CARES Priority List

Total Page:16

File Type:pdf, Size:1020Kb

CARES Priority List Species Common Name Classification Adrianichthyidae - Ricefishes Oryzias celebensis Celebes ricefish VU Oryzias marmoratus Marmorated ricefish VU Oryzias matanensis Matano ricefish VU Oryzias nigrimas Black buntingi VU Oryzias orthognathus Sharp-jawed buntingi EN Oryzias profundicola Yellow-finned madaka VU Anabantidae - Betta, Paradise Belontia signata Ceylon combtail CWU Fish, and Licorice Gourami Betta albimarginata White-seam fighter CVU Betta brownorum Brown's betta CEN Betta burdigala Wine betta VU Betta channoides Snakehead fighter CVU Betta chini VU Betta chloropharynx Green-throat mouthbrooder VU Betta coccina Red wine betta CEN Betta foerschi CEN Betta hipposideros VU Betta livida EN Betta macrostoma Spotfin betta VU Betta miniopinna Red-fin betta CR Betta persephone Black dwarf betta CR Betta pi CVU Betta rutilans Fire betta CEN Betta schalleri Schaller's mouthbrooder CEN Betta simplex Krabi mouthbrooding betta CR Betta spilotogena Double lipspot mouthbrooder CR Betta tomi Tomi mouthbrooder VU Betta tussyae Chukai betta CEN Betta uberis CCR Macropodus hongkongensis Flame red paradish fish CVU Malpulutta kretseri Ornate paradise fish CEN Parosphromenus alfredi CVU Parosphromenus allani CVU Parosphromenus anjunganensis CVU Parosphromenus bintan CVU Parosphromenus deissneri Licorice gourami CVU Parosphromenus filamentosus CVU Parosphromenus harveyi Harvey's licorice gourami EN Parosphromenus linkei Moonspot licorice gourami CVU Parosphromenus nagyi CVU Parosphromenus opallios Giant red sparkling licorice gourami CVU Parosphromenus ornaticauda CVU Parosphromenus pahuensis CVU Parosphromenus paludicola CVU Parosphromenus parvulus Cherry-spotted licorice gourami CVU Parosphromenus quindecim CVU Parosphromenus rubrimontis CVU Parosphromenus sumatranus CVU Parosphromenus tweediei CVU Aplocheilidae - Killifishes Campellolebias dorsimaculatus CVU Nematolebias whitei Rio pearlfish CVU Pachypanchax arnoulti Arnoult's killifish VU Pachypanchax omalonotus Powder-blue panchax CVU Pachypanchax patriciae CVU Pachypanchax sakaramyi Madagascar panchax CR Pachypanchax sparksorum CVU Pachypanchax varatraza CVU Pachypanchax sp. ‘analava’ CVU Pachypanchax sp. ‘loza’ CVU Pachypanchax sp. ‘mahamasina’ CVU Pachypanchax sp. ‘sofia’ CCR Spectrolebias reticulatus CEW Bedotiidae - Madagascan Bedotia albomarginata EN Rainbowfish Bedotiidae - Madagascan Rainbowfish Bedotia geayi Red-tailed silverside VU Bedotia marojejy VU Bedotia masoala VU Bedotia tricolor Bedotia tricolor CR Bedotia sp. ‘ankavia-ankavanana’ VU Bedotia sp. ‘bemarivo’ VU Bedotia sp. ‘betampona’ VU Bedotia sp. ‘lazana’ VU Bedotia sp. ‘mahanara’ VU Bedotia sp. ‘manombo’ CR Bedotia sp. ‘namorona’ VU Bedotia sp. ‘nosivola’ VU Bedotia sp. ‘sambava’ CR Rheocles alaotrensis Katrana EN Rheocles derhami CCR Rheocles lateralis CVU Rheocles pellegrini CVU Rheocles sikorae CEN Rheocles vatosoa VU Rheocles wrightae EN Rheocles sp. ‘antainambalana’ CVU Rheocles sp. ‘ambatovy’ CCR Characidae - Tetras Arnoldichthys spilopterus Niger tetra CEN Rachoviscus crassiceps Gold tetra CEN Rachoviscus graciliceps CEN Cichlidae - Cichlids Alcolapia alcalica EN (many genus names can be Alcolapia grahami Lake Magadi tilapia VU interchanged with Alcolapia latilabris VU haplochromis) Alcolapia ndalalani VU Allochromis welcommei CCR Altolamprologus calvus ‘yellow’ Nkamba Bay CCR Amatitlania altoflava CVU Amatitlania myrnae CEN Amatitlania nanolutea CVU Amatitlania septemfasciata CVU Amphilophus istlanus CVU Amphilophus lyonsi Lyon's cichlid CCR Astatotilapia aeneocolor Yellow belly albert VU Astatotilapia barbarae CR Astatotilapia brownae CVN Astatotilapia desfontainii CCR Astatotilapia flaviijosephi CVU Astatotilapia latifasciata Zebra obliquidens CEN Astatotilapia nubila VU Astatotilapia tweddlei VU Astatotilapia velifer VU Astatotilapia sp. ‘dwarf bigeye scraper’ CR Astatotilapia sp. ‘shovelmouth’ CEN Astatotilapia sp. ‘thick skin’ CVU Aulonocara baenschi Nkhomo-benga/yellow regal peacock CEN Aulonocara guentheri CEN Aulonocara kandeense Blue orchid peacock VU Aulonocara maylandi Sulfurhead peacock VU Aulonocara nyassae Blue peacock cichlid CEN Aulonocara sp. ‘lwanda’ Red top Lwanda peacock CEN Aulonocara sp. ‘pyramid’ CEN Benitochromis nigrodorsalis CVU Benitochromis ufermanni CVU Cardiopharynx schoutedeni CVU Champsochromis spilorhynchus CEN Chetia brevis Orange-fringed largemouth/river bream EN Chindongo demasoni Demanson's cichlid VU Chindongo saulosi CEN Copadichromis ilesi CEW Copadichromis mloto CEN Copadichromis pleurostigma CEN Copadichromis pleurostigmoides CEN Copadichromis sp. ‘firecrest mloto’ CEW Copadichromis sp. ‘virginalis gold’ CEN Coptodon bakossiorum CR Coptodon bimini CR Coptodon bythobates CR Coptodon deckerti CR Coptodon flavus CR Coptodon gutturosa CR Coptodon imbrifernus CR Coptodon kottae EN Coptodon snyderae CR Coptodon spongotroktis CR Coptodon thysi CR Corematodus shiranus CEN Crybroheros bussingi CEN Crybroheros rhytisma CEN Cyrtocara moorii Malawi blue dolphin CVU Danakilia sp. ‘shukoray’ CVU Dimidiochromis dimidiatus CVU Docimodus johnstonii CVU Enantiopus sp. ‘kilesa’ CEN Enigmatochromis lucanusi Blue fin pelvicachromis CVU Enterochromis coprologus CR Enterochromis erythromaculatus EN Enterochromis paropius CEN Enterochromis sp. ‘blue obliquidens’ CEN Enterochromis sp. ‘red back scraper’ CEW Etia nguti CVU Etroplus canarensis Canara pearlspot CVU Haplochromis acidens CVU Haplochromis annectidens CR Haplochromis flavus CEN Haplochromis guiarti CR Haplochromis heusinkveldi CR Haplochromis howesi VU Haplochromis katavi Katavi mouthbrooder VU Haplochromis lividus CVN Haplochromis tanaos CVU Haplochromis thereuterion CEN Haplochromis sp. ‘bugonga’ CVU Haplochromis sp. ‘fine bar scraper’ CNT Haplochromis sp. ‘kenya gold’ CEN Haplochromis sp. ‘kk beach’ CVN Haplochromis sp. ‘ruby’ CVU Haplochromis cavifrons CCR Haplochromis vonlinnei CR Haplochromis sp. ‘golden duck’ CNT Haplochromis sp. ‘orange rock hunter’ CEW Hemichromis cristatus Jewel cichlid CVU Herichthys bartoni Barton's cichlid VU Herichthys labridens Yellow lab(ridens) CVU Herichthys minckleyi Minkley's cichlid VU Hericthys steindachneri Steindachner's cichlid NT Herichthys sp. ‘cazones’ CVU Heterochromis multidens CNT Hoplotilapia retrodens CEW Katria katria CVU Konia dikume Dikume CR Konia eisentrauti Konye CR Labidochromis ishmael CEW Lethrinops altus CVU Lethrinops macracanthus CVU Lethrinops macrophthalmus CVU Lethrinops micrentodon CVU Lethrinops microdon CVU Limbochromis robertsi CVU Lipochromis cryptodon CEN Lipochromis maxillaris CEN Lipochromis melanopterus CEN Lipochromis microdon CEN Lipochromis parvidens CEW Lipochromis cf. parvidens ‘kyoga’ CEN Lipochromis taurinus CVU Lipochromis sp. ‘matumbi hunter’ CEW Lipochromis sp. ‘nyererei paedophage’ CEN Lipochromis sp. ‘two stripe white lip’ CEW Lithochromis rubripinnis CCR Lithochromis rufus CCR Lithochromis xanthopteryx VU Macropleurodus bicolor VU Mbipia lutea VU Mbipia cf. lutea ‘crossbar’ CNT Mbipia sp. ‘porthole’ CNT Mchenga conophoros CVU Mchenga flavimanus CEN Melanochromis chipokae CEN Myaka myaka Myaka CR Mylochromis ensatus CVU Mylochromis gracilis CVU Mylochromis lateristriga Basket hap CEN Mylochromis obtusus CEW Mylochromis sp. ‘torpedo elongate’ CEW Neochromis gigas VU Neochromis greenwoodi CVU Neochromis omnicaeruleus CVU Neochromis rufocaudalis CVU Neochromis simotes CCR Neochromis sp. ‘madonna’ CNT Neochromis sp. ‘unicuspid scraper’ CVU Nyassachromis boadzulu CVU Nyassachromis breviceps CEW Nyassachromis sp. ‘mphanga’ CEN Ophthalmotilapia boops ‘blue neon’ (Nkondwe Island) CCR Oreochromis amphimelas EN Oreochromis chungruruensis CR Oreochromis hunteri Lake Chala tilapia CR Oreochromis jipe Jipe tilapia CR Oreochromis karomo Karomo CR Oreochromis karongae EN Oreochromis lidole EN Oreochromis rukwaensis Lake Rukwa tilapia CEN Oreochromis squamipinnis EN Oreochromis variabilis CR Otopharynx selenurus CEN Otopharynx sp. ‘decorus jumbo’ CEN Otopharynx sp. ‘golden blueface’ CEN Otopharynx sp. ‘silver torpedo’ CEN Otopharynx sp. ‘torpedo blue’ CEN Paralabidochromis beadlei CR Paralabidochromis chilotes CVU Paralabidochromis chromogynos VU Paralabidochromis crassilabris CR Paralabidochromis labiatus NT Paralabidochromis plagiodon CVU Paralabidochromis sauvagei CVU Paralabidochromis victoriae CCR Paralabidochromis sp. ‘fire’ CVU Paralabidochromis sp. ‘red fin piebald’ CVU Paratilapia polleni VU Paratilapia sp. ‘andapa’ CEN Paratilapia sp. ‘betsiboka’ CEN Paratilapia sp. ‘betsileo highlands’ CEN Paratilapia sp. ‘east coast small spot’ CVU Paratilapia sp. ‘southwest’ CCR Paratilapia sp. ‘vevembe’ CR Paretroplus dambabe EN Paretroplus damii Damba VU Paretroplus kieneri Kotsovato VU Paretroplus cf. kieneri ‘Sofia drainage’ CEN Paretroplus maculatus CR Paretroplus maromandia EN Paretroplus menarambo CR Paretroplus nourissati EN Paretroplus polyactis VU Paretroplus tsimoly EN Paretroplus sp. ‘dridrimena’ VU Paretroplus sp. ‘giant lamena’ CVU Paretroplus sp. ‘Lake amparihinandrina’ CCR Paretroplus sp. ‘ventitry’ CVU Pelvicachromis sacrimontis CVU Pelvicachromis silviae CVU Petrochromis sp. ‘red’ CVU Placidochromis longimanus CVU Placidochromis phenochilus CVU Placidochromis sp. ‘electra blue’ CVU Placidochromis sp. ‘mbamba’ CEN Placidochromis sp. ‘phenochilus tanzania’ CVU Platytaeniodus degeni CEW Platytaeniodus sp. ‘red tail sheller’ CVU Prognathochromis argenteus CR Prognathochromis bayoni CCR Prognathochromis perrieri CEW Prognathochromis sp. ‘silver stiletto’ CNT Protomelas sp. ‘mbenji thick-lip’ CVU Protomelas sp. ‘steveni taiwan’ CVU Psammochromis
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • A New Genus of Miniature Cynolebiasine from the Atlantic
    64 (1): 23 – 33 © Senckenberg Gesellschaft für Naturforschung, 2014. 16.5.2014 A new genus of miniature cynolebiasine from the Atlantic Forest and alternative biogeographical explanations for seasonal killifish distribution patterns in South America (Cyprinodontiformes: Rivulidae) Wilson J. E. M. Costa Laboratório de Sistemática e Evolução de Peixes Teleósteos, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68049, CEP 21944 – 970, Rio de Janeiro, Brasil; wcosta(at)acd.ufrj.br Accepted 21.ii.2014. Published online at www.senckenberg.de/vertebrate-zoology on 30.iv.2014. Abstract The analysis of 78 morphological characters for 16 species representing all the lineages of the tribe Cynopoecilini and three out-groups, indicates that the incertae sedis miniature species ‘Leptolebias’ leitaoi Cruz & Peixoto is the sister group of a clade comprising the genera Leptolebias, Campellolebias, and Cynopoecilus, consequently recognised as the only member of a new genus. Mucurilebias gen. nov. is diagnosed by seven autapomorphies: eye occupying great part of head side, low number of caudal-fin rays (21), distal portion of epural much broader than distal portion of parhypural, an oblique red bar through opercle in both sexes, isthmus bright red in males, a white stripe on the distal margin of the dorsal fin in males, and a red stripe on the distal margin of the anal fin in males.Mucurilebias leitaoi is an endangered seasonal species endemic to the Mucuri river basin. The biogeographical analysis of genera of the subfamily Cynolebiasinae using a dispersal-vicariance, event-based parsimony approach indicates that distribution of South American killifishes may be broadly shaped by dispersal events.
    [Show full text]
  • GENETICS of the SIAMESE FIGHTING FISH, BETTA Splendensl
    GENETICS OF THE SIAMESE FIGHTING FISH, BETTA SPLENDENSl HENRY M. WALLBRUNN Department of Biology, Uniuersity of Florida, Gainesuille, Florida First received March 13, 1957 ETTA SPLENDENS more commonly known as the Siamese fighting fish has B been popular in aquariums of western Europe and America for over 35 years. Its domestication and consequent inbreeding antedates the introduction into the West by 60 or 70 years. Selection for pugnacity, long fins (see Figure l), and bright colors over this long period has produced a number of phenotypes, none of which is very similar to the short-finned wild form from the sluggish rivers and flooded rice paddies of Thialand (SMITH1945). The aquarium Betta is noted for its brilliant and varied colors. These are pro- duced by three pigments, lutein (yellow), erythropterin (red), and melanin (black) ( GOODRICH,HILL and ARRICK1941 ) and by scattering of light through small hexagonal crystals (GOODRICHand MERCER1934) giving steel blue, blue, or green. Each kind of pigment is contained in a distinct cell type, xanthophores, containing yellow, erythrophores red, and melanophores black. There are no chromatophores containing two pigments such as the xanthoerythrophores of Xiphophorus helleri. The reflecting cells responsible for iridescent blues and greens are known as iridocytes or guanophores and they are more superficial than the other chromatophores. Since the pigment granules may be greatly dispersed in the many branched pseudopods or clumped into a small knot in the center of the chromatophores, the color of any single fish may vary over a wide range of shades, and may do SO in a matter of seconds.
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • Deterministic Shifts in Molecular Evolution Correlate with Convergence to Annualism in Killifishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455723; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deterministic shifts in molecular evolution correlate with convergence to annualism in killifishes Andrew W. Thompson1,2, Amanda C. Black3, Yu Huang4,5,6 Qiong Shi4,5 Andrew I. Furness7, Ingo, Braasch1,2, Federico G. Hoffmann3, and Guillermo Ortí6 1Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48823, USA. 2Ecology, Evolution & Behavior Program, Michigan State University, East Lansing, MI, USA. 3Department of Biochemistry, Molecular Biology, Entomology, & Plant Pathology, Mississippi State University, Starkville, MS 39759, USA. 4Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Marine, Shenzhen 518083, China. 5BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China. 6Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA. 7Department of Biological and Marine Sciences, University of Hull, UK. Corresponding author: Andrew W. Thompson, [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.09.455723; this version posted August 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: The repeated evolution of novel life histories correlating with ecological variables offer opportunities to test scenarios of convergence and determinism in genetic, developmental, and metabolic features. Here we leverage the diversity of aplocheiloid killifishes, a clade of teleost fishes that contains over 750 species on three continents.
    [Show full text]
  • Evidence of Hidden Diversity and Taxonomic Conflicts in Five Stream Fishes from the Eastern Zimbabwe Highlands Freshwater Ecoregion
    A peer-reviewed open-access journal ZooKeys 768: 69–95Evidence (2018) of hidden diversity and taxonomic conflicts in five stream fishes... 69 doi: 10.3897/zookeys.768.21944 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion Albert Chakona1,2, Wilbert T. Kadye2, Taurai Bere3, Daniel N. Mazungula1,2, Emmanuel Vreven4,5 1 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa, 6140 2 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa, 6140 3 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe 4 Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080, Tervuren, Belgium 5 KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutio- nary Genomics, Deberiotstraat 32, 3000 Leuven, Belgium Corresponding author: Albert Chakona ([email protected]) Academic editor: N. Bogutskaya | Received 30 October 2018 | Accepted 25 April 2018 | Published 19 June 2018 http://zoobank.org/9621930C-8C43-40D0-8554-684035E99FAA Citation: Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven E (2018) Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zookeys.768.21944 Abstract
    [Show full text]
  • The Mystery of the Banded Killifish Fundulus Diaphanus Population Explosion: Where Did They All Come From?
    The Mystery of the Banded KillifishFundulus ( diaphanus) Population Explosion: Where Did They All Come from? Philip W. Willink, Jeremy S. Tiemann, Joshua L. Sherwood, Eric R. Larson, Abe Otten, Brian Zimmerman 3 American Currents Vol. 44, No. 4 THE MYSTERY OF THE BANDED KILLIFISH FUNDULUS DIAPHANUS POPULATION EXPLOSION: WHERE DID THEY ALL COME FROM? Philip W. Willink, Jeremy S. Tiemann, Joshua L. Sherwood, La Grange Park, IL Illinois Natural History Survey Illinois Natural History Survey Eric R. Larson, Abe Otten, Brian Zimmerman University of Illinois at Scott Community The Ohio State University Urbana-Champaign College Stream and River Ecology Lab Banded Killifish Fundulus diaphanus are no strangers to NAN- and have not been seen since, they were only known from a hand- FAers. Over the past several years, there have been multiple arti- ful of inland lakes in the far northeastern corner the state (Fig. 1). cles in American Currents covering their distribution (Hatch 2015; Even there, population numbers were low. Schmidt 2016a, 2018; Olson and Schmidt 2018; Li 2019), stocking So it was with great excitement that in the early 2000s Illinois to restore populations (Bland 2013; Schmidt 2014), and appear- ichthyologists started to find more and more presumed Western ance in a hatchery (Schmidt 2016b). Their range extends from the Banded Killifish in Lake Michigan (Willink et al. 2018). They Canadian Maritime provinces south along the Atlantic coast to were even showing up in downtown Chicago (Willink 2011). It the Carolinas, as well as westward through the Great Lakes region was hoped that this range expansion was evidence of an uncom- to the upper Mississippi watershed.
    [Show full text]
  • The Coincidence of Ecological Opportunity with Hybridization Explains Rapid Adaptive Radiation in Lake Mweru Cichlid fishes
    ARTICLE https://doi.org/10.1038/s41467-019-13278-z OPEN The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes Joana I. Meier 1,2,3,4, Rike B. Stelkens 1,2,5, Domino A. Joyce 6, Salome Mwaiko 1,2, Numel Phiri7, Ulrich K. Schliewen8, Oliver M. Selz 1,2, Catherine E. Wagner 1,2,9, Cyprian Katongo7 & Ole Seehausen 1,2* 1234567890():,; The process of adaptive radiation was classically hypothesized to require isolation of a lineage from its source (no gene flow) and from related species (no competition). Alternatively, hybridization between species may generate genetic variation that facilitates adaptive radiation. Here we study haplochromine cichlid assemblages in two African Great Lakes to test these hypotheses. Greater biotic isolation (fewer lineages) predicts fewer constraints by competition and hence more ecological opportunity in Lake Bangweulu, whereas opportunity for hybridization predicts increased genetic potential in Lake Mweru. In Lake Bangweulu, we find no evidence for hybridization but also no adaptive radiation. We show that the Bangweulu lineages also colonized Lake Mweru, where they hybridized with Congolese lineages and then underwent multiple adaptive radiations that are strikingly complementary in ecology and morphology. Our data suggest that the presence of several related lineages does not necessarily prevent adaptive radiation, although it constrains the trajectories of morphological diversification. It might instead facilitate adaptive radiation when hybridization generates genetic variation, without which radiation may start much later, progress more slowly or never occur. 1 Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution,UniversityofBern,Baltzerstr.6,CH-3012Bern,Switzerland.2 Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
    [Show full text]
  • A Replacement Name for the Preoccupied Genus Name Adamas Huber, 1979 (Actinopterygii: Cyprinodontiformes)
    _____________Mun. Ent. Zool. Vol. 1, No. 1, January 2006___________ 167 A REPLACEMENT NAME FOR THE PREOCCUPIED GENUS NAME ADAMAS HUBER, 1979 (ACTINOPTERYGII: CYPRINODONTIFORMES) Hüseyin Özdikmen*, Nazmi Polat**, Mahmut Yılmaz*** and Okan Yazıcıoğlu*** * Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mail: [email protected] ** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mail: [email protected] *** Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 06500 Ankara / TÜRKİYE, e-mails: [email protected]; [Özdikmen, H., Polat, N., Yılmaz, M. & Yazıcıoğlu, O. 2006. A replacement name for the preoccupied genus name Adamas Huber, 1979 (Actinopterygii: Cyprinodontiformes). Munis Entomology & Zoology, 1 (1): 167-168] ABSTRACT: A replacement name, Fenerbahce is proposed for the genus name Adamas Huber, 1979 in the fish family Aplocheilidae (Cyprinodontiformes). KEY WORDS: Fenerbahce, Adamas, homonymy, replacement name, Actinopterygii, Cyprinodontiformes, Aplocheilidae. Class Actinopterygii Order Cyprinodontiformes Family Aplocheilidae Genus Fenerbahce nom. nov. Adamas Huber, 1979. Journal Am. Killifish Ass. 12 (6): 166 and Revue fr. Aquariol. Herpetol. 6 (1): 6. (Actinopterygii: Cyprinodontiformes: Aplocheiloidei: Aplocheilidae: Aplocheilinae). Preoccupied by Adamas Malaise, 1945. Opusc. ent., Lund, Suppl. 4, 97. (Hymenoptera: Symphyta: Tenthredinoidea: Tenthredinidae: Allantinae: Adamasini). The genus name Adamas was proposed by Malaise, 1945 as an objective replacement name of the genus Dinax Konow, 1897 with the type species Dinax jakowleffi Konow, 1897. For the present, the genus Adamas Malaise, 1945 includes six species (Wei, 2004). Subsequently, the genus Adamas was described by Huber, 1979 with the type species Adamas formosus Huber, 1979 by monotypy from in front of Ntokou village near the banks of Likouala-Mossaka River, Congo.
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what
    [Show full text]
  • Mitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes
    What, if Anything, is a Tilapia?ÐMitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes Vera Klett and Axel Meyer Department of Biology, University of Konstanz, Germany We estimated a novel phylogeny of tilapiine cichlid ®sh (an assemblage endemic to Africa and the Near East) within the African cichlid ®shes on the basis of complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene sequences. The ND2 (1,047 bp) gene was sequenced in 39 tilapiine cichlids (38 species and 1 subspecies) and in an additional 14 nontilapiine cichlid species in order to evaluate the traditional morphologically based hypothesis of the respective monophyly of the tilapiine and haplochromine cichlid ®sh assemblages. The analyses included many additional cichlid lineages, not only the so-called tilapiines, but also lineages from Lake Tanganyika, east Africa, the Neotropics and an out-group from Madagascar with a wide range of parental care and mating systems. Our results suggest, in contrast to the historical morphology-based hypotheses from Regan (1920, 1922), Trewavas (1983), and Stiassny (1991), that the tilapiines do not form a monophyletic group because there is strong evidence that the genus Tilapia is not monophyletic but divided into at least ®ve distinct groups. In contrast to this ®nding, an allozyme analysis of Pouyaud and AgneÁse (1995), largely based on the same samples as used here, found a clustering of the Tilapia species into only two groups. This discrepancy is likely caused by the difference in resolution power of the two marker systems used. Our data suggest that only type species Tilapia sparrmanii Smith (1840) should retain the genus name Tilapia.
    [Show full text]