The Potential of Entomopathogens in Biological Control of White Grubs

Total Page:16

File Type:pdf, Size:1020Kb

The Potential of Entomopathogens in Biological Control of White Grubs See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328655437 The potential of entomopathogens in biological control of white grubs Article · November 2018 CITATIONS READS 0 558 7 authors, including: Saurbh Soni Sumit Vashisth CSK HPKV Palampur Dr. Yashwant Singh Parmar University of Horticulture and Forestry 6 PUBLICATIONS 3 CITATIONS 38 PUBLICATIONS 39 CITATIONS SEE PROFILE SEE PROFILE Mandeep Pathania Pawan K Mehta Punjab Agricultural University CSK HPKV Palampur 38 PUBLICATIONS 56 CITATIONS 101 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Insect Pest Management of Citrus View project Doctoral Research View project All content following this page was uploaded by Mandeep Pathania on 17 January 2019. The user has requested enhancement of the downloaded file. International Journal of Pest Management ISSN: 0967-0874 (Print) 1366-5863 (Online) Journal homepage: http://www.tandfonline.com/loi/ttpm20 The potential of entomopathogens in biological control of white grubs Ravinder S. Chandel, Saurbh Soni, Sumit Vashisth, Mandeep Pathania, Pawan K. Mehta, Abhishek Rana, Ashok Bhatnagar & V. K. Agrawal To cite this article: Ravinder S. Chandel, Saurbh Soni, Sumit Vashisth, Mandeep Pathania, Pawan K. Mehta, Abhishek Rana, Ashok Bhatnagar & V. K. Agrawal (2018): The potential of entomopathogens in biological control of white grubs, International Journal of Pest Management, DOI: 10.1080/09670874.2018.1524183 To link to this article: https://doi.org/10.1080/09670874.2018.1524183 Published online: 10 Oct 2018. Submit your article to this journal Article views: 109 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ttpm20 INTERNATIONAL JOURNAL OF PEST MANAGEMENT https://doi.org/10.1080/09670874.2018.1524183 The potential of entomopathogens in biological control of white grubs Ravinder S. Chandela, Saurbh Sonia, Sumit Vashisthb, Mandeep Pathaniac, Pawan K. Mehtaa, Abhishek Ranaa, Ashok Bhatnagard and V. K. Agrawale aDepartment of Entomology, Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India; bDivision of Entomology, ICRISAT, Patancheru, Hyderabad, Telangana, India; cPunjab Agricultural University, Regional Research Station, Abohar, Punjab, India; dRajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India; eSchool of Agriculture, JECRC University, Jaipur, Rajasthan, India ABSTRACT ARTICLE HISTORY White grubs are highly polyphagous and most destructive soil pests inflicting damage to a Received 23 February 2017 wide variety of crops. In India, more than 1000 species of white grubs are known of which Revised 15 July 2018 over 40 species attack wide range of plants. White grubs are naturally infected by various Accepted 7 September 2018 entomopathogens which include fungi, bacteria and nematodes. Entomopathogenic fungi KEYWORDS offer great potential and members of genera Beauveria and Metarhizium are widely used Biological control; against white grubs. Several commercial products of entomopathogenic fungi like Bio Green, entomopathogenic bacteria; ORY-X, Grub X 10G, Betel, Biotrol FMA and Meta-Guard have been developed for the control entomopathogenic fungi; of white grubs. In India, good control of white grubs in paddy, ginger and sugarcane has entomopathogenic nemato- been achieved with different entomofungi. Among EPNs, Heterorhabditis bacteriophora des; white grubs is moderately effective against Popillia japonica and Rhizotrogus majalis. H. indica and H. bacteriophora are effective against potato white grubs in India. Paenibacillus popilliae cause milky disease in P. japonica grubs. The bacterium is pathogenic to Holotrichia consanguinea, H. serrata and Leucopholis lepidophora. In north-western Himalaya, B. cereus is highly toxic to the grubs of H. seticollis and Anomala dimidiata. 1. Introduction category of five national pests (Misra and Chandla 1989), and are reported from every state causing The superfamily Scarabaeoidea contains a large damage to a wide variety of cultivated crops. Yadava number of species whose larvae live in the soil and are commonly known as white grubs. As many spe- and Sharma (1995) reported that Holotrichia serrata cies of white grubs are root feeders, they are also Fab., Holotrichia consanguinea Blanch., Holotrichia known as rootgrubs, but not all white grubs are longipennis Blanch., Brahmina coriacea (Hope), rootgrubs (Gardner 1935).The white grubs are Holotrichia seticollis Moser, Anomala dimidiata found chiefly in grasslands feeding on roots of vari- (Hope), Holotrichia reynaudi Blanch., Leucopholis ous plants. Others grow on decaying organic matter lepidophora Blanch., Leucopholis coneophora Brum., (Misra and Chandel 2003). They live concealed and Melolontha spp and Lepidiota spp are the key pest sudden increase in their population takes up in pla- species that attack different plants in different ces having enough food and least soil-disturbance regions of the country. (Chandel and Kashyap 1997). The white grubs cause The current method for the control of white extensive damage to the roots of grasses, legumes, grubs is through the use of chemical pesticides. small fruit plants, shrubs and trees in many parts of However, concern about safety, environmental con- the world (Pathania 2014). Larvae of greatest eco- tamination and poor efficacy of recommended nomic importance belong mainly to the tribe insecticides has increased the need to develop IPM Melolonthini (Ritcher 1958). The first known white approaches for these pests (Kumawat 2001). The grub damage to crops in India is that by Stebbing naturally occurring entomopathogens (fungi, nemat- (1902) from Punjab. More than 1000 species of odes, bacteria and viruses) are important compo- white grubs are known from the Indian sub-contin- nents in the soil ecosystem which brings about ent of which over 40 species attack a wide range effective suppression of soil pests in nature. We of crop plants (Veeresh et al. 1991). First major provide an overview of microbial control of white epidemic of white grubs in India was reported grubs in different crops with special reference to in sugarcane from Bihar during 1956 (Gupta and fungi, nematodes and bacteria and their future Avasthy 1956). They have now been included in the prospects in white grub management. CONTACT Saurbh Soni [email protected] ß 2018 Informa UK Limited, trading as Taylor & Francis Group 2 R. S. CHANDEL ET AL. 2. Nature of injury and economic importance included with entomopathogens, because most of of white grubs them are associated with insect-pathogenic bacteria (Dhaliwal and Koul 2007). Under certain favourable All white grubs are polyphagous and they can feed situations, they cause disease epizootics in the field. on any root or underground stem (Veeresh 1988). Disease is common in dense insect populations and The first stage larvae feed in part on organic matter under environmental conditions suitable to the in the soil, while the second and third instar grubs microorganisms and entomopathogenic nematodes. feed largely on roots or underground stems. The However, at low host density, disease incidence is economic importance of chafers is primarily due to often low due to lack of contact between the patho- feeding activity of the third instar grubs (Chandel et al. 2015). Grubs prefer to feed on fibrous roots gens and their insect hosts (Gullan and Cranston for normal growth and the crops with a tap root 2005). The infected insects are unable to feed prop- system suffer more as compared to those with an erly, remain stunted, lose their body colour and adventitious root system (Yadava and Vijayvergia become paralysed (Singh 1991). Arora et al. (2000) 2000). In general, the underground parts of all reported that entomopathogens exert a controlling plants are susceptible to grub feeding. The symptom effect on grubs by means of their invasive proper- of the damage is root pruning by grubs thereby ties, toxins, enzymes and other substances. showing varying degrees of wilting, yellowing and Entomopathogenic fungi and nematodes have browning, followed by death of the plant. In crops received more attention than other groups of micro- such as potato and ginger, large holes are inflicted bial organisms with potential for use in the manage- on the tubers or rhizomes which are then rendered ment of white grubs. Yadava and Sharma (1995) unfit for marketing. Mehta et al. (2010) reported have reported that several microorganisms such ¼ that almost all field crops grown during the rainy as Paenibacillus ( Bacillus) popilliae (Dutky), season, viz. potato, vegetables, groundnut, sugar- Metarhizium anisopliae (Metchnikoff) Sorokin, cane, maize, pearl millet, sorghum, cowpea, pigeon Beauveria bassiana (Bals.) Vuill., B. brongniartii pea, green grass, cluster bean, soybean, rajmash (Saccardo), Heterorhabditis bacteriophora Poinar (kidney beans), upland rice, ginger etc are damaged 1976, Steinernema glaseri (Steiner 1929) and by white grubs. Steinernema feltiae (Filipjev 1934) are pathogenic to In India, the grubs of H. consanguinea are of white grubs and are effective in suppressing their major economic importance attacking groundnut population under field conditions. The present and sugarcane in Rajasthan, Bihar, Gujarat, Uttar review highlights the major developments of last 3-4 Pradesh, Haryana and Punjab. In endemic areas,
Recommended publications
  • Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 12-2009 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson Wichita State University, [email protected] Darcy E. Oishi 2Hawaii Department of Agriculture, Plant Pest Control Branch, Honolulu, [email protected] Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Grant T. McQuate USDA-ARS-PBARC, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz; Oishi, Darcy E.; Ratcliffe, Brett C.; and McQuate, Grant T., "Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii" (2009). Papers in Entomology. 147. https://digitalcommons.unl.edu/entomologypapers/147 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AProcddition. HawaiianAl inv AEsiventomol scA.r SAocbs. in(2009) HAwA 41:25–30ii 25 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson1, Darcy E. Oishi2, Brett C. Ratcliffe3, and Grant T. McQuate4 1Wichita State University, Department of Biological Sciences, 537 Hubbard Hall, Wichita, Kansas 67260 [email protected]; 2Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King St., Honolulu, HI 96814 [email protected]; 3University of Nebraska State Museum, Systematics Research Collections, W436 Nebraska Hall, University of Nebraska, Lincoln, Nebraska 68588 [email protected]; 4USDA-ARS-PBARC, U.S.
    [Show full text]
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • (Insecta: Coleoptera: Scarabaeidae : Cetoniinae : Tribe, Trichiini)1 Brandon Jones and Andrea Lucky2
    EENY-704 Delta Flower Beetle Trigonopeltastes delta (Forster 1771) (Insecta: Coleoptera: Scarabaeidae : Cetoniinae : Tribe, Trichiini)1 Brandon Jones and Andrea Lucky2 Introduction The delta flower beetle, Trigonopeltastes delta (Forster), is a member of the scarab beetle family Scarabaeidae, in the subfamily Cetoniinae. This subfamily is commonly known as flower or fruit chafers because their diet consists mostly of decomposing fruits or pollen (Cave and Ratcliffe 2008). Trigonopeltastes delta belongs to the tribe Trichiini, which contains mostly flower-frequenting species. Although this species is commonly encountered where it occurs, many details of its life cycle and its potential economic importance remain poorly studied. Like many other cetoniines, the delta flower beetle has bright colors and distinctive patterns that distinguish it from other similar species (Figure 1). The delta flower beetle is one of two species in Florida, but while Trigonopeltastes delta is a familiar sight, Trigono- Figure 1. Adult Trigonopeltastes delta (Forster) (dorsal view). peltastes floridana is extremely rare (Woodruff 1960). While Credits: Mike Quinn, TexasEnto.net they are superficially similar, these species are distinguished by distinctive yellow markings on the pronotum. Trigono- Etymology and Synonymy peltastes delta bears a triangular mark whereas Trigono- The name Trigonopeltastes delta is Greek in origin and peltastes floridana has a U- or V-shaped mark. describes the pronotal markings of the species. Trigon translates to triangle, pelt translates to a shield, and delta originates from the letter Δ, or delta. The Greek symbol for delta is a triangle, which resembles the beetle’s pronotal marking, and accounts for its common name. 1. This document is EENY-704, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension.
    [Show full text]
  • Coleoptera: Scarabaeidae)
    Systematic Entomology (2005), 31, 113–144 DOI: 10.1111/j.1365-3113.2005.00307.x The phylogeny of Sericini and their position within the Scarabaeidae based on morphological characters (Coleoptera: Scarabaeidae) DIRK AHRENS Deutsches Entomologisches Institut im Zentrum fu¨r Agrarlandschafts- und Landnutzungsforschung Mu¨ncheberg, Germany Abstract. To reconstruct the phylogeny of the Sericini and their systematic position among the scarabaeid beetles, cladistic analyses were performed using 107 morphological characters from the adults and larvae of forty-nine extant scarabaeid genera. Taxa represent most ‘traditional’ subfamilies of coprophagous and phytophagous Scarabaeidae, with emphasis on the Sericini and other melo- lonthine lineages. Several poorly studied exoskeletal features have been examined, including the elytral base, posterior wing venation, mouth parts, endosternites, coxal articulation, and genitalia. The results of the analysis strongly support the monophyly of the ‘orphnine group’ þ ‘melolonthine group’ including phytopha- gous scarabs such as Dynastinae, Hopliinae, Melolonthinae, Rutelinae, and Cetoniinae. This clade was identified as the sister group to the ‘dung beetle line’ represented by Aphodius þ Copris. The ‘melolonthine group’ is comprised in the strict consensus tree by two major clades and two minor lineages, with the included taxa of Euchirinae, Rutelinae, and Dynastinae nested together in one of the major clades (‘melolonthine group I’). Melolonthini, Cetoniinae, and Rutelinae are strongly supported, whereas Melolonthinae and Pachydemini appear to be paraphyletic. Sericini þ Ablaberini were identified to be sister taxa nested within the second major melolonthine clade (‘melolonthine group II’). As this clade is distributed primarily in the southern continents, one could assume that Sericini þ Ablaberini are derived from a southern lineage.
    [Show full text]
  • 632 LARVAS DE PICUDO DE NOPAL Metamasius Spinolae (GYLLENHAL
    LARVAS DE PICUDO DE NOPAL Metamasius spinolae (GYLLENHAL) (COLEÓPTERA:CURCULIONIDAE)Y GUSANILLO BLANCO DE NOPAL Laniifera cyclades (DRUCE) (LEPIDOPTERA:PYRALIDAE) APORTAN NUTRIENTES A LA DIETA HUMANA Virginia Melo-Ruiz, Nidia Vargas-Martínez, Héctor Daniel Jiménez-Aguirre y Beatriz Schettino-Bermúdez. Universidad Autónoma Metropolitana Xochimilco, Calz. Del Hueso 1100 México D.F. 04960. [email protected] RESUMEN. Un estudio de larvas de insectos que habitan en cladodios de nopaleras en Milpa Alta, son considerados como alimento prehispánico. El objetivo de este estudio fue analizar la composición química de macronutrientes y minerales de Laniifera cyclades D. y Metamasius spinolae G., organismos capturados por método de conveniencia, en Marzo (L. cyclades) y Septiembre (M. spinolae) 2011, en cultivo de Nopales (1.5 hectáreas), para determinar nutrientes. Resultados de 1) M. spinolae y 2) L. cyclades fueron: proteínas 1) 48.5%; 2) 45.25%; lípidos 1) 28.52%; 2) 28.10%; minerales 1) 5.45%; 2) 6.62%, fibra 1) 2.78%; 2) 1.95%; carbohidratos solubles 1)14.75%; 2) 18.08%. Minerales en mg/100g: Calcio 1) 210; 2) 221; Fosforo 1) 430; 2) 380; Hierro 1) 7.0; 2) 5.1; Sodio 1) 30; 2) 31; Potasio 1) 60; 2) 53, Zinc 1) 5.2; 2) 4.7. La difusión de la importancia nutricional de estas especies preservara por tiempo indefinido esta tradición. Palabras clave: picudo de nopal, gusanillo blanco de nopal, nutrientes, larvas. ABSTRACT. Two insect larvae from the Nopaleras of Milpa Alta consider as prehispanic foodstuff were studied. The objective of this study was assess macronutrient and mineral chemical composition of Laniifera cyclades G.
    [Show full text]
  • Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
    Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24.
    [Show full text]
  • First Description of White Grub Betle, Maladera Insanabilis Brenske, 1894 (Coleoptera: Melolonthidae: Melolonthinae) from Erbil Governorate, Kurdistan Region – Iraq
    Plant Archives Vol. 19 No. 2, 2019 pp. 3991-3994 e-ISSN:2581-6063 (online), ISSN:0972-5210 FIRST DESCRIPTION OF WHITE GRUB BETLE, MALADERA INSANABILIS BRENSKE, 1894 (COLEOPTERA: MELOLONTHIDAE: MELOLONTHINAE) FROM ERBIL GOVERNORATE, KURDISTAN REGION – IRAQ Zayoor Zainel Omar Plant Protection Department, Khabat Technical institute, Erbil Polytechnic University-Erbil, Iraq. Abstract White grub beetle, Maladera insanabilis Brenske, 1894 is collected from the flowers of some ornamental plants in different localities of Erbil governorate, Kurdistan Region-Iraq, from the period, March till July / 2018. Diagnostic characters of the species are figured, Mandibles high sclerotized, irregular shaped, apical part with seven short teeth. apical part of galea with seven well developed teeth. Antenna brown consist of 10 ending in a unilateral three lamellate club sub-equal in length. Fore tibia flattened, bidentate. Parameres is a symmetrical, the left part is hook like, the end with a curved pointed apical tooth. Key words: Maladera insanabilis Brenske, 1894, Kurdistan Region-Iraq. Introduction Woodruff and Beck, 1989, Coca-Abia et al., 1993, Coca- Melolonthidae Samouelle, 1819 is one of large family Abia and Martin-Piera, 1998, Coca-Abia, 2000, Evans, of Scarabaeoidea, there are currently about 750 genera 2003). and 11.000 species recorded worldwide (Houston and The genus Maladera Mulsant and Rey, 1871 is one Weir, 1992 ). The identified of the family is well established of the largest groups consisting of more than 500 and is based on the following characteristics. Adult described species widely distributed in Palearctic, Oriental antennae are lamellate apex, the fore legs are adapted and Afrotropical regions (Ahrens, 2003).
    [Show full text]
  • Action to Control White Grub Damage in Turf Grass
    WHITE GRUBS OCCUR KEY ACTIONS: ACTION TO CONTROL EXTENSIVELY ACROSS ROTATE INSECTICIDE KEY ACTIONS TO WHITE GRUB DAMAGE THE UAE REGION AND ACTIVITY CONTROL WHITE GRUBS CAN RESULT IN There is some evidence of reduced activity of some IN TURF GRASS DEVASTATING DAMAGE insecticides that have been used repeatedly on the MONITOR ADULT BEETLE FLIGHTS – same area of a golf course – typically experienced PEAK EGG HATCH OCCURS ABOUT A TO GOLF COURSE as shorter duration of residual effects. This has been attributed to enhanced microbial degradation MONTH LATER PLAYING SURFACES of the product applied by certain soil fungi. To minimise the risk of this developing, USE CUP CUTTER TO SAMPLE FOR superintendents should regularly select products WHITE GRUBS – PULL PLUG, INSPECT, DIRECT FEEDING ACTIVITY ON ROOT with different modes of action - not just a different PLANT ROOTS AFFECTING TURF product name from the same group of chemicals - RECORD NUMBERS AND REPLACE HEALTH AND DIE BACK OF DAMAGE BY for alternate applications; e.g. Meridian form the LARGE PATCHES WHITE GRUBS neonicotinoid group followed by Acelepryn, a chlorantraniliprole active. SELECT HIGH RISK AREAS FOR PRIORITY TREATMENT INDIRECT FEEDING OF BIRDS MONITOR GRUB ACTIVITY AND ANIMALS ON GRUBS SELECT APPROPRIATE CONTROLS CAUSES WIDESPREAD DAMAGE AND APPLY ACCURATELY AT THE Many of today’s insecticides offer far greater residual activity, compared to old organophosphate OPTIMUM TIME or carbamate options. Meridian typically provides four to eight weeks’ control of early grubs, with Acelepryn even longer when applied prior to egg hatch. However, treated areas should continue to be White grubs are the larval stages of a wide monitored for grub activity after application, to range of scarab beetle species.
    [Show full text]
  • Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass
    Journal of Integrated Pest Management (2016) 7(1): 3; 1–11 doi: 10.1093/jipm/pmw002 Profile Biology, Ecology, and Management of Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass S. Gyawaly,1,2 A. M. Koppenho¨fer,3 S. Wu,3 and T. P. Kuhar1 1Virginia Tech, Department of Entomology, 216 Price Hall, Blacksburg, VA 24061-0319 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], and 3Rutgers University, Department of Entomology, Thompson Hall, 96 Lipman Drive, New Brunswick, NJ 08901-8525 ([email protected]; [email protected]) Received 22 October 2015; Accepted 11 January 2016 Abstract Downloaded from Masked chafers are scarab beetles in the genus Cyclocephala. Their larvae (white grubs) are below-ground pests of turfgrass, corn, and other agricultural crops. In some regions, such as the Midwestern United States, they are among the most important pest of turfgrass, building up in high densities and consuming roots below the soil/thatch interface. Five species are known to be important pests of turfgrass in North America, including northern masked chafer, Cyclocephala borealis Arrow; southern masked chafer, Cyclocephala lurida Bland [for- http://jipm.oxfordjournals.org/ merly Cyclocephala immaculata (Olivier)]; Cyclocephala pasadenae (Casey); Cyclocephala hirta LeConte; and Cyclocephala parallela Casey. Here we discuss their life history, ecology, and management. Key words: Turfgrass IPM, white grub, Cyclocephala, masked chafer Many species of scarabs are pests of turfgrass in the larval stage southern Ohio, and Maryland. The two species have overlapping (Table 1). Also known as white grubs, larvae of these species feed distributions throughout the Midwest, particularly in the central on grass roots and damage cultivated turfgrasses.
    [Show full text]
  • Exploiting Entomopathogenic Nematode Neurobiology to Improve Bioinsecticide Formulations
    DOCTOR OF PHILOSOPHY Exploiting Entomopathogenic Nematode Neurobiology to Improve Bioinsecticide Formulations Morris, Rob Award date: 2020 Awarding institution: Queen's University Belfast Link to publication Terms of use All those accessing thesis content in Queen’s University Belfast Research Portal are subject to the following terms and conditions of use • Copyright is subject to the Copyright, Designs and Patent Act 1988, or as modified by any successor legislation • Copyright and moral rights for thesis content are retained by the author and/or other copyright owners • A copy of a thesis may be downloaded for personal non-commercial research/study without the need for permission or charge • Distribution or reproduction of thesis content in any format is not permitted without the permission of the copyright holder • When citing this work, full bibliographic details should be supplied, including the author, title, awarding institution and date of thesis Take down policy A thesis can be removed from the Research Portal if there has been a breach of copyright, or a similarly robust reason. If you believe this document breaches copyright, or there is sufficient cause to take down, please contact us, citing details. Email: [email protected] Supplementary materials Where possible, we endeavour to provide supplementary materials to theses. This may include video, audio and other types of files. We endeavour to capture all content and upload as part of the Pure record for each thesis. Note, it may not be possible in all instances to convert analogue formats to usable digital formats for some supplementary materials. We exercise best efforts on our behalf and, in such instances, encourage the individual to consult the physical thesis for further information.
    [Show full text]
  • Journal of Ethnobiology and Ethnomedicine Biomed Central
    Journal of Ethnobiology and Ethnomedicine BioMed Central Review Open Access Threatened edible insects in Hidalgo, Mexico and some measures to preserve them Julieta Ramos-Elorduy* Address: Departamento de Zoología, Instituto de Biologia, Universidad Nacional Autónoma de México, México, DF Email: Julieta Ramos-Elorduy* - [email protected] * Corresponding author Published: 04 December 2006 Received: 09 June 2006 Accepted: 04 December 2006 Journal of Ethnobiology and Ethnomedicine 2006, 2:51 doi:10.1186/1746-4269-2-51 This article is available from: http://www.ethnobiomed.com/content/2/1/51 © 2006 Ramos-Elorduy; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Edible insects are a natural renewable resource that provides food to many ethnic groups in Mexico. Some of these species are overexploited because of increased consumption, caused by the huge human population growth in the area and because of the large demand of these insects from many restaurants in Mexico and in other countries. In Tulancalco, a small arid village in the State of Hidalgo, I carried out studies on edible insects over 25 years. The inhabitants of this village have a natural economy and use some 30 species of insects as food. At present, we have noticed a decrease in the population of several species due to overexploitation, which is carried by non-qualified independent workers who are not natives of the town.
    [Show full text]
  • Entomology) Onwards Google Meet) on 15Th May, 2021 at 10 Am Participants: I
    Board of Studies Meeting (Department of Organised virtually (on Entomology) onwards google meet) on 15th May, 2021 at 10 am Participants: I. Prof. Nand Lal, Deppt. of life 2. Prof. C. P. science, CSJM Srivastav, Professor of University, Kanpur 3. Prof.Y. P. Entomology, B.H.U. Malik, Professor Varanasi of Entomology, CSA Kanpur Univ. of Agri. and Tech. 4. Dr. Dev Narayan Singh, Associate Professor, of College, Bakewar (Etawah) Deptt. Entomology, Janta 5. Dr. B. B. Singh, Assistant Professor, Mahavidyalay, Ajitmal (Auraiya) Deptt. of Entomology, Janta 6. Dr. Mahesh Prasad Yadav, Convenor and Associate Horticulture, Janta professor, Deptt. of College, Bakewar (Etawah) Minutes Of Meeting: BOS mecting of of deptt. Entomology was held to New Education adapt syllabus as under Policy (NEP 2020) with the suggested the presence of various renowed subjects. The outcomes of experts of meetings are as under. 1. Syllabus under suggested NEP 2020 is and implementation. accepted recommended for 2. Prof. Suggestions given by C. P. Srivastav and Prof. Y. minor P. Malik regarding ammendments and corrections have been 3. incorporated. Website names as well as books names have also been syllabus adapted by board. suggested in the 4. Board also that as the suggested per norms of ICAR the name of should be "Entomology". Department 5. Board also that master suggested degree in subject will be "M. Sc. Entomology" (Ag.) Enclosures: Corrected final of syllabus Entomology for B. Sc. (Ag.) programme. Prepared by: Dr. Dev Narayan Singh Convenor Dr. M. P. Yadav Department of Entomology Sr. Course semester No. code Name of papers AG-203 II Credit hrs.
    [Show full text]