AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER

Total Page:16

File Type:pdf, Size:1020Kb

AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus _________________________ 275 Campylomormyrus (elephant-snouted mormyrids), Chrysichthys ______ 276 Steatocranus and Teleogramma are fully revised. N otoglanidium -------------------------------------------- 27 6 Of 16 nominal species of Campylomormyrus, only Gymnallabes _______________ _____ ____________________ 277 three are regarded as biologically valid. In addition Atopochilus ______________________ __________________________ 278 to one new Steatocranus from the mainstream of Chiloglanis -------------------------------------------- 282 the Lower Zaire River, two new species of this Lamprologus _______ ________________ _______________ 283 rheophilic cichlid genus are described from else­ N anochromis ---------------------------------------- 284 where in the Zaire basin, making a total of 21 new Steatocranus _____________________ 292 fishes described in this paper. Leptotilapia is T eleogramma ---------------------------------------- 300 M astacembelus ________________________ _____________________ 302 placed in the synonymy of Steatocranus, which now comprises eight species. Bryconaethiops Reproduction --------------------------------------- 308 Adaptations ________________ __________________________ 309 yseuxi is shown to be a valid species, and data on the number of mandibular tooth families are Discussion ____ --------------------------------- 314 Literature Cited _____________________________________________ 315 used to distinguish the closely related Atopochilus guentheri and A. royauxi. Two ecological categories of highly specialized ABSTRACT. Rapids habitats at nine localities rapids fishes are recognized: strongly rheophilic along the mainstream of the Zaire River between or current-loving, comprising 58 of the species Kinshasa and Matadi were fished extensively with in our survey, and hyporheic or intrusive, com­ rotenone during low water, yielding over 7000 prising eight species which evidently avoid light specimens belonging to 129 species. A total of 17 as well as strong current by delving deeply into families are represented, the most speciose being the interstices offered by jumbled piles of rocks, Mormyridae ( 19 species), Cyprinidae ( 19), and perhaps, in some cases, burrowing into mud Cichlidae ( 17), and Mochokidae ( 16). Limnologi­ or loose rubble. The most consistent evolutionary cal and ecological observations are reported for modification of the rapids fishes is reduction (but not complete loss) of the eyes. Of 66 highly 1 Museum of Comparative Zoology, Cambridge, specialized rapids fishes, 26 are microphthalmic Mass. 02138. (with small or minute eyes superficial in position), 2 Laboratory of Limnology, University of Wis­ five cryptophthalmic (eyes reduced in size and consin, Madison, Wise. 53706. partially or completely covered over by skin and Bull. Mus. Comp. Zool., 147(6): 239-317, February, 1976 239 240 Bulletin Museum of Comparative Zoology, Vol. 147, No. 6 other tissues), and only one is anophthalmic for us to collect at Inga. We were greatly (totally without eyes) . The most startling dis­ assisted on numerous occasions by the covery of the survey is a cryptophthalmic cichlid of the genus Lamprologus. This is the first re­ citizens of Zaire. A number of missions ported blind species of percoid fishes. provided accommodations and other forms Some relationships between the rapids fishes of assistance at various times, especially the and the ichthyofauna of the Zaire basin and of Catholic mission at Tumba and the Prot­ Africa as a whole are pointed out in the discussion. estant missions in Luozi and Kibunzi. In The opportunities for speciation and adaptation provided by rapids habitats have contributed Kinshasa we received much help from our significantly to the diversity of the highly en­ friends M. and Mde. R. LeFer. demic ichthyofauna of the Zaire basin, a process For consulting with us on the rapids much less noticeable elsewhere in Africa, where fishes and for helping with the identifi­ highly specialized rapids fishes are relatively few. cation of a number of species we found A few rheophilic genera, namely Campylomormy­ rus, Atopochilus, and Steatocranus, presumably particularly troublesome, we are indebted evolved in the Zaire basin, subsequently spreading to our friend and colleague, Prof. :Max Poll, to one or more river systems in the adjacent Lower who has been studying and publishing on Guinean and Nilo-Sudanic ichthyofaunal provinces. the fishes of Zaire steadily since 1932. Mr. The great majority of species of rapids fishes in Gordon Howes responded with his char­ the Zaire basin are endemic, many of them ap­ parently restricted to the 300-km stretch of the acteristic promptness and thoroughness to Lower Zaire River between Kinshasa and Matadi. our requests for information about types Most of the rapids genera, however, are widely and other specimens housed in the British (if discontinuously) distributed in the Zaire basin, Museum. Drs. Ruth Turner and John wherever suitable habitat occurs. Perhaps the Lawrence, of the Museum of Comparative most striking aspect of the taxonomic composition of the Zairean rapids fishes is the preponderance Zoology, kindly identified mollusks and of Cichlidae, which cor.tributed more than a insects recovered from the guts of our fish third of the endemic rapids species and also more specimens. The photographs of fishes were than a third of the total number of individual prepared by Mr. Alphonse Coleman and specimens taken during our rapids survey. Such Miss Paula Chandoha in the photographic predominance of Cichlidae is a noteworthy con­ trast to the situation in rich riverine faunas every­ lab of the Museum of Comparative Zoology, where else in Africa, including low gradient rivers and were paid for by a grant from the in the Zaire basin, where cichlid species, en­ Milton Fund of Harvard University. Pub­ demic or not, are always few in number and lication was assisted by a grant from the seldom contribute substantially to the numbers Wetmore Colles Fund. of individuals present. Evolution in rocky rapids habitats may well have contributed to preadapt For the loan of specimens in their care, Zairean cichlids, including Lamprologus, to ex­ we express our thanks to Dr. Donn E. plosive lacustrine evolution along the rocky shores Rosen, American Museum of Natural of Lake Tanganyika. History; Drs. William N. Eschmeyer and Warren C. Freihofer, California Academy ACKNOWLEDGMENTS of Sciences; Dr. Thys van den Audenaerde, The fieldwork for this survey was con­ Musee Royale de l'Afrique Centrale; and ducted with a grant from the National Dr. Reeve M. Bailey, Museum of Zoology Geographic Society; we are grateful to the of the University of Michigan. We are Society's Committee for Research and Ex­ indebted to Dr. Ethelwvnn Trewavas, ploration for their support. Permission to British Museum (Natura( History), for collect and export specimens for study was reviewing the manuscript and providing granted by the Office National de la constructive criticism. Recherche et du Developpement of the Republic of Zaire, under the direction of INTRODUCTION Dr. Nguete Kikhela. The Societe Nationale The Zaire or Congo basin, with an area d'Electricite ( SNEL) granted permission of 3,822,000 km, lies at the heart of Africa. RAPIDS FisHEs OF ZAIRE • Roberts and Stewart 241 About 37o/o of its catchment is in the north­ the next 300 km, as the river flows over ern hemisphere and 63o/o in the southern. the sill and on through a gorge in the The Upper Zaire River or Lualaba arises in Crystal Mountains, it is broken by numer­ Zambia and flows northward to Kisangani; ous cataracts, with intermittent stretches its catchment lies south of the Equator and of calm water. The last of the rapids, just includes lakes Bangweulu, Moero, Kivu, upstream from Matadi, are about 130 km and Tanganyika. The Middle Zaire River from the sea. Between Kinshasa and flows westward in a great arc from Kisan­ Matadi the river drops 270 m; the average gani to Kinshasa. Its
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Evidence of Hidden Diversity and Taxonomic Conflicts in Five Stream Fishes from the Eastern Zimbabwe Highlands Freshwater Ecoregion
    A peer-reviewed open-access journal ZooKeys 768: 69–95Evidence (2018) of hidden diversity and taxonomic conflicts in five stream fishes... 69 doi: 10.3897/zookeys.768.21944 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion Albert Chakona1,2, Wilbert T. Kadye2, Taurai Bere3, Daniel N. Mazungula1,2, Emmanuel Vreven4,5 1 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa, 6140 2 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa, 6140 3 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe 4 Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080, Tervuren, Belgium 5 KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutio- nary Genomics, Deberiotstraat 32, 3000 Leuven, Belgium Corresponding author: Albert Chakona ([email protected]) Academic editor: N. Bogutskaya | Received 30 October 2018 | Accepted 25 April 2018 | Published 19 June 2018 http://zoobank.org/9621930C-8C43-40D0-8554-684035E99FAA Citation: Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven E (2018) Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zookeys.768.21944 Abstract
    [Show full text]
  • Belonidae Bonaparte 1832 Needlefishes
    ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft).
    [Show full text]
  • Cinquieme Rapport National Sur La Diversite Biologique
    PROGAMME DES NATIONS UNIES FONDS MONDIAL REPUBLIQUE DU CONGO POUR L’ENVIRONNEMENT POUR L’ENVIRONNEMENT CINQUIEME RAPPORT NATIONAL SUR LA DIVERSITE BIOLOGIQUE MARS 2014 PARTIE PRESENTANT LE RAPPORT PARTIE CONTRACTANTE REPUBLIQUE DU CONGO CORRESPONDANT NATIONAL NOM COMPLET DE L’ORGANISME : DIRECTION GENERALE DU DEVELOPPEMENT DURABLE NOM ET FONCTION DU CHARGE DE LIAISON NGOLIELE AUGUSTIN, DIRECTEUR DE L’ECOLOGIE ET DES RESSOURCES NATURELLES, POINT FOCAL CDB ADRESSE TÉLÉPHONE (242) 066938127 &(242) 0556 33 01 FAX COURRIEL [email protected] CHARGE DE LIAISON POUR LE RAPPORT NATIONAL NOM COMPLET DE L’ORGANISME : DIRECTION GENERALE DU DEVELOPPEMENT DURABLE NOM ET FONCTION DU CHARGE DE LIAISON NGOLIELE AUGUSTIN, DIRECTEUR DE L’ECOLOGIE ET DES RESSOURCES NATURELLES, POINT FOCAL CDB ADRESSE TÉLÉPHONE (242) 066938127 & (242) 0556 33 01 FAX - COURRIEL [email protected] SIGNATURE DE L’ADMINISTRATEUR AULA CHARGE DE LA PRESENTATION DU RAPPORT NATIONAL 07 AVRIL 2014 DATE D’ENVOI : 2 SIGLES ET ABREVIATIONS APA : Accès et Partage des Avantages issus de l’exploitation des Ressources génétiques BD : Biodiversité CBD : Convention sur la Diversité Biologique CERAG : Centre de Recherches sur l’Amélioration Génétique des Plantes CERVE : Centre d’Etude sur les Ressources Végétales CITES : Convention sur le Commerce International des Espèces de Flore et faune Sauvages ménacées d’extinction CNIAF: Centre national d’inventaires Fauniques et Forestiers COP : Conférence des Parties CPAL : Centre Pilote d’Afforestation en Limba CRAFFO: Centre de Recherches Agronomiques
    [Show full text]
  • Neolamprologus Longicaudatus, a New Cichlid Fish from the Zairean Coast of Lake Tanganyika
    Japan. J. Ichthyol. 魚 類 学 雑 誌 42(1): 39-43, 1995 42(1): 39-43, 1995 Neolamprologus longicaudatus, a New Cichlid Fish from the Zairean Coast of Lake Tanganyika Kazuhiro Nakaya1 and Masta Mukwaya Gashagaza2 Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido1 University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041, Japan 2Centre de Recherche en Hydrobiologie , Uvira, Zaire, B.P. 254, Bujumbura, Burundi (Received September 9, 1994; in revised form February 10, 1995; accepted March 17, 1995) Abstract A new cichlid, Neolamprologus longicaudatus sp. nov. is described , based on three specimens from the north Zairean coast of Lake Tanganyika. Although similar to N. furcifer, N. christyi and N. buescheri in having an elongate body, strongly emarginate caudal fin, and vertical fins partly covered with scales, this species is distinguishable from them by its small orbit, light grayish-brown coloration of body, dorsal fin lacking a submarginal dark band, 37 longitudinal body scales, 8 gill rakers on lower limb of the 1st gill arch, and a long pointed snout. Neolamprologus is a genus of the family Cichlidae Neolamprologus longicaudatus sp. nov. in Lake Tanganyika, one of the Great Rift Valley (Figs. 1, 2) lakes in the central east Africa. Lake Tanganyika is famous for its remarkable endemism seen in the Neolamprologussp. "Kavalla" Konings and Dieckhof ,f cichlid fishes, and the genus Neolamprologus is also 1992:150, fig. (Milima Island, Zair e) . endemic to the lake. Neolamprologus is the largest Holotype. HUMZ (Laboratory of Marine Zoolog y , genus among Lake Tanganyikan cichlids, and 42 Faculty of Fisheries, Hokkaido University) 12767 0 , species are presently known from the lake (Biischer, 85.5mm in standard length (SL), Cape Banza, Ubwar i 1991, 1992a, 1992b, 1993; Marechal and Poll, 1991).
    [Show full text]
  • Eco-Ethology of Shell-Dwelling Cichlids in Lake Tanganyika
    ECO-ETHOLOGY OF SHELL-DWELLING CICHLIDS IN LAKE TANGANYIKA THESIS Submitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University by IAN ROGER BILLS February 1996 'The more we get to know about the two greatest of the African Rift Valley Lakes, Tanganyika and Malawi, the more interesting and exciting they become.' L.C. Beadle (1974). A male Lamprologus ocel/alus displaying at a heterospecific intruder. ACKNOWLEDGMENTS The field work for this study was conducted part time whilst gworking for Chris and Jeane Blignaut, Cape Kachese Fisheries, Zambia. I am indebted to them for allowing me time off from work, fuel, boats, diving staff and equipment and their friendship through out this period. This study could not have been occured without their support. I also thank all the members of Cape Kachese Fisheries who helped with field work, in particular: Lackson Kachali, Hanold Musonda, Evans Chingambo, Luka Musonda, Whichway Mazimba, Rogers Mazimba and Mathew Chama. Chris and Jeane Blignaut provided funds for travel to South Africa and partially supported my work in Grahamstown. The permit for fish collection was granted by the Director of Fisheries, Mr. H.D.Mudenda. Many discussions were held with Mr. Martin Pearce, then the Chief Fisheries Officer at Mpulungu, my thanks to them both. The staff of the JLB Smith Institute and DIFS (Rhodes University) are thanked for help in many fields: Ms. Daksha Naran helped with computing and organisation of many tables and graphs; Mrs. S.E. Radloff (Statistics Department, Rhodes University) and Dr. Horst Kaiser gave advice on statistics; Mrs Nikki Kohly, Mrs Elaine Heemstra and Mr.
    [Show full text]
  • Consistency of Individual Differences in Behaviour of the Lion-Headed Cichlid, Steatocranus Casuarius
    Behavioural Processes 48 (1999) 49–55 www.elsevier.com/locate/behavproc Consistency of individual differences in behaviour of the lion-headed cichlid, Steatocranus casuarius Sergey V. Budaev *, Dmitry D. Zworykin, Andrei D. Mochek A.N. Se6ertso6 Institute of Ecology and E6olution, Russian Academy of Sciences, Leninsky prospect 33, 117071 Moscow, Russia Received 29 April 1999; received in revised form 9 September 1999; accepted 14 September 1999 Abstract The development of individual differences in behaviour in a novel environment, in the presence of a strange fish and during aggressive interactions with a mirror-image was studied in the lion-headed cichlid (Steatocranus casuarius, Teleostei, Cichlidae). No consistency in behaviour was found at 4–5.5 months of age. However, behaviours scored in situations involving a discrete source of stress (a strange fish or conspecific) become significantly consistent at the age of 12 months. At 4–5.5 but not 12 months of age, larger individuals approached and attacked the strange fish significantly more than smaller ones. These patterns may be associated with development and integration of motivational systems and alternative coping strategies. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Aggression; Consistency; Individual differences; Exploratory behaviour; Temperament 1. Introduction ysis of the development of individuality. More- over, while various aspects of its ontogeny have Individual differences and alternative strategies been studied in mammals (e.g. Fox, 1972; Mac- have been documented in animals of many spe- Donald, 1983; Stevenson-Hinde, 1983; Lyons et cies. It is known that they may be adaptive and al., 1988; Loughry and Lazari, 1994), the develop- arise within the population for a variety of rea- ment of individual differences in behaviour, espe- sons (Slater, 1981; Clark and Ehlinger, 1987; cially in consistent behavioural traits, is almost an Magurran, 1993; Wilson et al., 1994).
    [Show full text]
  • Article Genomic Evidence That Blind Cavefishes Are Not Wrecks of Ancient Life
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446701; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Article 2 3 Genomic evidence that blind cavefishes are not wrecks of ancient life 4 5 6 Maxime Policarpo1, Patrick Laurenti2,7, Erik García-Machado3,4, Cushla Metcalfe5, Sylvie 7 Rétaux*,6 and Didier Casane*,1,7 8 9 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et 10 Écologie, 91198, Gif-sur-Yvette, France. 11 2 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 12 3 Department of Biology, Institut de Biologie Intégrative et des Systèmes, Université Laval, 13 1030 Avenue de la Médecine, Québec City, Québec G1V 0A6, Canada. 14 4 Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16, No. 114 entre 1ra y 15 3ra, Miramar, Playa, La Habana 11300, Cuba. 16 5 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 17 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- 18 Yvette, France. 19 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. 20 21 * Corresponding authors: e-mails: [email protected]; [email protected] 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446701; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • A Guide to the Parasites of African Freshwater Fishes
    A Guide to the Parasites of African Freshwater Fishes Edited by T. Scholz, M.P.M. Vanhove, N. Smit, Z. Jayasundera & M. Gelnar Volume 18 (2018) Chapter 2.1. FISH DIVERSITY AND ECOLOGY Martin REICHARD Diversity of fshes in Africa Fishes are the most taxonomically diverse group of vertebrates and Africa shares a large portion of this diversity. This is due to its rich geological history – being a part of Gondwana, it shares taxa with the Neotropical region, whereas recent close geographical affnity to Eurasia permitted faunal exchange with European and Asian taxa. At the same time, relative isolation and the complex climatic and geological history of Africa enabled major diversifcation within the continent. The taxonomic diversity of African freshwater fshes is associated with functional and ecological diversity. While freshwater habitats form a tiny fraction of the total surface of aquatic habitats compared with the marine environment, most teleost fsh diversity occurs in fresh waters. There are over 3,200 freshwater fsh species in Africa and it is likely several hundreds of species remain undescribed (Snoeks et al. 2011). This high diversity and endemism is likely mirrored in diversity and endemism of their parasites. African fsh diversity includes an ancient group of air-breathing lungfshes (Protopterus spp.). Other taxa are capable of breathing air and tolerate poor water quality, including several clariid catfshes (e.g., Clarias spp.; Fig. 2.1.1D) and anabantids (Ctenopoma spp.). Africa is also home to several bichir species (Polypterus spp.; Fig. 2.1.1A), an ancient fsh group endemic to Africa, and bonytongue Heterotis niloticus (Cuvier, 1829) (Osteoglossidae), a basal actinopterygian fsh.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • The Fishesof Uganda-I
    1'0 of the Pare (tagu vaIley.': __ THE FISHES OF UGANDA-I uku-BujukUf , high peaks' By P. H. GREENWOOD Fons Nilus'" East African Fisheries Research Organization ~xplorersof' . ;ton, Fresh_ CHAPTER I I\.bruzzi,Dr: knowledge : INTRODUCTION ~ss to it, the ,THE fishes of Uganda have been subject to considerable study. Apart from .h to take it many purely descriptive studies of the fishes themselves, three reports have . been published which deal with the ecology of the lakes in relation to fish and , fisheries (Worthington (1929a, 1932b): Graham (1929)).Much of the literature is scattered in various scientific journals, dating back to the early part of the ; century and is difficult to obtain iIi Uganda. The more recent reports also are out of print and virtually unobtainable. The purpose .of this present survey is to bring together the results of these many researches and to present, in the light of recent unpublished information, an account of the taxonomy and biology of the many fish species which are to be found in the lakes and rivers of Uganda. Particular attention has been paid to the provision of keys, so that most of the fishesmay be easily identified. It is hardly necessary to emphasize that our knowledge of the East African freshwater fishes is still in an early and exploratory stage of development. Much that has been written is known to be over-generalized, as conclusions were inevitably drawn from few and scattered observations or specimens. From the outset it must be stressed that the sections of this paper dealing with the classification and description of the fishes are in no sense a full tax- onomicrevision although many of the descriptions are based on larger samples than were previously available.
    [Show full text]
  • Global Catfish Biodiversity 17
    American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh.
    [Show full text]