<<

ARTICLE 161 0 Archaea) ( et al.1228 et al. 1998) or salt et al. !"""$ et al 122! ) Key words: Basipetospora extremophile fungi halophily U0K osmophily salt tolerance 0K3! Halobacteriales sp. IMA · VOLUME 5 · NO 2: 161–172 NO 2: 5 · · VOLUME FUNGUS IMA et al.122!1228) et al.!"'8KV et al1222 from a from comb. nov. 5 / !1 Phialosimplex salinarum Phialosimplex salinarum MATERIALS AND METHODS MATERIALS Sampling sites and sample collection Sediment and water were sampled at three sites (numbered O!P O1P OKH&P* O8P O*H4PI&/)7# 8'a!#""bJ & !8 !a81!bW 0 / 5 !""L 'M!2 + 1227/ U &)U $ and that is formally described here. W$&U KV122# & O KCimerman 56 56 O !"L8 0 !"L8\3%0!"L20 Q K!"''&U 6 $// & Phialosimplex

P. halophila as P. et al. et al. et al. Haloarchaea et al 12!7 )3 2 !""#$%&

et al. 1991). $G 1 Archaea (Norton et al. !""8 is also transferred to Phialosimplex

jO6 1 K / et al. !""7 B * 4I/&"{772&) OJ$$WI/&"{772&)|}~ /0/W &/ )0 & nov. Basipetospora halophila nov. Article info:K}!"12!8|$}11K12!7|6}"€12!7 Abstract: common characteristics of producing conidia in chains or in heads on single phialides. of this of producing conidia in chains or in heads common characteristics /I © 2014 International Mycological Association © 2014 International Mycological conditions: distribute and transmit the work, under the following are free to share - to copy, You Attribution: hypersaline habitat hypersaline 1 2 5) , a new species of species of , a new salinarum Phialosimplex Non-commercial:No derivative works:Any of the above conditions can be waived if you get For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Nothing in this license impairs or restricts the author’s moral rights. permission from the copyright holder. INTRODUCTION environmental Certain fungi tolerate highly unfavourable or osmotic conditions such as extreme temperatures The corresponding extreme habitats are pressures. attractive sites scattered all over the world and represent called “extremophiles” (Madigan et al. doi:10.5598/imafungus.2014.05.02.01 VOLUME 5 · NO. 2 Denner 12!7* / $ / 56 &%$!""1*!""89/ /* / ; of salts in the substrate or water for growth. Strains which do !2 O/P )+ 2006). predominantly colonized by !""' ) !""' * % ) !""' +/ % 012223%4122!56 with a broad range of salt tolerance were found in the salt GH&)J!"!8J 6 G I5!""8J%KH!"L!B%*/!""! Microorganisms can even be directly isolated from crystalline Greiner et al.

!2M12  K ! Experimental assays /12 Halotolerance and growth rates yr. Site 2 was a smaller pond of ca !{ 9 4$ K8 6O$|1!{

ARTICLE ; 8! coloured water. /!{ +12U $} !22W\ OP# 4$O a boring rod 22 mm diam wrapped in aluminium foil; (b) !2 the brine free water body (“wb”) at ca. 10 cm depth using 120OK41#{82 !{3&W 4$ 3)|OP 6O$27 !{121{828{ +27!{ 0' + and 25 %). {87 + until fungal isolation. Substrate degradation UH Cultivation and morphological analyses OK41#{1LM1#{88 Microorganisms were isolated from two replicates per site !M8 9 amounts of sediment (ca. 0.1 cm8 '22 3V &et al.!"""6et al. (2009) /4$| 0!W7!{1{ + !2727!1 ' + H 0&34HSH enriched media around fungal colonies were indicative ) * 7!{1{†/ V Media without salt addition (“0 % salt”) only contained trace /H0! 0 induced a change in colour to greenish blue around the !{ +! colonies if positive. Crystalline coagulations indicated lipid W degradation. Diameters of the clearing zones and hyaline immediately transferred to fresh correspondingly composed areas were measured as a proxy for intensity of degradation 67 + activity. and at salt concentrations where colonies exhibited maximal growth. Molecular analyses Cultures of P. salinarum were examined morphologically Q$ 4 0 OJ$ 8' 15 % or 25 % salinity were examined in saline water. Strains Phialosimplex sclerotialis +&K 8LL## VHU OK4Q) +K&OJ$65U/IK$ +4++OK41#{82 21 V M|OK41#{1LOK41#{1#OK41#{1' /!20U0K3J$ OK4 1#{1" OK4 1#{8! OK4 1#{81 OK4 1#{88 U0K!{'KU0K1 +&K5J$G9&/ KKI7"9 VKI!!9 6 et +I+&K!8'{'8M al 12!8 U0K!9 ) % & !""8 U0K7 G

Table 1.) Test substrate Growth medium Detection reagent

Starch 2'|2{J+|2L|!1|*2€ VR

Chitin 2'|2{J+|2L|!1|*2€ none

Cellulose 0.8 % peptone; 0.5 % NaCl; 0.6 % carboxymethyl cellulose; 1.2 % +|2{4*+

|*2€

6 2'|!8|!1|*2€|* none 7.2

V 2'|2{J+|!0'2|!1|*2€ none

V 1 % malt extract; 0.4 % extract; 0.4 % glucose ; 1.2 % agar; 21  52*6€4| 21  5+| 21  4K€4·7

*2€ *2€|1|$&0K!4|*2€|*{

162 IMA FUNGUS Phialosimplex salinarum sp.nov. from a hypersaline habitat

Table 2.$Phialosimplex salinarum. ARTICLE ITS GenBank Acc. No. TSR1 GenBank Acc. No. DSM No. 591#7L'{ 5'{{{11 DSM 27526 591#7L'L 5'{{{18 DSM 27527 591#7L'# 5'{{{17 DSM 27528 591#7L'' 5'{{{1{ DSM 27529 591#7L'" 5'{{{1L OK41#{82 591#7L"2 5'{{{1# OK41#{8! 591#7L"! 5'{{{1' OK41#{81 591#7L"1 5'{{{1" OK41#{88 et al !""2 !1289 )$+0+$$+$+))))$$$+0+ RESULTS U0K7/00K3! 9!{1L631787*% 9 1{ K12!!6+35$6$8) few colonies of Archaea 6+3 5 & & IK$ 0 R ; W /1{3V 06+3+K& OP / OP 6+3 +I 5 U/ IK$ 18UPhialosimplex K;)$0+ salinarumOK41#{82 & V3 ; / 5H OK41#{1LM1#{1"OK41#{8!M1#{88 U0K!9 U0K7 U0K ; 31787 additional strains. 0K3! ; U0K ; )&/ Morphology 591#7L'{M591#7L"1| ; 4 Phialosimplex salinarum Phialosimplex sclerotialis+&K8LL## conformed with the traits considered to be diagnostic for the 591L#'L"0K3!; genus Phialosimplex (Sigler et al. 2010). )& 5'{{{115'{{{1" 0 +4$!{// 2). €27 Phylogenetic analysis 0 0K3! U0K ; structure. Some strains formed granular conglomerates of )& &V$K0 J+&U Q et )4$ al 1222 0 0K3! ; 12M1'!{4$!{M18 Phialosimplex salinarum / 1{4$#2!{ +€4$ representative species of Sagenomella 1!{/1' Penicillium were aligned using Muscle implemented in $ )/L&$JQ 07$ € 0K3! ; cell walls. Conidiogenous cells were phialides laterally borne !M{!L{{7ML!2; + J!1!#81 Phialosimplex chlamydosporus $ ; U0K ; ; 9808 taxa with closer relationship to Phialosimplex as revealed U Experimental assays !#L!M!#L# !##1M!'28 !'2LM!'1L Salt and temperature preferences !'7'M!'{" !'L{M!'"{ !"22M!"!7 !"!LM!"8{ !"72M $ Phialosimplex salinarum exhibited 1!7" 1!{"M1182 1181M11{1 ; )Š!L"81L P. optimal growth on agar amended with salt concentrations of chlamydosporus$ !{1{KOK41#{1'M1#{88 64V / 112 ) % ) 1228 J 4$ support was evaluated based on 500 bootstrap replicates halophilic sensu)+et al. (2006). Strains DSM )03/ 1#{1LOK41#{1# /8#UKet $ al. 12!2 poorly at 4 % salinity. The best growth rates among the tested Phialosimplex and Sagenomella was rooted with Eremascus conditions were in yeast malt submerged cultures with 15 % albus I!'8{"!Penicillium olsonii (JN121771) was used 1{0OK41#{82 as the outgroup in the initial Trichocomaceae tree. 2 +9!!{M1{

VOLUME 5 · NO. 2 163 Greiner et al.

+4$771! €4$!{1{ increasing growth rate with increasing temperatures up to 82 +1!1! n/a n/a n/a halophilic Halotolerance !{!#1{$1!

ARTICLE 8{ +"!{!11{

OK41#{826O$ – as

et al. (2012).] *Description temperature preferences were similar. Undaria

Substrate degradation $ 9 1 Water in salt mineWater Poaceae halophilic ( Lolium perenne fodder) & Canidae ( Canis lupus familiaris – zoopathogenous) Canidae ( Canis lupus familiaris – zoopathogenous) 6 associated ( Habitat and associations Decomposition of starch was more heterogeneous. While 3/ OK41#{1LOK41#{81OK41#{88 OK4 1#{1# OK4 1#{1' OK41#{8!7 +OK41#{1"OK4 n/a Deep sea water halophilic    Soluble pigment presence 1#{82 Phialosimplex V of Phialosimplex salinarum.

Molecular analysis n/a subglobose truncate base ovoid Conidial shape 0 U0K OK4 1#{1LM1#{1" OK4 et al 12!2 1#{8!OK41#{88KOK41#{82 U0K! OK41#{81U0K1 from Sigler BLAST search n/a Conidial width [μm] U0K ; OK4 1#{1LM1#{88 (Phialosimplex salinarum) did not exactly match any P. sclerotialis P. ; ;

and UJKO+| 0 U0K

Conidial length [μm] ; / P. chlamydosporus )&$)Š!L"81L "#"  / !22  "{# 0 0K3! ; Basipetospora + 2.8–4.0 2.8–4.0 + 18M{' !#M82 / + + 2.2–4.0 !'M8#n/a subglobose 8{M"2 + 8{M'2 Growth at 35°C halophilaJ!1!'!{'''/'8L

P. chlamydosporus, P. similarity 94 %). |O†P +n/a + n/a 82M7{ n/a 1.5–2.0 /   Sclerotia presence Phylogeny 0 0K3! ; ; 0 1 Phialosimplex Polypaecilum insolitumP. pisci Basipetospora halophila in a phylogeny with selected ; 9 7 0 P. caninus spp. [data for P.

and Oospora halophila Phialosimplex to   n/a  Chlamydospores presence Aspergillus*% Samson (2011). 0 Phialosimplex U0K ;   Conidia in heads presence P. salinarum ; obtained from an archaeological excavation in China Š7!22'7 Š7!22## 9JLL#"78 / 5–15 n/a n/a 8M!7 +8M12 + 1.5–8.7 + 4.5–16 + Phialides lenght [μm] U 0 / ; / of Phialosimplex #2&K Three species (Phialosimplex chlamydosporus P.

sp. sclerotialis P. caninus) were previously assigned P. sclerotialis P. P. P. chlamydosporus P. B. halophila* salinarum P. Table 3. 6 Table P. caninus P. of the synonymous taxa Scopulariopsis halophilica Taxon to the genus Phialosimplex, established by Sigler et al.

164 IMA FUNGUS Phialosimplex salinarum sp.nov. from a hypersaline habitat

ARTICLE

$`Q1 .^HI_

1IV^R_

Fig. 1.)Phialosimplex salinarumOK41#{824$!{ 25

20

15 starch protein 10 cellulose

Substrate depletion zone (mm) 5

0 4 C 15 C 25 C

Fig. 2. 0Phialosimplex salinarum$/ H/OK41#{1LM1#{88

(2010). The eight strains of P. salinarum cluster together with The phylogenetically closest relatives to P. salinarum are four Trichocomaceae9{ Phialosimplex

VOLUME 5 · NO. 2 165 Greiner et al.

followed by P. chlamydosporus */ on vegetative hyphae. Phialides (monophialidic) discrete and isolated strains are separated from their closest relatives. mostly cylindrical to occasionally slightly broadened at the 9U0K;P. caninus cluster in a |!{M K;Sagenomella are distinguishable '{3!2M!{3 from Phialosimplex base to the tip. Conidia formed in long chains or occasionally

ARTICLE described by Sigler et al. (2010). The clustering of P. sclerotialis +&K 8LL## Phialosimplex clade of our 82M72398Chlamydospores or sclerotia not U0K observed. !'K3J$ W*%K12!! Ecology and distribution: 5 00K3!U0K I &/ ) delimitation of the genus Phialosimplex with Penicillium brevicompactum, P. biourgeianum, primarily been based on morphological traits. P. chrysogenum, P. expansum P. crustosum Cladosporium I 7M8{ + 4$7M1{ Phialosimplex salinarum ) 6 G % 3sp. nov. Discussion: Phialosimplex salinarum 4&4&'2"277 P. chlamydosporus, P. sclerotialisP. 98 caninus08U from P. chlamydosporus Etymology}9Vsalinae P. sclerotialisP. caninus in 0 a salt mine. distinguished from Basipetospora halophila Diagnosis} + / 12 :+ 82 not ovoid conidia. The common characteristics shared by :+ / / !{  1{  P. salinarum with all other Phialosimplex spp. currently are sale vel cum 4 % sale coloniae crescentes fasciculatae / \/ / + being formed laterally on hyphae producing conidia in long chains or in heads. The diagnostic value of these 6/ traits at generic level needs to be evaluated in context of a \ monographic treatment. !{M'{)!M!{)!2M!{) latae ad apicem. Conidia in catenis longis vel raro in capitulis Additional isolates examined: Germany: Bavaria} I &/ ; &7#8'a!#""bJ!8!a81!bW 82M72)82M72)$ ca. !2/12 L12!!K. Greiner, A. Weig & G. RamboldOK41#{1LOK4 Type: Germany: Bavaria} I &/ & 1#{1# OK4 1#{1' OK4 1#{1" OK4 1#{8! OK4 1#{81 7# 8'a!#""bJ !8 !a81!bW OK4 1#{88 U0K 3J$ )&$ J 591#7L'{ \ 591#7L'L 591#7L'# 591#7L'' 591#7L"2 591#7L"! ca!2/ 591#7L"1 12L12!!K. Greiner, A. Weig & G. Rambold OK41#{82M˜/ ™|+&K!8'{'8 MM|U0K3J$ ; DISCUSSION )&591#7L'"|0K3! ; 5'{{{11M + 5'{{{1" describes the new species Phialosimplex salinarum representative of the genus Phialosimplex (Eurotiales Description: Colonies with a velvety to powdery appearance 0 P. salinarum are and a white surface on yeast malt agar containing 15 % or 25 / €07/ they were isolated from four independent samples from two 98$OK4 different sampling sites inside the mine and handled under 1#{1LOK41#{1# 9 ) 4$ 12M1#!{4$!{M181{ contaminants.  4$ !2 !{ + 6O$ Phylogeny and morphology Hyphae 1.5–2.5 μm wide and 9.5–16 μm long between the U 0K3! septa. Conidiogenous cells simple phialides arising laterally members of Phialosimplex (generic type species: P. caninus)

166 IMA FUNGUS Phialosimplex salinarum sp.nov. from a hypersaline habitat ARTICLE

Fig. 3. Phialosimplex salinarum OK41#{82A. Colony growing at different NaCl concentrations. B, C.6 conidia in chains. D.6E.B/4$7F. Single phialide. &š!23

and “Basipetospora” halophila in a clade which is sister group forms the “Polypaecilum-Phialosimplex P to two species of Polypaecilum (generic type species: P. Aspergillus paraphyletic and so could support a insolitum) and Phialosimplex sclerotialis. Together with further splitting of Aspergillus into several units at generic Dichotomomyces Neocarpenteles Cristaspora this /6122'*%K12!!

VOLUME 5 · NO. 2 167 Greiner et al.

JN121771 Penicillium olsonii 50 JN121742 Aspergillus janus 97 JN121781 Aspergillus flavipes JN121851 Aspergillus aureofulgens 54 JN121841 Aspergillus candidus JN121825 Aspergillus arenarius

ARTICLE JN121850 Aspergillus robustus 100 JN121728 Aspergillus ochraceus 55 J!1!#8{Aspergillus steynii 97 J!1!#8!Aspergillus avenaceus 90 J!1!#{8Aspergillus leporis 79 JN121785 Aspergillus togoensis J!1!'8"Aspergillus coremiiformis JN121755 Aspergillus aculeatus 99 J!1!'88Aspergillus glaucus 89 J!1!'87Aspergillus amstelodami JN121744 Aspergillus penicillioides JN121740 Aspergillus restrictus 95 JN121745 Aspergillus calidoustus JN121844 Aspergillus amylovorus JN121852 Aspergillus egyptiacus 62 100 JN121775 Aspergillus versicolor JN121782 Aspergillus sydowii JN121829 Aspergillus conjunctus 61 JN121854 Aspergillus bisporus 79 JN121826 Aspergillus biplanus JN121751 Aspergillus sparsus 59 J!1!#18Aspergillus ochraceoroseus J!1!#18Aspergillus funiculosus 99 JN121754 Dichotomomyces cejpii JN121840 Neocarpenteles acanthosporus 100 JN121759 Aspergillus cervinus J!1!'8#Aspergillus kanagawaensis JN121749 Aspergillus brunneo-uniseriatus {8 JN121725 JN121842 Aspergillus pulvinus J!1!'8{Cristaspora arxii 75 JN121811 Phialosimplex sclerotialis 100 JN121722 Polypaecilum pisci 100 JN121816 Polypaecilum insolitum 100 J!1!#81Phialosimplex chlamydosporus JN121752 Phialosimplex caninus 58 JN121815 Basipetospora halophila 100 5'{{{1{Phialosimplex salinarum DSM 27529* 50 5'{{{1'P. salinarum OK41#{81j 65 5'{{{18P. salinarum DSM 27527* 5'{{{1#P. salinarum OK41#{8!j 5'{{{17P. salinarum DSM 27528* 71 5'{{{11P. salinarum DSM 27526* 5'{{{1"P. salinarum OK41#{88j 5'{{{1LP. salinarum OK41#{82jT 0.1

Fig. 4.6Eurotiomycetes0K3!;464V0 )&K//#2//K; 0šPenicillium olsonii was used as outgroup.

Despite the subgrouping within the Polypaecilum- 0&$KWKUO!77"8*/ Phialosimplex 0K3! on the generic assignment will only be possible in the context Phialosimplex of a profound revision of this group. This will be achieved U0K; * other fungi considered as Phialosimplex species (including comm.) and is beyond the scope of our study. 9; Morphological and phylogenetic analyses concertedly unalignable to those of Polypaecilum (P. insolitum and P. pisci) revealed the eight halophilic strains as members of the

168 IMA FUNGUS Phialosimplex salinarum sp.nov. from a hypersaline habitat

61 JF417486 Trichocoma paradoxa ARTICLE EAU18359 Eremascus albus KF267869 Phialosimplex sclerotialis* T KC535133 Uncultured Phialosimplex 67 KC535127 Uncultured Phialosimplex 75 KC535120 Uncultured Phialosimplex KC535136 Uncultured Phialosimplex KC535124 Uncultured Phialosimplex KC535119 Uncultured Phialosimplex KC535125 Uncultured Phialosimplex GQ169314 Phialosimplex caninus 98 JX866701 P. caninus 88 GQ169315 P. caninus T GQ169313 P. caninus GQ169316 P. caninus JX869570 P. caninus JX866702 P. caninus JX218036 P. caninus GQ169317 P. caninus GQ169311 P. caninus 98 GQ169326 Phialosimplex chlamydosporus T AJ519984 P. chlamydosporus 51 50 FN667943 Uncultured fungus KC535137 Uncultured Phialosimplex 88 98 JQ410077 Uncultured fungus JQ410084 Uncultured fungus KF274691 Phialosimplex salinarum DSM 27532* 89 KF274692 P. salinarum DSM 27533* 67 KF274690 P. salinarum DSM 27531* KF274687 P. salinarum DSM 27528* KF274688 P. salinarum DSM 27529* KF274686 P. salinarum DSM 27527* KF274685 P. salinarum DSM 27526* KF274689 P. salinarum DSM 27530* T

0.03

Fig. 5. 6PhialosimplexU0K3J$;464V0 )&K//{2//K; 0šEremascus albus and Trichocoma paradoxa are used as outgroup.

genus Phialosimplex90K3!; appears to be suitable for a discrimination of the species Aspergillus P. salinarum. Penicillium Paecilomyces Sagenomella 9 1 $Phialosimplex produce 36&!36&10K3!+'; (Samson et al.12!!*%K12!!GU0K \ 0 ; Phialosimplex (incl. Sagenomella p. p.) according to Sigler in Aspergillus and Penicillium (Schoch et al 12!1 et al. (2010). Species of Phialosimplex U0K ; / \ /Phialosimplex and also phialides (Sigler et al. 2010). They have been separated from

VOLUME 5 · NO. 2 169 Greiner et al.

Sagenomella by the production of a diffusible yellow pigment * */ et al. 122{$ two traits are no longer diagnostically valuable since several / Sagenomella spp. were included in Phialosimplex (Sigler et / al. 2010). &› )+et al. 2006). To better understand

ARTICLE P. salinarum conforms the mechanisms and signalling pathways connected with halophily and zoophily in particular and osmophily in & U0K 0K3!; ;*et al. 2005). assigned to the genus Phialosimplex. The main diagnostic characters to distinguish P. Habitat and provenience salinarum morphologically from other Phialosimplex spp. Strains of Phialosimplex salinarum were isolated from two / 0 9 P. salinarum has slightly shorter phialides !/ 08 $P. salinarum only originate from the Polypaecilum insolitum and P. pisci phylogenetically being // closest to Phialosimplex from P. salinarum 6 % * !"'{ 4 closely related species ‘Basipetospora’ halophila and This study did not provide any indications on how P. Phialosimplex salinarum 9 7 B. salinarum U halophila 0 OP !"#8 $ B. halophila falls into the same clade as the $// accepted species of Phialosimplex // of Basipetospora is a synonym of and belongs concentrations during evolution. Nutrients may be introduced in Monascaceae not Trichocomaceae ; into the subterraneous habitat by various biotic or abiotic transfer to Phialosimplex1. / / 0 Halotolerance seems plausible due to the presence of the archaebacterial 0 species Halococcus salifodinae in the explored salt mines Wallemia ichthyophaga (Denner et al. 1994). J+82Q K Archaea have excited the et al. 2005). Phialosimplex salinarum / organisms may have derived from populations having been $ i.e Phialosimplex is already )et al!""'KVet al. /| 1227 12!!0 / ; // +U&ca. combined with tolerance of extreme salt concentrations 5000 m deep (Singh et al12!2I 4) et al 1222 KV et al. 2011). Such a ; / and it seems to represent another hitherto undescribed taxon U 3/et al. 2012). derived from epigeic populations and spread by animal The genus Phialosimplex includes species that //Phialosimplex are associated are medically relevant as zoopathogens causing with infections in animals (Sigler et al.12!2*/ opportunistically disseminated mycoses in (Sigler et strains of P. salinarum are obviously well adapted to very al 12!2 U high salt concentrations. H

ACKNOWLEDGEMENTS 1Phialosimplex halophila9*&)6G% 3comb. nov. G KH )* / &}Oospora halophila9*&Zentbl. Bakt. ParasitKde / & Stephan $UU88}!87!"88 5 & 4&4&'!2{71 +V& Synonyms: Basipetospora halophila 9* & 6 % $O G&0 *Mycotaxon 22: 198 (1985).  * / Scopulariopsis halophilica0Trans. Mycol. Soc. Japan 14}8L# manuscript. !"#8

170 IMA FUNGUS Phialosimplex salinarum sp.nov. from a hypersaline habitat

REFERENCES *  K 3$ 12!! 6 Penicillium and ARTICLE the segregation Trichocomaceae into three families. Studies in $ 34 & 3 !""' Microbial Ecology: fundamentals and Mycology 70: 1–51. applications46}&›†+6 5K!""L))KH &$$ V !""1 6 & Münchner Geologische Hefte, B: Angewandte Advances in Microbial Physiology 33: 145–212. Geologie 2: 1–101. & 9 K 3 9 3W !"'8 B 56 0 ) U € $ G K6 J/ W 122! 4 KH  V Kali K/ und Steinsalz 8}8L#M8#8 Dead Sea. Mycological Research 105: 749–756. & 3 ) 4 J/ 54* !""" Š/ 56 0 5H B G K6 J/ W 1228 W/ assessment of hydrolytic activities in microfungi grown at different //}9 temperatures on solid media. World Journal of Microbiology & under hypersaline Dead Sea stress. Proceedings of the National Biotechnology 15}!8!M!81 Academy of Sciences, USA 100: 14970–14975. & $K J/ W G K6 € $ 4 *6 !""' 560G$3336OK/$et al. (2014) 9OK} ) O K Proceedings of the Royal Society of London B 265: fungus Eurotium rubrum. Nature Communications 5} 8#7{ 1461–1465. }!2!28' +/3001222WU}Encyclopedia of 4 40 4 4 6  !""# Brock’s Biology of MicrobiologyV$4&&3* MicroorganismsK3/J}6* O * 3 U &* V $U €/ K) K 4 4) 0 ) 30 ) GO KV * 1222 KG+}8!8M88#KO}$6 € *KQ6/W&))+J122{ Environmental Microbiology 2}178M1{2 3 J4&!"!84 tree of live: an overview of ecology and evolution under stress. UKHGHBulletin of the U}Adaptations to Life at High Salt Concentrations in Archaea, Academy of Sciences, Krakow,&3/4: 88–104. Bacteria and Eukarya)+J€$6 J $ KH G !"L! I  $}!'{M122J}KB V 4 O W&4 4) 0 & * G ) ) GO et U 4 KH + al. (1994) Halococcus salifodinae / GJKZeitschrift für $ . International journal of systematic Allgemeine Mikrobiologie 1: 121–141. bacteriology 44: 774–780. J +9 4) 0 ) GO !""8 $ O*!"L8&HAnnals & Journal of General of the New York Academy of Sciences 108}7{8M7L2 Microbiology 139: 1077–1081. ) GO ) 30 4) 0 !""' *} 6OKQ$3)12!89 evidence for longevity. Extremophiles 2: 279–287. composition shifts along a leaf degradation gradient in a )4&0O!""8U0K European beech forest. Plant Soil 362: 175–186. MH 6 3$ & 3 3 0* J/ 54* 122" and rusts. Molecular Ecology 2}!!8M!!' 9Phascolartos cinereus) faeces exhibit a broad ) U J/ W G K6 1228 K / range of enzyme activities against recalcitrant substrates. Letters OKUMycological in Applied Microbiology 48: 218–225. Progress 2: 19–28. 6 KG 122' 6 $ )UJ/WGK612274 OJ$;Mycologia 100: 205–226. $ +/} 4 K O K 6 U *$O !"'{ J U UJournal of Arid Environments 57}78!M778 Mycotaxon 22: 197–208. ) 4 !""' Life on the Edge: amazing creatures thriving in 3/ + B› )3 3› 3 B› K extreme environmentsJ}66 5$* et al. 12!1$ )+ J Q 6 * )K 6 $ 1222 /JU€++! * M Microbial Pathogenesis 53: 168–179. FEMS Microbiology Ecology 32} 18{M 3306!"L2U// 240. bacteria of great geological age. Transactions of the Kansas )+ J & V K› K 0 4 I B et al. Academy of Science 63}8!M87 122L*/ 3V43+122!V/ $U}Adaptations to Life at High Salt Concentrations Nature 409: 1092–1101. in Archaea, Bacteria and Eukarya)+J€$ K3$HJ*K*K5$et al. 6$}8"#M717J}KB 12!!6Talaromyces * $O !""8 3 and taxa accommodated in Penicillium subgenus Biverticillium. /U}Stress Tolerance in Fungi O*} Studies in Mycology 70}!{"M!'8 188M1{LJ}4O K +V K 5$ * K 3 B K V et * 5 ) GO !""' Extremophiles: microbial life in al. (2012) Nuclear ribosomal internal transcribed spacer extreme environmentsJ}GV U0K / OJ$ Fungi.

VOLUME 5 · NO. 2 171 Greiner et al.

Proceedings of the National Academy of SciencesUSA 109: KV*9K12!!O 6241–6246. U}Encyclopedia of Geobiology30B}8!8M K V K O$ ) +9+ K 3+ J 35 et al. 8!#*}KK¡&4 (2010) Phialosimplex 06 !"L8 O / University of / Wichita Bulletin 39: 2–7.

ARTICLE Trichocomaceae. Medical Mycology 48}88{M87{ 05!"#8$Scopulariopsis. K 63 + B 6K 12!2 6 Transactions of the Mycological Society of Japan 14}8L#M8L" / B 3* */ * !""! 6 H + U & Fungal I Diversity 40: 89–102. K U} General and Applied Aspects of Microorganisms K + !"'' KH $ 3HB9}{8ML2J}66 W/ M W 9 & $ G0&0VK0!""2$ * Geologisch-Paläontologische Mitteilungen ;3J$U} Innsbruck 15: 59–69. PCR Protocols: a guide to methods and applicationsU4$ KV * 4) 0 V $ O W&4 ) 5 et )O*KG0}8!{M811KO} al. !""" B Halococcus salifodinae are $6 60 Q 6 * )K K * 9 4 )+ Microbiology 145}8{L{M8{#7 N (2005) Taxonomy and phylogeny of the xerophilic genus KV * 3 + 4) 0 V $ 6 Wallemia (Wallemiomycetes and Wallemiales/ 4 et al. 1227 9 M Antonie van Leeuwenhoek 87}8!!M81' / U} Halophilic QQKHKGV4G1222$ MicroorganismsB$}'"M!21&}K OJ$;Journal of Computational Biology KV * 9 K V$ 6 4 ) + 7}128M1!7 et al. 122# V * Steinsalz – und im Weltraum? Denisia 66}8!8M811

172 IMA FUNGUS