charles University in Prague, Prague, Czech Republic; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production National Research Council, 70126 Bari, Italy; 6Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan; 9Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark *Correspondence: R.A. Samson, [email protected] Abstract: Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. -
Taxonomic Studies on the Genus Aspergillus
Studies in Mycology 69 (June 2011) Taxonomic studies on the genus Aspergillus Robert A. Samson, János Varga and Jens C. Frisvad CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. ExEcutivE Editor Prof. dr dr hc Robert A. Samson, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Layout Editor Manon van den Hoeven-Verweij, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SciEntific EditorS Prof. dr Dominik Begerow, Lehrstuhl für Evolution und Biodiversität der Pflanzen, Ruhr-Universität Bochum, Universitätsstr. 150, Gebäude ND 44780, Bochum, Germany. E-mail: [email protected] Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Dr Paul Cannon, CABI and Royal Botanic Gardens, Kew, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, U.K. E-mail: [email protected] Prof. dr Lori Carris, Associate Professor, Department of Plant Pathology, Washington State University, Pullman, WA 99164-6340, U.S.A. E-mail: [email protected] Prof. -
Classification of Aspergillus, Penicillium
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 95: 5–169 (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species J. Houbraken1*, S. Kocsube2, C.M. Visagie3, N. Yilmaz3, X.-C. Wang1,4, M. Meijer1, B. Kraak1, V. Hubka5, K. Bensch1, R.A. Samson1, and J.C. Frisvad6* 1Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; 2Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary; 3Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa; 4State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China; 5Department of Botany, Charles University in Prague, Prague, Czech Republic; 6Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. -
Comparative Genomics Reveals High Biological Diversity and Specific Adaptations in the Industrially and Medically Important Fungal Genus Aspergillus Ronald P
de Vries et al. Genome Biology (2017) 18:28 DOI 10.1186/s13059-017-1151-0 RESEARCH Open Access Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus Ronald P. de Vries1,2*, Robert Riley3, Ad Wiebenga1,2, Guillermo Aguilar-Osorio4, Sotiris Amillis5, Cristiane Akemi Uchima6,60, Gregor Anderluh7, Mojtaba Asadollahi8, Marion Askin9,61, Kerrie Barry3, Evy Battaglia1,2, Özgür Bayram10,11, Tiziano Benocci1,2, Susanna A. Braus-Stromeyer10, Camila Caldana6,12, David Cánovas13,14, Gustavo C. Cerqueira15,FushengChen16,WanpingChen16,CindyChoi3, Alicia Clum3, Renato Augusto Corrêa dos Santos6, André Ricardo de Lima Damásio6,17, George Diallinas5,TamásEmri18,ErzsébetFekete8, Michel Flipphi8, Susanne Freyberg10, Antonia Gallo19,ChristosGournas20,62,RobHabgood21, Matthieu Hainaut22, María Laura Harispe23,63, Bernard Henrissat22,24,25, Kristiina S. Hildén26,RyanHope21,AbeerHossain27,28,EugeniaKarabika29,64, Levente Karaffa8, Zsolt Karányi30,NadaKraševec7,AlanKuo3,HaraldKusch10,31,32, Kurt LaButti3, Ellen L. Lagendijk9, Alla Lapidus3,65, Anthony Levasseur33,66, Erika Lindquist3,AnnaLipzen3, Antonio F. Logrieco34,AndrewMacCabe35, Miia R. Mäkelä26, Iran Malavazi36, Petter Melin37,67, Vera Meyer38, Natalia Mielnichuk13,68,MártonMiskei18,39,ÁkosP.Molnár8, Giuseppina Mulé34,ChewYeeNgan3, Margarita Orejas35, Erzsébet Orosz1,18, Jean Paul Ouedraogo9,69, Karin M. Overkamp27, Hee-Soo Park40, Giancarlo Perrone34,FrancoisPiumi33,70, Peter J. Punt9,27,ArthurF.J.Ram9, Ana -
Aspergillus and Penicillium Species
CHAPTER FOUR Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species Jos Houbraken1, Ronald P. de Vries, Robert A. Samson CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 200 2. One Fungus, One Name 202 2.1 Dual nomenclature 202 2.2 Single-name nomenclature 203 2.3 Implications for Aspergillus and Penicillium taxonomy 203 3. Classification and Phylogenetic Relationships in Trichocomaceae, Aspergillaceae, and Thermoascaceae 205 4. Taxonomy of Penicillium Species and Phenotypically Similar Genera 209 4.1 Penicillium and Talaromyces 209 4.2 Rasamsonia 215 4.3 Thermomyces 216 5. Taxonomy of Aspergillus Species 219 5.1 Phylogenetic relationships among Aspergillus species 219 5.2 Aspergillus section Nigri 219 5.3 Aspergillus section Flavi 224 6. Character Analysis 225 7. Modern Taxonomy and Genome Sequencing 227 7.1 Identity of genome-sequenced strains 230 7.2 Selection of strains 231 7.3 Recommendations for strain selection 231 8. Identification of Penicillium and Aspergillus Strains 233 9. Mating-Type Genes 234 9.1 Aspergillus 236 9.2 Penicillium 238 9.3 Other genera 239 10. Conclusions 240 Acknowledgments 240 References 241 # Advances in Applied Microbiology, Volume 86 2014 Elsevier Inc. 199 ISSN 0065-2164 All rights reserved. http://dx.doi.org/10.1016/B978-0-12-800262-9.00004-4 200 Jos Houbraken et al. Abstract Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are com- monly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion.