NATURAL HISTORIANS' STRATAGEMS for COMMUNICATING EMPIRICISM and THEORY Annette Meyer Generational

Total Page:16

File Type:pdf, Size:1020Kb

NATURAL HISTORIANS' STRATAGEMS for COMMUNICATING EMPIRICISM and THEORY Annette Meyer Generational HISTORY IN A TEST TUBE: NATURAL HISTORIANS’ STRATAGEMS FOR COMMUNICATING EMPIRICISM AND THEORY Annette Meyer Generational Change: Types of Scholars of the High and Late Enlightenment In historical accounts the figure of Albrecht von Haller was frequently used to distinguish the typical scholar of the high Enlightenment from that of the late Enlightenment. Although in the main treatments of the history of science Haller is firmly fixed as a Newtonian from the outset,1 in overviews of natural history he is characterised primarily as the last polymath, a persistent theorist of preformation, and a remaining expo- nent of the old, classifying method. This older form of natural history by tabulation had, according to sociologist Wolf Lepenies in his seminal study of this subject, reached a highpoint of crisis with Haller and was subsequently replaced by a new form of the history of nature.2 Although Haller fits the ideal image of the polymath of the early modern period, he was thus nonetheless said to have been unable to recognise some of the forward-looking potential of modern scientific development due to the constraints of his traditional religious worldview. This view of Haller, as well as of other protagonists in the history of science, has been criticised as an anachronistic approach that overlooks the original contributions Haller made in his own time.3 Beyond this criti- cism of the teleological approach of modern history of science, which con- sidered the “scientificity” of perception, inventions and judgements to be endangered when knowledge and belief appeared to be entangled in sup- posedly improper fashion,4 it is of interest to note that Haller saw himself 1 Shirley A. Roe, ‘The Life Sciences’, in Roy Porter (ed.), The Cambridge History of Sci- ence, vol. 4: Eighteenth-Century Science (Cambridge 2003), 397–416: 402. 2 Wolf Lepenies, Das Ende der Naturgeschichte. Wandel kultureller Selbstverständlich- keiten in den Wissenschaften des 18. und 19. Jahrhunderts (Frankfurt/M. 1978), 62. 3 Richard Toellner, ‘Medizin in der Mitte des 18. Jahrhunderts’, in Rudolf Vierhaus (ed.), Wissenschaften im Zeitalter der Aufklärung (Göttingen 1985), 200. 4 Bruno Latour provided the clearest account of this method of the “second Enlight- enment . of the nineteenth century”, describing it as consisting in qualification of “all earlier thought” as a prelude to modern science and, thus, as “unusable or imprecise”. See © Annette Meyer, 2013 | doi:10.1163/9789004243910_033 This is an open access chapter distributed under the terms of the CC BY-NC-ND 4.0 license.Annette Meyer - 9789004243910 Downloaded from Brill.com10/01/2021 03:17:52PM via free access 752 annette meyer as a witness to epochal change. He reflected on the question of the future of the sciences, as well as the shift in perspectives that could result from generational change and the risks it involved. The present article attempts to explore this change in perception in the field of natural history and to illustrate it by referring to the methodologi- cal reflections of those who studied this field, beginning with Haller and his view of himself as a natural historian.5 The representatives of the Scottish Enlightenment are an appropriate counterpoint to Haller in this frame of reference, as they not only applied the concept of natural history in numer- ous ways but also did a great deal to give it a further theoretical basis. In the hands of Scottish scholars, natural history grew to become more than an encyclopaedic compilation of the empirical facts of nature described by the term historia naturalis. By contrast, natural history offered a suitable context for developing methods and for understanding newly generated knowledge—whether in cosmology, natural philosophy or anthropology— and was no longer considered as an irritation of the established world-view but as the basis of a new one. Jean Starobinski has described this method of Enlightenment philosophy as a “remedy” [remède] that was meant to cure the contradictions of the modern world.6 This difficult remedy, however, also required legitimisation of the stratagems [légitimation de l’artifice] applied as a reaction to fundamental changes in perspective and to the Bruno Latour, Wir sind nie modern gewesen. Versuch einer symmetrischen Anthropologie (Frankfurt/M. 1998), 51. 5 Bettina Dietz has most recently called attention to the disproportion between the mass of studies in natural history produced in the eighteenth century and the small amount of sporadic scientific research done on them so far. Bettina Dietz, ‘Naturgeschichte, Epis- temologie und Material Culture. Eine Einführung’, in Ulrich Johannes Schneider (ed.), Kulturen des Wissens im 18. Jahrhundert (Berlin and New York 2008), 595–587. Although Michel Foucault already designated natural history as one of the most fruitful fields with respect to the epistemological transition on the threshold of the modern age, following the pioneering study by Wolf Lepenies, a systematic synopsis of the genre is still lacking. In the Anglo-Saxon world in particular, research frequently focuses on the history of biology. See Paul Lawrence Farber, ‘Natural History’, in Alan Charles Kors (ed.), Encyclopedia of the Enlightenment (Oxford 2003), 124–130. As a consequence, other fields of study are not given due attention, such as cultures, customs and humankind, whose rich perspectives are pre- sented in a volume compiled by Nicholas Jardine, Jim Secord and Emma Spary (eds.), Cultures of Natural History (Cambridge 1996). The best systematic overview of the change in the concept of natural history is still Phillip R. Sloan, ‘Natural History 1670–1802’, in Robert C. Olby et al. (eds.), Companion to the History of Modern Science (London and New York 1996), 295–313. See also Phillip R. Sloan, ‘The Gaze of Natural History’, in Christopher Fox, Roy Porter and Robert Wokler (eds.), Inventing Human Science: Eighteenth-Century Domains (Berkeley, Los Angeles and London 1995), 112–151. 6 Jean Starobinski, Le remède dans le mal. Critique et légitimation de l’artifice à l’âge des Lumières (Gallimard 1989). Annette Meyer - 9789004243910 Downloaded from Brill.com10/01/2021 03:17:52PM via free access history in a test tube 753 uncertainty resulting from a rapidly changing world. Starobinski discov- ered such stratagems in completely new theoretical models of interpreta- tion in the Enlightenment literature, by means of which empirical material and new worldviews were communicated. Epoché as a Maxim of the Natural Historian: Haller and Hume In the context of research on Haller, it hardly needs to be mentioned that it is he who deserves credit for the dissemination of Isaac Newton’s ideas and the widespread enthusiasm about his genius, at least throughout Ger- man-speaking Europe, but also beyond. Haller and his teacher, Herman Boerhaave, shared the opinion that new findings in natural philosophy could be made only through observation and experiment, as Newton had demonstrated. From this perspective, the particular contribution of New- tonian physics was, above all, that a worldview which had been shaken in many respects had again been brought into balance: the discovery of two basic forces had restored the perfect order of creation. The image of a single, perfect divine force at work since the origin of the world had found its scientific expression in an empirically ascertainable law—the law of gravity. This restoration of the order of creation was the prerequi- site for unlocking the universal laws inherent in this order; this applied to natural philosophy as well as to natural history as its empirical data- bank. Boerhaave already determined, however, that understanding the “last metaphysical and the first physical causes” was “not necessary for the physician, nor useful or possible”. Haller underscored this view and even sharpened it with respect to his own field of research.7 Anatomy should be content with observation of phenomena and not attempt to formulate universal theories. Regarding the distinction he had discovered between the irritable and the sensible parts of the human body, he wrote: A theory, however, about why these two qualities are not present in some parts of the body but occur in other parts—such a theory, I must say, I can- not promise; for I am convinced that the source of both of these forces is hidden in the innermost construction, and that it is far too subtle to be dis- covered with the aid of the anatomical knife or the microscope. Concerning 7 This interpretation follows the groundbreaking studies by Richard Toellner, Albrecht von Haller. Über die Einheit im Denken des letzten Universalgelehrten (Wiesbaden 1971) and Otto Sonntag, ‘Albrecht von Haller on the Future of Science’, Journal of the History of Ideas 35 (1974), 313–322. Annette Meyer - 9789004243910 Downloaded from Brill.com10/01/2021 03:17:52PM via free access 754 annette meyer what cannot be discovered with the knife or the microscope, however, I have no desire to do much conjecturing; indeed, I gladly refrain from teach- ing what I do not know myself. It is pride born of ignorance to want to show others what one cannot see oneself.8 The list of similar quotes from Haller could easily be continued, reading like an echo of the preliminaries of Netwon’s Principa and providing more than obvious evidence of Haller’s understanding of science and his fas- cination with the term “force”.9 Natural phenomena could be observed and connected in terms of cause and effect—as in the case of anatomical structure and physiological
Recommended publications
  • Johann Friedrich Blumenbach (1752-1840) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Johann Friedrich Blumenbach (1752-1840) [1] By: MacCord, Kate Keywords: Bildungstrieb [2] In eighteenth century Germany, Johann Friedrich Blumenbach studied how individuals within a species vary, and to explain such variations, he proposed that a force operates on organisms as they develop. Blumenbach used metrical methods to study the history of humans [3], but he was also a natural historian and theorist. Blumenbach argued for theories of the transformation of species, or the claim that new species can develop from existing forms. His theory of Bildungstrieb (formative drive [4]), a developmental force within all organisms, influenced the conceptual debates among many late nineteenth and early twentieth century embryologists and naturalists. Blumenbach was born 11 May 1752 in Gotha, Germany. His mother, Charlotte Eleonore Hedwig Buddeus, was the daughter of a high-ranking official in Gotha's government. Blumenbach's father, Heinrich Blumenbach, was the assistant headmaster at the local gymnasium, or primary school. Blumenbach completed his early education in Gotha, graduating from the gymnasium in 1769. After graduation, he attended the University of Jena [5], in Jena, Germany, before moving to the University of Göttingen, in Göttingen, Germany. While a student at the University of Göttingen, Blumenbach studied with naturalist Christian W. Büttner. Büttner taught Blumenbach via his lectures on exotic cultures and peoples, and he encouraged Blumenbach to write his dissertation on such communities. In 1775 Blumenbach received his medical degree from the University of Göttingen after completing his dissertation, "De Generis Humani Varietate Native Liber" ("On the Natural Varieties of Mankind").
    [Show full text]
  • On the Role of Newtonian Analogies in Eighteenth-Century Life Science VITALISM and PROVISIONALLY INEXPLICABLE EXPLICATIVE DEVICES Charles Wolfe
    On the Role of Newtonian Analogies in Eighteenth-Century Life Science VITALISM AND PROVISIONALLY INEXPLICABLE EXPLICATIVE DEVICES Charles Wolfe To cite this version: Charles Wolfe. On the Role of Newtonian Analogies in Eighteenth-Century Life Science VITAL- ISM AND PROVISIONALLY INEXPLICABLE EXPLICATIVE DEVICES. Newton and Empiricism, 2014. hal-02069997 HAL Id: hal-02069997 https://hal.archives-ouvertes.fr/hal-02069997 Submitted on 26 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the role of Newtonian analogies in eighteenth-century life science: Vitalism and provisionally inexplicable explicative devices Charles T. Wolfe Centre for History of Science, Department of Philosophy and Moral Sciences Ghent University [email protected] To appear in Zvi Biener and Eric Schliesser, eds., Newton and Empiricism (OUP, forthcoming) Abstract Newton’s impact on Enlightenment natural philosophy has been studied at great length, in its experimental, methodological and ideological ramifications. One aspect that has received fairly little attention is the role Newtonian “analogies” played in the formulation of new conceptual schemes in physiology, medicine, and life science as a whole. So-called ‘medical Newtonians’ like Pitcairne and Keill have been studied; but they were engaged in a more literal project of directly transposing, or seeking to transpose, Newtonian laws into quantitative models of the body.
    [Show full text]
  • Miranda, 6 | 2012 Andrew Cunningham, the Anatomist Anatomis’D: an Experimental Discipline in En
    Miranda Revue pluridisciplinaire du monde anglophone / Multidisciplinary peer-reviewed journal on the English- speaking world 6 | 2012 Marking the Land in North America Andrew Cunningham, The Anatomist Anatomis’d: An Experimental Discipline in Enlightenment Europe Laurence Talairach-Vielmas Electronic version URL: http://journals.openedition.org/miranda/3057 DOI: 10.4000/miranda.3057 ISSN: 2108-6559 Publisher Université Toulouse - Jean Jaurès Electronic reference Laurence Talairach-Vielmas, “Andrew Cunningham, The Anatomist Anatomis’d: An Experimental Discipline in Enlightenment Europe”, Miranda [Online], 6 | 2012, Online since 28 June 2012, connection on 16 February 2021. URL: http://journals.openedition.org/miranda/3057 ; DOI: https://doi.org/10.4000/ miranda.3057 This text was automatically generated on 16 February 2021. Miranda is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Andrew Cunningham, The Anatomist Anatomis’d: An Experimental Discipline in En... 1 Andrew Cunningham, The Anatomist Anatomis’d: An Experimental Discipline in Enlightenment Europe Laurence Talairach-Vielmas REFERENCES Andrew Cunningham, The Anatomist Anatomis’d : An Experimental Discipline in Enlightenment Europe (Farnham : Ashgate, 2010), 443 p, ISBN 978–0–75466338–6 1 After his fascinating The Anatomical Renaissance: The Resurrection of the Anatomical Projects of the Ancients (1997), Andrew Cunningham offers us a new study of anatomy, The Anatomist Anatomis’d: An Experimental Discipline in Enlightenment Europe. This time, Cunningham looks at how anatomists contributed to the creation of anatomy as a discipline in the long eighteenth century, the “Enlightenment” being a time when the discipline flourished as never before or since. Thus anatomy, throughout the hundred and fifty years that Cunningham examines, is directly linked to the quest for knowledge that defined the Enlightenment.
    [Show full text]
  • Domenico Cotugno
    [From Schenckius: Observationinn Medicarum, Francofurti, 1609.] ANNALS OF MEDICAL HISTORY New Seri es , Volume VIII January , 1936 Number 1 DOMENICO COTUGNO By ABRAHAM LEVINSON, M.D. CHICAGO EW indeed are the ology. Above all. he was the first to de- persons blessed scribe the existence of cerebrospinal with the ability to fluid in living animals. rise above the ordi- Just as great as his individual discov- nary level of life to eries was his understanding of some of make some discov- the principles of medical research ery of importance. which at times assumed the proportions Even rarer are those who bestow more of philosophic concepts. Similarly out- than one discovery upon mankind. To standing was his interpretation of facts. this select latter group belongs Domen- He was the first to realize that in order ico Cotugno, the great Italian anatomist to understand what is happening in the of the eighteenth century (Fig. 1) . • human body, dissection of the body Had Cotugno discovered only the must be done soon after death, else the aqueducts of the ear. his name would body fluids will be absorbed or altered. have gone down in history as a great He was one of the first, if not the first, anatomist; however, he made a number to formulate a theory on the physiology of other discoveries, each of which is of hearing. In this respect he was more monumental. In conjunction with his than an anatomist; he was a physiologist discovery of the aural aqueducts, he as well. found that the labyrinth is filled with In addition to his medical discover- fluid, and not with air.
    [Show full text]
  • Albrecht Von Haller
    Albrecht von Haller One of the greatest and most influental biologists of the 18th century, Swiss scientst Albrecht von Haller is often credited as the “father of experimental physiology”. His contributions ranged across anatomy, physiology, embryology, botany and poetry. Early Life and Career: Born in Bern, Switzerland, in 1708, Albrecht von Haller, as a child prodigy, wrote several metrical translations from Ovid, Horace and Virgil when he was hardly fifteen. He studied the form and function of one organ after the other, launching anatomy as an experimental science, and also enforcing dynamic rules to the study of physiology. Haller analyzed the irritability of muscle and the sensibility of nerves, studying circulation time and the automatic action of the heart. He gave the first to give detailed explanation of respiration. Famousscientists.org His publicaton “Elementa Physialogiae Carports Hamani” (Elements of Physiology, 1757-66) proved to be one of the influential works on the subject. Haller consistently broadened the field of anatomy, relating it to physiology by experimentation, and implemented dynamic rules to complex physiological problems. The approach of Albrecht von Haller was precise, analytical and objective. He was the first person to discover that only nerves produce sensation and only those parts of the body connected to the nervous system can undergo a sensation. Probably his most notable contribution was the formulation of the method of physiological research. Later Life and Death: Albrecht von Haller’s health began substantially declining after 1773. He died on December 12, 1777. He was 69 years old. Famousscientists.org .
    [Show full text]
  • Dutch Anatomy and Clinical Medicine in 17Th-Century Europe by Rina Knoeff
    Dutch Anatomy and Clinical Medicine in 17th-Century Europe by Rina Knoeff The Leiden University medical faculty was famous in 17th-century Europe. Students came from all over Europe to sit at the feet of the well-known medical teachers Peter Paauw, Jan van Horne and Franciscus dele Boë Sylvius. Not only the lecture hall, but also the anatomical theatre as well as the hospital were important sites for medical instruction. The Dutch hands-on approach was unique and served as an example for the teaching courses of many early modern cen- tres of medical education. TABLE OF CONTENTS 1. Medicine in the 17th-Century Netherlands 2. Anatomy 1. Otto Heurnius and the Theatre of Wonder 2. Johannes van Horne and the Theatre of Learning 3. Govert Bidloo and the Theatre of Controversy 3. Clinical Teaching 4. Appendix 1. Bibliography 2. Notes Indices Citation Medicine in the 17th-Century Netherlands Until well into the 18th century Leiden University was an important stop on the peregrinatio medica, a medical tour to foreign countries undertaken by ambitious students from the late 12th century onwards (Leiden was particularly popular in the 17th and 18th centuries). The town of Leiden was an attractive place for students – it had excellent facilities for extracurricular activities such as theatre visits, pub crawls, horse riding and boating. The English student Thomas Nu- gent stated that Ÿ1 They [the students] wear no gowns, but swords and if they are matriculated they enjoy a great many privi- leges. Those that are above twenty years of age, have a turn of eighty shops of wine a year, and half a barrel of beer per month free of duty of excise.1 Unlike most universities, Leiden welcomed students of all religious affiliations and it was praised for its "great liberty, the freedom of thinking, speaking and believing".2 Additionally, the medical curriculum was significantly shorter than in other places, which more than compensated for Leiden's high living costs.
    [Show full text]
  • Carolus Linnaeus (Carl Von Linné), 1707-1778: the Swede Who Named Almost Everything
    University of Kentucky UKnowledge Microbiology, Immunology, and Molecular Microbiology, Immunology, and Molecular Genetics Faculty Publications Genetics Spring 2010 Carolus Linnaeus (Carl von Linné), 1707-1778: The wedeS Who Named Almost Everything Charles T. Ambrose University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/microbio_facpub Part of the History of Science, Technology, and Medicine Commons, and the Medical Humanities Commons Repository Citation Ambrose, Charles T., "Carolus Linnaeus (Carl von Linné), 1707-1778: The wS ede Who Named Almost Everything" (2010). Microbiology, Immunology, and Molecular Genetics Faculty Publications. 34. https://uknowledge.uky.edu/microbio_facpub/34 This Article is brought to you for free and open access by the Microbiology, Immunology, and Molecular Genetics at UKnowledge. It has been accepted for inclusion in Microbiology, Immunology, and Molecular Genetics Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Carolus Linnaeus (Carl von Linné), 1707-1778: The Swede Who Named Almost Everything Notes/Citation Information Published in The Pharos of Alpha Omega Alpha-Honor Medical Society, v. 73, no. 2, p. 4-10. © 2010 by Alpha Omega Alpha Honor Medical Society. The opc yright holder has granted the permission for posting the article here. This article is available at UKnowledge: https://uknowledge.uky.edu/microbio_facpub/34 Carolus Linnaeus (Carl von Linné), 1707–1778 The Swede who named almost everything Charles T. Ambrose, MD 4 Books andThe fish Pharosprint in the/Spring library 2010 of Carl Linnaeus.
    [Show full text]
  • The Apothecary As Man of Science
    Iv THE APOTHECARY AS MAN OF SCIENCE INTRODUCTION The development and use of rational scientific methods was well established by the mid-seventeenth century. The collection of data and the systematic arrangement of ideas, the application of mathematics and sound reasoning, and, above all, the experi- mental testing of hypotheses, advocated by men of the calibre of Johan Kepler (1571-1630), Galileo Galilei (1564-1642), Francis Bacon (1561-1626), and Rene Descartes (1596-1650) were, by the time of the Commonwealth, accepted roads to the advancement of knowledge. A new intellectual outlook had evolved, as noted by John Aubrey (1626-97) in 1671, "Till about the year 1649 'twas held a strange presumption for a man to attempt an innovation of learning". The English apothecary was, of course, much influenced by these changes. He developed methods of inquiry and investigation, he experimented, he joined societies, he wrote to like-minded contemporaries, he published his findings, and, above all, he had the good fortune to be caught in the toils of collectors' mania, be it "curiosities" or new information. The apothecary had a particular interest in those fields that most closely impinged upon his own profession - botany, chemistry, and medicine. Although considerable advances in the description and classification of plants and animals had been made by 1760, no great theoretical principles or "laws" of biology had been developed. It should be noted, though, that the generation of scientists arriv- ing on the scene after 1760 was able to study an immensely richer collection of natural history specimens from distant lands, which helped towards developing new interpretations of Nature based on sounder doctrines.
    [Show full text]
  • Albrecht Von Haller
    ALBRECHT VON HALLER Dr. Subhas Singh, Dept of Organon of Medicine, NIH. Dr. Satyajit Naskar, PGT, Dept. of Organon of Medicine, NIH. ABSTRACT: Master Hahnemann mentioned about Von Haller frequently as a great and immortal personality. This article is little attempt to know about the life and work of this greatest personality and to understand why Hahnemann trusted on him and his work. KEYWORD: Albrecht von Haller, Hahnemann, Homoeopathy. 4 INTRODUCTION: Albrecht von Haller was one of the greatest personalities of the eighteenth century, may be the most universally learned men of all time. His knowledge in medicine, surgery, anatomy, physiology, botany, literature, scientific bibliography, and public service were simply endless, and he achieved excellence in all of them. BIRTH7: Victor Albrecht Von Haller was born on 16th October 1708 in the city Bundesstadt of Switzerland in an old Swiss family. His Mother was Ana Maria Engel and father was Niklaus emanuel Haller. He was the fifth and last child of Niklaus Emanuel Haller (1672-1721), a jurist in the service of the Republic of Bern, and Anna Maria Engel. His mother died when he was young, and he was raised by his stepmother, Salome Neuhaus. The family was neither rich nor well-connected and had little political influence. EARLY LIFE7: In his early life he suffered for long time and this long continued illness prevented him from the usual activities to be done by a normal boy. But this long physical illness can’t prevent his mental growth. He was much intelligent than his age- At the age of 4 yrs he used to read and systematically represent the Bible to his father’s servants.
    [Show full text]
  • Herder. Physiology and Philosophical Anthropology Stefanie Buchenau
    Herder. Physiology and philosophical anthropology Stefanie Buchenau To cite this version: Stefanie Buchenau. Herder. Physiology and philosophical anthropology. Herder. Philosophy and Anthropology., 2017, 9780198779650. 10.1093/oso/9780198779650.003.0005. hal-02286197 HAL Id: hal-02286197 https://hal.archives-ouvertes.fr/hal-02286197 Submitted on 13 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Stefanie BUCHENAU, “Herder. Physiology and Anthropology” in : Herder. Philosophy and Anthropology. éd. par Nigel de Souza et Anik Waldow, Oxford, Oxford University Press, 2017. Herder. Physiology and philosophical anthropology1 Stefanie BUCHENAU, Paris2 Abstract: In eighteenth-century Germany, a new field of philosophical anthropology emerged, signaling a profound reconfiguration of what, originally, in the Renaissance, was primarily a medical and anatomical discipline. This paper focuses on Herder’s contribution to this development and investigates its medical and physiological context. Set in the context of the long history of anthropology, Herder’s philosophy can be seen as a response to recent discoveries in medicine and physiology. The major impulse came from Albrecht von Haller’s new distinction between the irritability of muscle and the sensibility of nerves, that he first presented in the 1740s and 1750s.
    [Show full text]
  • RINA (Hendrika Grada) KNOEFF Date and Place of Birth: 26 October 1972, Staphorst, the Netherlands Work Experience October 2012
    RINA (Hendrika Grada) KNOEFF Date and place of birth: 26 October 1972, Staphorst, the Netherlands Work Experience October 2012 – present: Senior researcher / assistant professor (Faculty of Arts, Department of History, University of Groningen). See: http://www.rug.nl/staff/h.g.knoeff/index October 2008 – October 2012: Postdoctoral Research Fellow (Faculty of Arts, Art History, Leiden University) on the history of anatomical collections. See: http://www.hum.leiden.edu/research/culturesofcollecting/ February 2006 – September 2008: Postdoctoral Research Fellow (Faculty of Arts, Art History, Leiden University) on the history of anatomy in relation to (modern) art (Supervisor: Prof. Dr. R. Zwijnenberg) October 2001 – January 2006: Postdoctoral Research Fellow (Faculty of Arts and Sciences, Maastricht University) on ‘Philosophy, Anatomy and Representation’ in the NWO (Dutch Research Council) funded project ‘the Mediated Body’ (Supervisor: Prof. Dr. R. Zwijnenberg) March 2001 – July 2001: Teacher of English at the Mozaïek College in Arnhem Education October 1996 – November 2000: Ph.D. in history of medicine (Faculty of History, Cambridge University, UK) on ‘Herman Boerhaave (1668-1738): Calvinist Chemist and Physician’. Supervisor: Dr. A. Cunningham; Examiners: Prof. Dr. H. Cook and Dr. O.P. Grell August 1991 – August 1995: Culture and Science Studies (Maastricht University) with a specialisation in ‘Theory and History of Man and Nature’ October 1994 – April 1995: Visiting M.Phil Student at the Cambridge University Wellcome Unit for the History of Medicine Scholarships, Prizes and Distinctions 2012: Awarding of a NWO Aspasia grant. 2012: Awarding of a NWO Vidi grant for the project Vital Matters. Boerhaave’s Chemico- Medical Legacy and Dutch Enlightenment Culture.
    [Show full text]
  • Introduction Albrecht Von Haller
    Introduction Albrecht von Haller (1708–1777), the Swiss polymath, is best known in the history of medicine for his concept of irritability and sensibility. His orations De Partibus Sensilibus et Irritabilibus, delivered in 1752 and published in 1753, caused a European controversy about the function of nerves and muscles and about the properties of the living body in general. They were translated within two years into French, English, German, Italian and Swedish, and have since then been considered a classic of medical literature.1 No general history of medicine skips Haller’s contribution to physiology or ‘animal economy’, as it was often called in these days. Haller claimed to have proven by animal experiments that only the muscular fibre possesses the ability of contraction, which he called irritability and which was responsible for movement. From this property he strictly distinguished sensibility, responsible for sensual impression and inherent only in the nerves and the parts furnished with nerves. Thus he challenged the traditional, mechanical – mainly Boerhaavian – model on three main points. First, Haller postulated a force inherent in the muscular fibre and independent of the nerves and the soul. Second and partly as a result of this, he separated – conceptually and physically – the two properties of movement and sense perception. Third, and again in part resulting therefrom, he established a strict correlation between structure and function, not on the level of corpuscules or elementary particles, however, but on the level of
    [Show full text]