Arithmetic / Logic Unit – ALU Design

Total Page:16

File Type:pdf, Size:1020Kb

Arithmetic / Logic Unit – ALU Design CSE 675.02: Introduction to Computer Architecture Arithmetic / Logic Unit – ALU Design Presentation F Reading Assignment: B5, 3.4 Slides by Gojko Babi 32-bit ALU ALU Control A 32 Result 32-bit 32 ALU Zero Overflow Carry out B 32 • Our ALU should be able to perform functions: – logical and function – logical or function – arithmetic add function – arithmetic subtract function – arithmetic slt (set-less-then) function – logical nor function • ALU control lines define a function to be performed on A and B. g. babic Presentation F 2 1 Functioning of 32-bit ALU ALU Control lines ALU Control 4 Function Ainvert Binvert Operation and 0 0 00 A 32 Result or 0 0 01 32-bit 32 add 0 0 10 ALU Zero Overflow subtract 0 1 10 Carry out B 32 slt 0 1 11 nor 1 1 00 • Result lines provide result of the chosen function applied to values of A and B • Since this ALU operates on 32-bit operands, it is called 32-bit ALU • Zero output indicates if all Result lines have value 0 • Overflow indicates integer overflow of add and subtract functions; for unsigned integers, this overflow indicator does not provide any useful information • Carry out indicates carry out and unsigned integer overflow g. babic Presentation F 3 Designing 32-bit ALU: Beginning 1. Let us start with and function Operation = 0 and 2. Let us now add or function = 1 or a0 0 Result0 b0 1 a1 Result1 0 b1 1 a2 0 Result2 b2 1 a31 0 Result31 b31 1 g. babic 4 2 Designing 32-bit ALU: Principles • A number of functions Operation = 0 and are performed inter- = 1 or nally, but only one a0 and result is chosen for 0 Result0 the output of ALU b0 or 1 a1 and Result1 0 b1 • 32-bit ALU is built or 1 out of 32 identical 1-bit ALU’s a2 and 0 Result2 b2 or 1 a31 and 0 Result31 b31 or 1 g. babic 5 Designing the Adder • 32-bit adder is built out of 32 1-bit adders 1-bit Adder 1-bit Adder Truth Table Input Output a b Carry Sum Carry Figure B.5.2 In Out 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 From the truth 0 1 1 0 1 table and after 1 0 0 1 0 minimization, we 1 0 1 0 1 can have this 1 1 0 0 1 design for CarryOut 1 1 1 1 1 Figure B.5.5 Figure B.5.3 g. babic Presentation F 6 3 32-bit Adder “0” a0 Cin sum0 b0 + Cout This is a ripple carry adder. a1 Cin sum1 b1 + Cout The key to speeding up addition is determining carry out in the Cin a2 sum2 higher order bits sooner. b2 + Cout Result: Carry look-ahead adder. Cin a31 sum31 b31 + Cout Carry out g. babic Presentation F 7 32-bit ALU With 3 Functions =0 1-bit ALU Operation = 00 and = 01 or = 10 add Figure B.5.6 Figure B.5.7 + carry out CarryOut g. babic Presentation F 8 4 32-bit Subtractor “0”“1” a0 Cin A – B = A + (–B) Result0 b0 + Cout = A + B + 1 a1 Cin Result1 b1 + Cout Cin a2 Result2 b2 + Cout Cin a31 Result31 b31 + Cout CarryOut g. babic Presentation F 9 32-bit Adder / Subtractor binvert “0” a0 Cin Result0 0 b0 + Cout 1 a1 Cin Result1 + b1 0 Cout 1 Cin Binvert = 0 addition a2 Result2 + = 1 subtraction b2 0 Cout 1 Cin a31 Result31 + b31 0 Cout 1 0 CarryOut g. babic 1 10 5 32-bit ALU With 4 Functions 1-bit ALU B i n v e r t O p e r a t i o n B i n v e rt O p e ra t i o n C a r r y I n a 0 C a r r y I n b0 ALU0 R esult0 a 0 C a r r y O u t 1 R e s u l t a 1 C a r r y I n b 0 2 b 1 A L U 1 R e s u l t 1 1 C a r r y O u t Figure B.5.8 C a r r y O u t a 2 C a r r y I n b 2 A L U 2 R e s u l t 2 Control lines C a r r y O u t Function Binvert Operation (1 line) (2 lines) C a r r y I n and 0 00 or 0 01 a 3 1 C a r r y I n R e s u l t 3 1 b 3 1 A L U 3 1 add 0 10 subtract 1 10 0 Carry Out g. babic Presentation F 1 11 2’s Complement Overflow B i n v e r t O p e r a t i o n • 2’s complement overflow C a r r y I n happens: a – if a sum of two positive 0 numbers results in a negative number 1 – if a sum of two negative R e s u l t numbers results in b 0 + 2 a positive number 1 L e s s 3 Carry Out O v e r f l o w O v e r f l o w d e t e c t i o n 1-bit ALU for the most significant bit Other 1-bit ALUs, i.e. non-most significant bit ALUs, are not affected. g. babic Presentation F 12 6 32-bit ALU With 4 Functions and Overflow B i n v e r t O p e r a t i o n a 0 C a r r y I n b 0 A L U 0 R e s u l t 0 C a r r y O u t Control lines a 1 C a r r y I n Function Binvert Operation b 1 A L U 1 R e s u l t 1 (1 line) (2 lines) C a r r y O u t and 0 00 or 0 01 a 2 C a r r y I n b 2 A L U 2 R e s u l t 2 add 0 10 C a r r y O u t subtract 1 10 C a r r y I n a 3 1 C a r r y I n R e s u l t 3 1 b 3 1 A L U 3 1 Missing: slt & nor functions and Zero output O v e r f l o w Carry Out g. babic Presentation F 7 .
Recommended publications
  • Comparison of Parallel and Pipelined CORDIC Algorithm Using RCA and CSA
    Comparison of Parallel and Pipelined CORDIC algorithm using RCA and CSA Diego Barragan´ Guerrero Lu´ıs Geraldo P. Meloni FEEC - UNICAMP FEEC - UNICAMP Campinas, Sao˜ Paulo, Brazil, 13083-852 Campinas, Sao˜ Paulo, Brazil, 13083-852 +5519 9308-9952 +5519 9778-1523 [email protected] [email protected] Abstract— This paper presents an implementation of the algorithm has two modes of operation: the rotational mode CORDIC algorithm in digital hardware using two types of (RM) where the vector (xi; yi) is rotated by an angle θ to algebraic adders: Ripple-Carry Adder (RCA) and Carry-Select obtain a new vector (x ; y ), and the vectoring mode (VM) Adder (CSA), both in parallel and pipelined architectures. Anal- N N ysis of time performance and resources utilization was carried in which the algorithm computes the modulus R and phase α out by changing the algorithm number of iterations. These results from the x-axis of the vector (x0; y0). The basic principle of demonstrate the efficiency in operating frequency of the pipelined the algorithm is shown in Figure 1. architecture with respect to the parallel architecture. Also it is shown that the use of CSA reduce the timing processing without significantly increasing the slice use. The code was synthesized us- ing FPGA development tools for the Xilinx Spartan-3E xc3s500e ' ' E N y family. N E N Index Terms— CORDIC, pipelined, parallel, RCA, CSA, y N trigonometrics functions. Rotação Pseudo-rotação R N I. INTRODUCTION E i In Digital Signal Processing with FPGA, trigonometric y i R i functions are used in many signal algorithms, for instance N synchronization and equalization [12].
    [Show full text]
  • Basics of Logic Design Arithmetic Logic Unit (ALU) Today's Lecture
    Basics of Logic Design Arithmetic Logic Unit (ALU) CPS 104 Lecture 9 Today’s Lecture • Homework #3 Assigned Due March 3 • Project Groups assigned & posted to blackboard. • Project Specification is on Web Due April 19 • Building the building blocks… Outline • Review • Digital building blocks • An Arithmetic Logic Unit (ALU) Reading Appendix B, Chapter 3 © Alvin R. Lebeck CPS 104 2 Review: Digital Design • Logic Design, Switching Circuits, Digital Logic Recall: Everything is built from transistors • A transistor is a switch • It is either on or off • On or off can represent True or False Given a bunch of bits (0 or 1)… • Is this instruction a lw or a beq? • What register do I read? • How do I add two numbers? • Need a method to reason about complex expressions © Alvin R. Lebeck CPS 104 3 Review: Boolean Functions • Boolean functions have arguments that take two values ({T,F} or {0,1}) and they return a single or a set of ({T,F} or {0,1}) value(s). • Boolean functions can always be represented by a table called a “Truth Table” • Example: F: {0,1}3 -> {0,1}2 a b c f1f2 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 © Alvin R. Lebeck CPS 104 4 Review: Boolean Functions and Expressions F(A, B, C) = (A * B) + (~A * C) ABCF 0000 0011 0100 0111 1000 1010 1101 1111 © Alvin R. Lebeck CPS 104 5 Review: Boolean Gates • Gates are electronics devices that implement simple Boolean functions Examples a a AND(a,b) OR(a,b) a NOT(a) b b a XOR(a,b) a NAND(a,b) b b a NOR(a,b) a XNOR(a,b) b b © Alvin R.
    [Show full text]
  • Digital Electronic Circuits
    DIGITAL ELECTRONIC CIRCUITS SUBJECT CODE: PEI4I103 B.Tech, Fourth Semester Prepared By Dr. Kanhu Charan Bhuyan Asst. Professor Instrumentation and Electronics Engineering COLLEGE OF ENGINEERING AND TECHNOLOGY BHUBANESWAR B.Tech (E&IE/AE&I) detail Syllabus for Admission Batch 2015-16 PEI4I103- DIGITAL ELECTRONICS University level 80% MODULE – I (12 Hours)1. Number System: Introduction to various number systems and their Conversion. Arithmetic Operation using 1’s and 2`s Compliments, Signed Binary and Floating Point Number Representation Introduction to Binary codes and their applications. (5 Hours) 2. Boolean Algebra and Logic Gates: Boolean algebra and identities, Complete Logic set, logic gates and truth tables. Universal logic gates, Algebraic Reduction and realization using logic gates (3 Hours) 3. Combinational Logic Design: Specifying the Problem, Canonical Logic Forms, Extracting Canonical Forms, EX-OR Equivalence Operations, Logic Array, K-Maps: Two, Three and Four variable K-maps, NAND and NOR Logic Implementations. (4 Hours) MODULE – II (14 Hours) 4. Logic Components: Concept of Digital Components, Binary Adders, Subtraction and Multiplication, An Equality Detector and comparator, Line Decoder, encoders, Multiplexers and De-multiplexers. (5 Hours) 5. Synchronous Sequential logic Design: sequential circuits, storage elements: Latches (SR,D), Storage elements: Flip-Flops inclusion of Master-Slave, characteristics equation and state diagram of each FFs and Conversion of Flip-Flops. Analysis of Clocked Sequential circuits and Mealy and Moore Models of Finite State Machines (6 Hours) 6. Binary Counters: Introduction, Principle and design of synchronous and asynchronous counters, Design of MOD-N counters, Ring counters. Decade counters, State Diagram of binary counters (4 hours) MODULE – III (12 hours) 7.
    [Show full text]
  • Arithmetic and Logic Unit (ALU)
    Computer Arithmetic: Arithmetic and Logic Unit (ALU) Arithmetic & Logic Unit (ALU) • Part of the computer that actually performs arithmetic and logical operations on data • All of the other elements of the computer system are there mainly to bring data into the ALU for it to process and then to take the results back out • Based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations ALU Inputs and Outputs Integer Representations • In the binary number system arbitrary numbers can be represented with: – The digits zero and one – The minus sign (for negative numbers) – The period, or radix point (for numbers with a fractional component) – For purposes of computer storage and processing we do not have the benefit of special symbols for the minus sign and radix point – Only binary digits (0,1) may be used to represent numbers Integer Representations • There are 4 commonly known (1 not common) integer representations. • All have been used at various times for various reasons. 1. Unsigned 2. Sign Magnitude 3. One’s Complement 4. Two’s Complement 5. Biased (not commonly known) 1. Unsigned • The standard binary encoding already given. • Only positive value. • Range: 0 to ((2 to the power of N bits) – 1) • Example: 4 bits; (2ˆ4)-1 = 16-1 = values 0 to 15 Semester II 2014/2015 8 1. Unsigned (Cont’d.) Semester II 2014/2015 9 2. Sign-Magnitude • All of these alternatives involve treating the There are several alternative most significant (leftmost) bit in the word as conventions used to
    [Show full text]
  • FUNDAMENTALS of COMPUTING (2019-20) COURSE CODE: 5023 502800CH (Grade 7 for ½ High School Credit) 502900CH (Grade 8 for ½ High School Credit)
    EXPLORING COMPUTER SCIENCE NEW NAME: FUNDAMENTALS OF COMPUTING (2019-20) COURSE CODE: 5023 502800CH (grade 7 for ½ high school credit) 502900CH (grade 8 for ½ high school credit) COURSE DESCRIPTION: Fundamentals of Computing is designed to introduce students to the field of computer science through an exploration of engaging and accessible topics. Through creativity and innovation, students will use critical thinking and problem solving skills to implement projects that are relevant to students’ lives. They will create a variety of computing artifacts while collaborating in teams. Students will gain a fundamental understanding of the history and operation of computers, programming, and web design. Students will also be introduced to computing careers and will examine societal and ethical issues of computing. OBJECTIVE: Given the necessary equipment, software, supplies, and facilities, the student will be able to successfully complete the following core standards for courses that grant one unit of credit. RECOMMENDED GRADE LEVELS: 9-12 (Preference 9-10) COURSE CREDIT: 1 unit (120 hours) COMPUTER REQUIREMENTS: One computer per student with Internet access RESOURCES: See attached Resource List A. SAFETY Effective professionals know the academic subject matter, including safety as required for proficiency within their area. They will use this knowledge as needed in their role. The following accountability criteria are considered essential for students in any program of study. 1. Review school safety policies and procedures. 2. Review classroom safety rules and procedures. 3. Review safety procedures for using equipment in the classroom. 4. Identify major causes of work-related accidents in office environments. 5. Demonstrate safety skills in an office/work environment.
    [Show full text]
  • Design and Analysis of Power Efficient PTL Half Subtractor Using 120Nm Technology
    International Journal of Computer Trends and Technology (IJCTT) – volume 7 number 4– Jan 2014 Design and Analysis of Power Efficient PTL Half Subtractor Using 120nm Technology 1 2 Pranshu Sharma , Anjali Sharma 1(Department of Electronics & Communication Engineering, APG Shimla University, India) 2(Department of Electronics & Communication Engineering, APG Shimla University, India) ABSTRACT : In the designing of any VLSI System, There are a number of logic styles by which a circuit can arithmetic circuits play a vital role, subtractor circuit is be implemented some of them used in this paper are one among them. In this paper a Power efficient Half- CMOS, TG, PTL. CMOS logic styles are robust against Subtractor has been designed using the PTL technique. voltage scaling and transistor sizing and thus provide a Subtractor circuit using this technique consumes less reliable operation at low voltages and arbitrary transistor power in comparison to the CMOS and TG techniques. sizes. In CMOS style input signals are connected to The proposed Half-Subtractor circuit using the PTL transistor gates only, which facilitate the usage and technique consists of 6 NMOS and 4 PMOS. The characterization of logic cells. Due to the complementary proposed PTL Half-Subtractor is designed and simulated transistor pairs the layout of CMOS gates is not much using DSCH 3.1 and Microwind 3.1 on 120nm. The complicated and is power efficient. The large number of power estimation and simulation of layout has been done PMOS transistors used in complementary CMOS logic for the proposed PTL half-Subtractor design. Power style is one of its major disadvantages and it results in comparison on BSIM-4 and LEVEL-3 has been high input loads [3].
    [Show full text]
  • The Central Processing Unit(CPU). the Brain of Any Computer System Is the CPU
    Computer Fundamentals 1'stage Lec. (8 ) College of Computer Technology Dept.Information Networks The central processing unit(CPU). The brain of any computer system is the CPU. It controls the functioning of the other units and process the data. The CPU is sometimes called the processor, or in the personal computer field called “microprocessor”. It is a single integrated circuit that contains all the electronics needed to execute a program. The processor calculates (add, multiplies and so on), performs logical operations (compares numbers and make decisions), and controls the transfer of data among devices. The processor acts as the controller of all actions or services provided by the system. Processor actions are synchronized to its clock input. A clock signal consists of clock cycles. The time to complete a clock cycle is called the clock period. Normally, we use the clock frequency, which is the inverse of the clock period, to specify the clock. The clock frequency is measured in Hertz, which represents one cycle/second. Hertz is abbreviated as Hz. Usually, we use mega Hertz (MHz) and giga Hertz (GHz) as in 1.8 GHz Pentium. The processor can be thought of as executing the following cycle forever: 1. Fetch an instruction from the memory, 2. Decode the instruction (i.e., determine the instruction type), 3. Execute the instruction (i.e., perform the action specified by the instruction). Execution of an instruction involves fetching any required operands, performing the specified operation, and writing the results back. This process is often referred to as the fetch- execute cycle, or simply the execution cycle.
    [Show full text]
  • Implementation of Carry Tree Adders and Compare with RCA and CSLA
    International Journal of Emerging Engineering Research and Technology Volume 4, Issue 1, January 2016, PP 1-11 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Implementation of Carry Tree Adders and Compare with RCA and CSLA 1 2 G. Venkatanaga Kumar , C.H Pushpalatha Department of ECE, GONNA INSTITUTE OF TECHNOLOGY, Vishakhapatnam, India (PG Scholar) Department of ECE, GONNA INSTITUTE OF TECHNOLOGY, Vishakhapatnam, India (Associate Professor) ABSTRACT The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on improving the power delay performance of the adder. In VLSI implementations, parallel-prefix adders are known to have the best performance. Binary adders are one of the most essential logic elements within a digital system. In addition, binary adders are also helpful in units other than Arithmetic Logic Units (ALU), such as multipliers, dividers and memory addressing. Therefore, binary addition is essential that any improvement in binary addition can result in a performance boost for any computing system and, hence, help improve the performance of the entire system. Parallel-prefix adders (also known as carry-tree adders) are known to have the best performance in VLSI designs. This paper investigates three types of carry-tree adders (the Kogge- Stone, sparse Kogge-Stone, Ladner-Fischer and spanning tree adder) and compares them to the simple Ripple Carry Adder (RCA) and Carry Skip Adder (CSA). In this project Xilinx-ISE tool is used for simulation, logical verification, and further synthesizing. This algorithm is implemented in Xilinx 13.2 version and verified using Spartan 3e kit.
    [Show full text]
  • CS/EE 260 – Homework 5 Solutions Spring 2000
    CS/EE 260 – Homework 5 Solutions Spring 2000 1. (MK 3-23) Construct a 10-to-1 line multiplexer with three 4-to-1 line multiplexers. The multiplexers should be interconnected and inputs labeled so that the selection codes 0000 through 1001 can be directly applied to the multiplexer selections inputs without added logic. 10:1 mux d0 0 1 d1 1 X d9 9 S3S2S1S0 Implementation using 4:1 muxes. d0 0 d2 1 d4 2 d6 3 0 S 1 S2 1 d8 2 X d9 3 d 0 1 S S d3 1 3 0 d5 2 d7 3 S2 S1 1 2. (MK 3-27) Implement a binary full adder with a dual 4-to-1 line multiplexer and a single inverter. AB Ci S Co 00 0 0 0 C 0 00 1 1 i 0 01 0 1 0 C ´ C 01 1 0 i 1 i 10 0 1 0 10 1 0Ci´ 1 Ci 11 0 0 1 C 1 11 1 1 i 1 0 C 1 i 4:1 2 S 3 mux S1 S0 A B 0 0 1 4:1 Co 2 mux 1 3 S1S0 2 3. (MK 3-34) Design a combinational circuit that forms the 2-bit binary sum S1S0 of two 2-bit numbers A1A0 and B1B0 and has both input C0 and a carry output C2. Do not use half adders or full adders, but instead use a two-level circuit plus inverters for the input variables, as needed. Design the circuit by starting with the following equations for each of the two bits of the adder.
    [Show full text]
  • Design of Adder / Subtractor Circuits Based On
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 8, August 2013 DESIGN OF ADDER / SUBTRACTOR CIRCUITS BASED ON REVERSIBLE GATES V.Kamalakannan1, Shilpakala.V2, Ravi.H.N3 Lecturer, Department of ECE, R.L.Jalappa Institute of Technology, Doddaballapur, Karnataka, India 1 Asst. Professor & HOD, Department of ECE, R.L.Jalappa Institute of Technology, Doddaballapur, Karnataka, India2 Lab Assistant, Dept. of ECE, U.V.C.E, Bangalore Karnataka, India3 ABSTRACT: Reversible logic has extensive applications in quantum computing, it is a unconventional form of computing where the computational process is reversible, i.e., time-invertible. The main motivation behind the study of this technology is aimed at implementing reversible computing where they offer what is predicted to be the only potential way to improve the energy efficiency of computers beyond von Neumann-Landauer limit. It is relatively new and emerging area in the field of computing that taught us to think physically about computation Quantum Computing will be a total change in how the computer will operate and function. The reversible arithmetic circuits are efficient in terms of number of reversible gates, garbage output and quantum cost. In this paper design Reversible Binary Adder- Subtractor- Mux, Adder-Subtractor- TR Gate., Adder-Subtractor- Hybrid are proposed. In all the three design approaches, the Adder and Subtractor are realized in a single unit as compared to only full adder/subtractor in the existing design. The performance analysis is verified using number reversible gates, Garbage input/outputs and Quantum Cost.The reversible 4-bit full adder/ subtractor design unit is compared with conventional ripple carry adder, carry look ahead adder, carry skip adder, Manchester carry adder based on their performance with respect to area, timing and power.
    [Show full text]
  • Area and Power Optimized D-Flip Flop and Subtractor
    IT in Industry, Vol. 9, No.1, 2021 Published Online 28-02-2021 AREA AND POWER OPTIMIZED D-FLIP FLOP AND SUBTRACTOR T. Subhashini1, M. Kamaraju2, K. Babulu3 1,2 Department of ECE, Gudlavalleru Engineering College, India 3Department of ECE, UCOE, JNTUK, Kakinada, India Abstract: Low power is essential in today’s technology. It LITERATURE SURVEY is most significant with high speed, small size and stability. So, power reduction is most important in modern In the era of microelectronics, power dissipation is technology using VLSI design techniques. Today most of limiting factor. In any CMOS technology, provides the market necessities require low power, long run time very low Static power dissipation. Due to the and market which also deserve small size and high speed. discharge of capacitance, during the switching In this paper several logic circuits DFF with 5 transistors operation, that cause a power dissipation. Which and sub tractor circuit using powerless XOR gate and increases with the clock frequency. Using Groundless XNOR gates are implemented. In the proposed Transmission Gate Technique Such unnecessary DFF, the area can be decreased by 62% & substarctor discharging can be prevented. Due to the resistance of circuit, area decreased by 80% and power consumption of switches, impartial losses may be occurred for any DFF and subtractor circuit are 15.4µW and 13.76µW logic operation. respectively, but these are very less as compared to existing techniques. To avoid these minor losses keep clock frequency to be small than the technological limit. There are Keyword: D FF, NMOS, PMOS, VLSI, P-XOR, G-XNOR different types of Transmission Gate logic families.
    [Show full text]
  • Arithmetic and Logical Unit Design for Area Optimization for Microcontroller Amrut Anilrao Purohit 1,2 , Mohammed Riyaz Ahmed 2 and R
    et International Journal on Emerging Technologies 11 (2): 668-673(2020) ISSN No. (Print): 0975-8364 ISSN No. (Online): 2249-3255 Arithmetic and Logical Unit Design for Area Optimization for Microcontroller Amrut Anilrao Purohit 1,2 , Mohammed Riyaz Ahmed 2 and R. Venkata Siva Reddy 2 1Research Scholar, VTU Belagavi (Karnataka), India. 2School of Electronics and Communication Engineering, REVA University Bengaluru, (Karnataka), India. (Corresponding author: Amrut Anilrao Purohit) (Received 04 January 2020, Revised 02 March 2020, Accepted 03 March 2020) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Arithmetic and Logic Unit (ALU) can be understood with basic knowledge of digital electronics and any engineer will go through the details only once. The advantage of knowing ALU in detail is two- folded: firstly, programming of the processing device can be efficient and secondly, can design a new ALU architecture as per the various constraints of the use cases. The miniaturization of digital circuits can be achieved by either reducing the size of transistor (Moore’s law) or by optimizing the gate count of the circuit. The first has been explored extensively while the latter has been ignored which deals with the application of Boolean rules and requires sound knowledge of logic design. The ultimate outcome is to have an area optimized architecture/approach that optimizes the circuit at gate level. The design of ALU is for various processing devices varies with the device/system requirements. The area optimization places a significant role in the chip design. Here in this work, we have attempted to design an ALU which is area efficient while being loaded with additional functionality necessary for microcontrollers.
    [Show full text]