Nucleophilic Substitution at Nitrogen: Mechanisms and Intermediates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aniline and Aniline Hydrochloride
SOME AROMATIC AMINES AND RELATED COMPOUNDS VOLUME 127 This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 25 May–12 June 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS ANILINE AND ANILINE HYDROCHLORIDE 1. Exposure Characterization 1.1.2 Structural and molecular formulae, and relative molecular mass 1.1 Identification of the agent (a) Aniline 1.1.1 Nomenclature NH2 (a) Aniline Chem. Abstr. Serv. Reg. No.: 62-53-3 EC No.: 200-539-3 Molecular formula: C H N IUPAC systematic name: aniline 6 7 Relative molecular mass: 93.13 (NCBI, 2020a). Synonyms and abbreviations: benzenamine; phenylamine; aminobenzene; aminophen; (b) Aniline hydrochloride aniline oil. NH2 (b) Aniline hydrochloride Chem. Abstr. Serv. Reg. No.: 142-04-1 EC No.: 205-519-8 HCl IUPAC systematic name: aniline hydro - Molecular formula: C6H8ClN chloride Relative molecular mass: 129.59 (NCBI, Synonyms: aniline chloride; anilinium chlo- 2020b). ride; benzenamine hydrochloride; aniline. HCl; phenylamine hydrochloride; phenylam- monium chloride. 1.1.3 Chemical and physical properties of the pure substance Aniline is a basic compound and will undergo acid–base reactions. Aniline and its hydrochlo- ride salt will achieve a pH-dependent acid–base equilibrium in the body. 109 IARC MONOGRAPHS – 127 (a) Aniline Octanol/water partition coefficient (P): log Kow, 0.936, predicted median (US EPA, 2020b) Description: aniline appears as a yellowish Conversion factor: 1 ppm = 5.3 mg/m3 [calcu- to brownish oily liquid with a musty fishy lated from: mg/m3 = (relative molecular odour (NCBI, 2020a), detectable at 1 ppm 3 mass/24.45) × ppm, assuming temperature [3.81 mg/m ] (European Commission, 2016; (25 °C) and pressure (101 kPa)]. -
Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang
Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang A thesis submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta ©Yannick Djoumbou Feunang, 2017 ii Abstract Metabolites are small molecules (<1500 Da) that are used in or produced during chemical reactions in cells, tissues, or organs. Upon absorption or biosynthesis in humans (or other organisms), they can either be excreted back into the environment in their original form, or as a pool of degradation products. The outcome and effects of such interactions is function of many variables, including the structure of the starting metabolite, and the genetic disposition of the host organism. For this reasons, it is usually very difficult to identify the transformation products as well as their long-term effect in humans and the environment. This can be explained by many factors: (1) the relevant knowledge and data are for the most part unavailable in a publicly available electronic format; (2) when available, they are often represented using formats, vocabularies, or schemes that vary from one source (or repository) to another. Assuming these issues were solved, detecting patterns that link the metabolome to a specific phenotype (e.g. a disease state), would still require that the metabolites from a biological sample be identified and quantified, using metabolomic approaches. Unfortunately, the amount of compounds with publicly available experimental data (~20,000) is still very small, compared to the total number of expected compounds (up to a few million compounds). For all these reasons, the development of cheminformatics tools for data organization and mapping, as well as for the prediction of biotransformation and spectra, is more crucial than ever. -
Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation. -
UNITED STATES PATENT Office 2,377,193 PROCESS for the PRODUCTION of by DROXYAMMONUM, CLOB OE Philip F
EPaRenees: Ray 29, 1945 2,377,193 UNITED STATES PATENT office 2,377,193 PROCESS FOR THE PRODUCTION OF BY DROXYAMMONUM, CLOB OE Philip F. Tryon, Terre Baute, nd, assignor to Commercial Solvents Corporation, Terre Haute, Ind., a corporation of Maryland No Drawing. Application October 9, 1943, Serial No. 505,664 10 Claims. (c. 23-87) My invention relates to a process for the pro and used as the source, of solvent for another duction of hydroxylammonium chloride. More reaction solution. The crystals obtained from particularly, it relates to a process for the pro this process are preferably dried for approxi duction of hydroxylammonium chloride by there- . mately two hours at 70-80 C. action of hydroxylammonium sulfate with hydro The reaction is effected with satisfactory re chloric acid. sults without the presence of a lower alcohol sol Prior methods of preparing hydroxylammoni went. However, slightly better yields are obtained um chloride have generally been unsatisfactory and the separation of the reaction product is in view of the relatively long and involved pro more easily accomplished when utilizing a lower cedures utilized, and the comparatively low yields O alcohol solvent, such as methanol. Also, it is obtained thereby, Typical of the former methods sometimes advantageous to heat the reaction employed in the synthesis of hydroxylammonium mixture to an elevated temperature of approx chloride, is the procedure involving the use of so imately 70° C. In such instances, however, little dium nitrite, sodium bisulfite and sulfur dioxide if any advantage is obtained by keeping the lower . to produce sodium hydroxylamine disulfonate, 15 alcohol reaction mixture at an elevated tempera which is in turn treated with acetone to form ac ture for an extended length of time. -
Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis Guojian Lu Washington University in St
Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 1-15-2011 Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis Guojian Lu Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lu, Guojian, "Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis" (2011). All Theses and Dissertations (ETDs). 612. https://openscholarship.wustl.edu/etd/612 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST.LOUIS Department of Chemistry Dissertation Examination Committee: Prof. Vladimir B. Birman, Chair Prof. Mikhail Berezin Prof. John R. Bleeke Prof. James W. Janetka Prof. Kevin D. Moeller Prof. John-Stephen Taylor Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis By Guojian Lu A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2011 Saint Louis, Missouri ABSTRACT OF THE DISSERTATION Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis by Guojian Lu Doctor of Philosophy in Chemistry Washington University in St. Louis, 2011 Professor Vladimir B. Birman, Chairperson Chiral bicyclic amidines and isothioureas developed in our group have been showed as a new type of nucleophilic acyl transfer catalysts. -
Chemical Name
List of substances banned for use in cosmetic products as from 1 December 2010 (updated July 2015) The following substances are classified as CMR substances of category 1A, 1B or 2 under Commission Regulation (EC) No 790/2009 and successive amendments of the Regulation 1272/2008.1 Therefore, these substances are banned for use in cosmetic products as from 1 December 2010 (which is the starting date of application of their classification), in accordance with Article 15 of the Cosmetics Regulation (EC) 1223/2009. Please note that some of the substances classified as CMR substances under Commission Regulation (EC) No 790/2009 and the successive amending regulations had already been regulated in Annex II to the Cosmetics Regulation through previous adaptations to technical progress of the Annexes to the Cosmetics Directive (which had been taken over by the Cosmetics Regulation at the time of its adoption in November 2009). They continue therefore to be listed in this Annex and to be banned for use in cosmetics, and are thus not included in the list below. In addition, some substances classified as CMR substances under Commission Regulation (EC) No 790/2009 and the successive amending regulations are considered to be covered by existing entries in Annex II to the Cosmetics Regulation and are not included in the list below. Chemical name EC No CAS No O-isobutyl-N-ethoxy carbonylthiocarbamate 434-350-4 103122-66-3 chlorpropham (ISO); 202-925-7 101-21-3 isopropyl 3-chlorocarbanilate hydroxylammonium nitrate 236-691-2 13465-08-2 reaction mass of: 4,7-bis(mercaptomethyl)-3,6,9-trithia- 427-050-1 - 1,11-undecanedithiol-; 4,8-bis(mercaptomethyl)-3,6,9-trithia-1,11- undecanedithiol; 5,7-bis(mercaptomethyl)-3,6,9-trithia-1,11- undecanedithiol cobalt acetate 200-755-8 71-48-7 1 This list does not contain the substance Musk Ketone (CAS 81-14-1), even though it has been classified as a CMR 2 substance by Commission Regulation 790/2009. -
Synthesis of Oligonucleotides Synthese Von Oligonukleotiden Synthèse D’Oligonucléotides
Europäisches Patentamt *EP000984021B1* (19) European Patent Office Office européen des brevets (11) EP 0 984 021 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07H 21/00, C07B 61/00, of the grant of the patent: C07H 19/10, C07H 19/20 27.04.2005 Bulletin 2005/17 (21) Application number: 99306168.8 (22) Date of filing: 03.08.1999 (54) Synthesis of oligonucleotides Synthese von Oligonukleotiden Synthèse d’oligonucléotides (84) Designated Contracting States: • BERGMANN ET AL.: "ALLYL AS DE FR GB INTERNUCLEOTIDE PROTECTING GROUP IN DNA SYNTHESIS TO BE CLEAVED OFF BY (30) Priority: 03.08.1998 US 128052 AMMONIA" TETRAHEDRON, vol. 51, no. 25, 22.06.1999 US 338179 1995, pages 6971-6976, XP002167838 • BERGMANN F ET AL: "NUCLEOTIDES PART XLI (43) Date of publication of application: 1) THE 2-DANSYLETHOXYCARBONYL (=2-((5- 08.03.2000 Bulletin 2000/10 DIMETHYLAMINO)NAPTHALEN-1-YL)SULFONY L)ETHO XYCARBONYL;DNSEOC) GROUP FOR (73) Proprietor: Agilent Technologies, Inc. (a Delaware PROTECTION OF THE 5’-HYDROXY FUNCTION corporation) IN OLIGORIBONUCLEOTIDE SYNTHESIS" Palo Alto, CA 94303 (US) HELVETICA CHIMICA ACTA, vol. 77, 1994, pages 203-214, XP002167878 ISSN: 0018-019X (72) Inventors: • PIRRUNG ET AL.: "PROOFING OF • Dellinger, Douglas J. PHOTOLITHOGRAPHIC DNA SYNTHESIS WITH Sunnyvale, CA 94087 (US) 3’,5’-DIMETHOXYBENZOINYLOXYCARBONYL- • Caruthers, Marvin H. PROTEC TED DEOXYNUCLEOSIDE Boulder, CO 80303 (US) PHOSPHORAMIDITES" JOURNAL OF ORGANIC • Betley, Jason R. CHEMISTRY, vol. 63, 1998, pages 241-246, Bury St. Edmunds, Suffolk IP28 6HW (GB) XP000916248 • SIGMUND ET AL.: "A NEW TYPE OF (74) Representative: Howard, Paul Nicholas FLUORESCENCE LABELLING OF Carpmaels & Ransford NUCLEOSIDES, NUCLEOTIDES AND 43 Bloomsbury Square OLIGONUCLEOTIDES" NUCLEOSIDES AND London WC1A 2RA (GB) NUCLEOTIDES, vol. -
Gas-Phase Ion Chemistry: Kinetics and Thermodynamics
Gas-Phase Ion Chemistry: Kinetics and Thermodynamics by Charles M. Nichols B. S., Chemistry – ACS Certified University of Central Arkansas, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2016 This thesis entitled: Gas-Phase Ion Chemistry: Kinetics and Thermodynamics Written by Charles M. Nichols has been approved for the Department of Chemistry and Biochemistry by: _______________________________________ Veronica M. Bierbaum _______________________________________ W. Carl Lineberger Date: December 08, 2015 A final copy of this thesis has been examined by all signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Nichols, Charles M. (Ph.D., Physical Chemistry) Gas Phase Ion Chemistry: Kinetics and Thermodynamics Thesis directed by Professors Veronica M. Bierbaum and W. Carl Lineberger Abstract: This thesis employs gas-phase ion chemistry to study the kinetics and thermodynamics of chemical reactions and molecular properties. Gas-phase ion chemistry is important in diverse regions of the universe. It is directly relevant to the chemistry occurring in the atmospheres of planets and moons as well as the molecular clouds of the interstellar medium. Gas-phase ion chemistry is also employed to determine fundamental properties, such as the proton and electron affinities of molecules. Furthermore, gas-phase ion chemistry can be used to study chemical events that typically occur in the condensed-phase, such as prototypical organic reactions, in an effort to reveal the intrinsic properties and mechanisms of chemical reactions. -
Safety Data Sheet - Version 5.0 Preparation Date 2/5/2016 Latest Revision Date (If Revised) SDS Expiry Date 2/3/2019
Safety Data Sheet - Version 5.0 Preparation Date 2/5/2016 Latest Revision Date (If Revised) SDS Expiry Date 2/3/2019 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier Chemical Name Hydroxylamine Sulfate Catalogue # H943830 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against Product Uses To be used only for scientific research and development. Not for use in humans or animals. 1.3 Details of the Supplier of the Safety Data Sheet Company Toronto Research Chemicals 2 Brisbane Road Toronto, ON M3J 2J8 CANADA Telephone +14166659696 FAX +14166654439 Email [email protected] 1.4 Emergency Telephone Number Emergency# +14166659696 between 0800-1700 (GMT-5) 2. HAZARDS IDENTIFICATION WHMIS Classification (Canada) WHMIS Symbols (Canada) D2A Very Toxic Material Causing Other Toxic Effects Chronic Toxicity D2B Toxic Material Causing Other Toxic Effects Carcinogen E Corrosive Material 2.1/2.2 Classification of the Substance or Mixture and Label Elements GHS Hazards Classification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Corrosive to Metals (Category 1) Acute Toxicity, Oral (Category 4) Acute Toxicity, Dermal (Category 4) Skin Irritation (Category 2) Serious Eye Irritation (Category 2A) Sensitisation, Skin (Category 1) Carcinogenicity (Category 2) Specific Target Organ Toxicity, Repeated Exposure (Category 2) Hazardous to the Aquatic Environment, Acute Hazard (Category 1) Hazardous to the Aquatic Environment, Long-Term Hazard (Category 3) EU Classification (According to EU Regulation 67/548/EEC) Harmful in contact with skin and if swallowed. Irritating to eyes and skin. May cause sensitization by skin contact. -
Topics in Safety Topic 13: Allergic Responses Within School Science
Topics in Safety ASE Health & Safety Group Topic 13: Allergic responses within school science This Topic has been updated to reflect that, as incidences of allergies of all sorts have increased, dealing with them has become a whole-school issue rather than just of concern to the science department. The incidence of allergies, and its reporting, have become increasingly common. Some research suggests this is because we live in increasingly clean environments and so children do not build up immunity at a young age. Allergy results initially from exposure to a sensitiser. Respiratory sensitisers cause asthma. Once sensitisation has occurred, individuals will respond to much lower exposures in the future. There is no way of determining the threshold concentration for sensitisation or for subsequent triggering of an allergic reaction in sensitised individuals. Sensitisation usually takes months, or even years, of exposure to the sensitiser. Allergy symptoms may occur immediately after exposure, or may be delayed for several hours. There is some evidence to suggest that individuals with one significant allergic reaction may be more likely to develop allergy to other substances. A school should have an agreed policy and set of procedures to know about and deal with allergic responses in both children and staff. 13.1 Advice for science departments Science, departments should ensure that they: have a mechanism for receiving, and recording, whole school information about individuals (students, teachers, technicians) who are allergic to particular -
John O. Edwards, a Half-Century of Peroxide Chemistry: a Translation from R
Chem. Educator 2020, 25, 31–36 31 John O. Edwards, A Half-Century of Peroxide Chemistry: A translation from R. Curci, L. D'Accolti, & C. Fusco (2006) La Chimica e l'Industria, 88(6): 32–39 Edward J. Behrman Prof. Emeritus, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, [email protected] Abstract: A brief summary is presented of the life and scientific work of Prof. John O. Edwards (Brown University, USA) and honorary member of the Italian Chemical Society who died recently. We summarize his notable contributions to the development of peroxide chemistry and, in particular, to mechanisms of oxidation, the reactions of electrophilic oxygen with nucleophiles, the generation of radical species, catalysis by transition metal species, and the reactions of the elusive peroxynitrite. work with the famous physical chemist and Nobel Prize winner, Peter Debye. In 1952 he was offered an academic job by Brown University. Because of his publications, his teaching, and his research he quickly rose to be Full Professor and then Professor Emeritus. His long, fruitful, and versatile teaching activities earned him, in 1974, the MCA (Manufacturing Chemists Association) College Chemistry Teaching Award. In the academic year 1967–1968, he was the recipient of a Guggenheim Memorial Fellowship which he took at the Universities of Rome and Padua and attended conferences and research seminars at various Italian Universities (Bologna, Milano, Genova, Bari et al.) Finally, after another three years of visits to research institutes and universities in Italy he was nominated to be Honorary Member of the Italian Chemical Society. -
Preparation from Hydroxylammonium Sulfate of Alcoholic Hydroxylamine
ratentamt JcuropaiscnesEuropean Patent Office ® Publication number: 0108 294 vsrriceOffice europeeneuroDeen aesdes Drevetsbrevets B1 ® EUROPEAN PATENT SPECIFICATION (45) Date of publication of patent specification: 06.02.91 (g) int. CI.5: C 01 B 21/14, C 07 C 51/41, C 07 C 249/04< C 07 C 259/04 ® Application number: 83110342.9 (22) Date of filing: 17.10.83 w> preparation trom nyaroxyiammomum suirate ot alcoholic hydroxylamine solutions and of oximes, hydroxamic acids and other hydroxylammonium salts via alcoholic hydroxylamine solutions. & rriorixy: ui.il.tsz US 437920 (73) Proprietor: ALLIED-SIGNAL INC. (a Delaware 23.09.83 US 534292 corporation) 23.09.83 US 534291 Columbia Road and Park Avenue P.O. Box 2245R Morristown New Jersey 07960 (US) g) Date of publication of application: 16.05.84 Bulletin 84/20 ® I nventor: Mathew, Chempolil Thomas 9 Openaki Road tandolph New Jersey 07869 (US) ruDiication ot the grant of the patent: nventor: Ulmer, Harry Edwards 06.02.91 Bulletin 91/06 !6 Ellsworth Avenue /lorristown. New Jersey 07960 (US) HJ Designated Contracting States: BE CH DE FR GB IT LI NL SE J5) Representative: Brock, Peter William et al URQUHART-DYKES & LORD 91 Wimpole Street London W1M8AH (GB) nererences citea: DE-B-1247284 JS-A-2483252 JS-A-3420 621 JOURNAL OF ORGANIC CHEMISTRY, vol. H,May 1946, pages 207-214, Washington, US; ID. HURD et al.: "Hydroxamic acids from iliphatic dicarboxylic acids" wie. vviuiim nine monms rrom Tne puDiication or the mention of the grant of the European patent, any person may jive notice to the European Patent Office of opposition to the European patent granted.