Tyler Arboretum Tree and Shrub List 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Bloom May 21St.Xlsx
In bloom at Van Vleck May 21st … Rhododendrons and azaleas are a big part of this week's show. Especially noteworthy are some unusually colored deciduous azaleas, leaf stem flower root Scientific Name Common Name Where? Fragrant? Trees: also look for foliage, fruit, and bark interest Aesculus pavia red buckeye wetland Asimina triloba pawpaw wetland Chionanthus retusus Chinese fringetree drying yard, rear parking Chionanthus virginicus fringetree winter garden Cornus x hybrida Rutgers hybrid dogwood woodland Halesia diptera two-winged silverbell woodland Halesia monticola mountain silverbell mother's garden Magnolia tripetala umbrella magnolia mother's garden Trochodendron aralioides Japanese wheel tree near caretaker's cottage Shrubs: Calycanthus 'Hartlage Wine' woodland, azalea walk Calycanthus 'Michael Lindsey' Carolina allspice woodland Deutzia gracilis slender deutzia front of house, woodland, pedestrian path Enkianthus campanulatus redvein nkianthus throughout garden Illicium floridanum 'Woodland Ruby' anise tree formal garden Leucothoe throughout garden Lonicera mackii Amur honeysuckle winter garden Rhododendron azalea assorted cultivars throughout garden Rhododendron rhododendron assorted throughout garden Rhododendron carolinianum Carolina rhododendron throughout garden Rhododendron 'Frilly Lemon' deciduous azalea wetland Rhododendron Mollis Hybrids deciduous azalea formal garden Rhododendron vaseyi 'White Find' pinkshell azalea azalea walk Syringa 'Palibin' lilac front of house Vaccinium corymbosum highbush blueberry throughout -
Hornbeam Maple Acer Carpinifolium Rating: 0.0 ( 0 Votes)
Hornbeam maple Acer carpinifolium Rating: 0.0 ( 0 votes) This description is for Hornbeam maple (Acer carpinifolium): So named because the wood is tough like a beam made of horns; handy, should you ever need a beam made of horns but you're woefully low on horns. Acer carpinifolium, commonly known as the Hornbeam maple hails from Japan. A fairly small tree, growing no taller than about 10-15m. Unlike most other acers, this tree does not have lobed leaves. Instead it has ridged oval leaves with a serrated edge. They look similar to the leaves of the hornbean, hence the name. In the autumn this tree really shines as the leaves turn a vibrant shade of yellow. It's a very hardy tree that will grow in most soil types as long as it is fertile and well- drained. Find Hornbeam maple in our Shop! Free shipping from € 50! Plant Environment Usage Known dangers? Acidity Standard category no Acidic Trees & shrubs Neutral Shrubs Alkaline Height [m] Hardiness zone Grown for 5 - 6 Z4-7 Ornamental Foliage Plant Environment Usage Spread [m] Heat zone Creative category 4 H7-1 Kid Approved For Beginners Show-offs Dominant flower colour Winter temperatures [°C] Garden type Green -34 - -12 Woodland Park City Flower Fragrance Heat days Garden spaces No, neutral please 0 - 90 Specimen Flowering seasons Moisture Gardening expertise Early spring well-drained but frequently watered beginner Mid spring Foliage in spring Soil type Time to reach full size Green sandy up to 20 years Clay chalky loams Foliage in summer Sun requirements Green Full sun Partial shade Foliage in Autumn Exposure Red shades Sheltered Propagation methods grafting seed budding . -
Gymnosperms) of New York State
QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D. -
Halesia Spp. Family: Styracaceae Silverbell
Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
The Role of Fir Species in the Silviculture of British Forests
Kastamonu Üni., Orman Fakültesi Dergisi, 2012, Özel Sayı: 15-26 Kastamonu Univ., Journal of Forestry Faculty, 2012, Special Issue The Role of True Fir Species in the Silviculture of British Forests: past, present and future W.L. MASON Forest Research, Northern Research Station, Roslin, Midlothian, Scotland EH25 9SY, U.K. E.mail:[email protected] Abstract There are no true fir species (Abies spp.) native to the British Isles: the first to be introduced was Abies alba in the 1600s which was planted on some scale until the late 1800s when it proved vulnerable to an insect pest. Thereafter interest switched to North American species, particularly grand (Abies grandis) and noble (Abies procera) firs. Provenance tests were established for A. alba, A. amabilis, A. grandis, and A. procera. Other silver fir species were trialled in forest plots with varying success. Although species such as grand fir have proved highly productive on favourable sites, their initial slow growth on new planting sites and limited tolerance of the moist nutrient-poor soils characteristic of upland Britain restricted their use in the afforestation programmes of the last century. As a consequence, in 2010, there were about 8000 ha of Abies species in Britain, comprising less than one per cent of the forest area. Recent species trials have confirmed that best growth is on mineral soils and that, in open ground conditions, establishment takes longer than for other conifers. However, changes in forest policies increasingly favour the use of Continuous Cover Forestry and the shade tolerant nature of many fir species makes them candidates for use with selection or shelterwood silvicultural systems. -
The Occurrence of Rhyndophorus Ferrugineus in Grecce and Cyprus
ENTOMOLOGIA HELLENICA 17 (2007-2008): 28-33 The scale insect Dynaspidiotus abietis (Schrank) on Abies cephalonica (Pinaceae) G. J. STATHAS Technological Educational Institute of Kalamata, School of Agricultural Technology Department of Crop Production, Laboratory of Agricultural Entomology and Zoology, 24100 Antikalamos, Greece, ([email protected]) ABSTRACT Data on phenology and morphology of the scale insect Dynaspidiotus abietis (Schrank) (Hemiptera: Diaspididae), found on fir trees Abies cephalonica (Pinaceae) on mount Taygetos (Peloponnesus - southern Greece), are presented. The species is biparental and oviparous. During this study (June 2004 – August 2006) D. abietis completed one generation per year. It overwintered as mated pre-ovipositing female adult. Ovipositions were recorded from May to July. The majority of the hatches of the crawlers were observed in June. Predated individuals of the scale which were found during the study period were attributed to the presence of the predator Chilocorus bipustulatus (L.) (Coleoptera: Coccinellidae). Introduction belonging to the family Coccidae, such as Physokermes hemicryphus (Dalm.), P. There are many species belonging to picae Sch., Eulecanium sericeum (Lind.) family Diaspididae that infest fir trees in and Nemolecanium graniformis (Wünn), Europe. Major species include: Chionaspis which were found on Abies cephalonica austriaca Lindinger, Diaspidiotus Loud. and A. borisii-regis Mattf., as well ostreaeformis (Curtis), Dynaspidiotus as Marchalina hellenica (Gennadius) abieticola (Koroneos), D. abietis (Margarodidae), are regarded as more (Schrank), Fiorinia japonica Luwana, important and have been studied mainly Lepidosaphes juniperi Lindinger, L. due to them excreting honeydews, on newsteadi (Šulc), Leucaspis lowi Colvée, which bees are fed (Santas 1983, Santas L. pini (Hartig), Parlatoria parlatoriae 1991, Stathas, 2001). (Šulc) and Unaspidiotus corticispini The scale insect Dynaspidiotus abietis (Lindinger) (Ben-Dov 2006). -
Potential Impact of Climate Change
Adhikari et al. Journal of Ecology and Environment (2018) 42:36 Journal of Ecology https://doi.org/10.1186/s41610-018-0095-y and Environment RESEARCH Open Access Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea Pradeep Adhikari, Man-Seok Shin, Ja-Young Jeon, Hyun Woo Kim, Seungbum Hong and Changwan Seo* Abstract Background: Subalpine ecosystems at high altitudes and latitudes are particularly sensitive to climate change. In South Korea, the prediction of the species richness of subalpine plant species under future climate change is not well studied. Thus, this study aims to assess the potential impact of climate change on species richness of subalpine plant species (14 species) in the 17 mountain national parks (MNPs) of South Korea under climate change scenarios’ representative concentration pathways (RCP) 4.5 and RCP 8.5 using maximum entropy (MaxEnt) and Migclim for the years 2050 and 2070. Results: Altogether, 723 species occurrence points of 14 species and six selected variables were used in modeling. The models developed for all species showed excellent performance (AUC > 0.89 and TSS > 0.70). The results predicted a significant loss of species richness in all MNPs. Under RCP 4.5, the range of reduction was predicted to be 15.38–94.02% by 2050 and 21.42–96.64% by 2070. Similarly, under RCP 8.5, it will decline 15.38–97.9% by 2050 and 23.07–100% by 2070. The reduction was relatively high in the MNPs located in the central regions (Songnisan and Gyeryongsan), eastern region (Juwangsan), and southern regions (Mudeungsan, Wolchulsan, Hallasan, and Jirisan) compared to the northern and northeastern regions (Odaesan, Seoraksan, Chiaksan, and Taebaeksan). -
7. PSEUDOLARIX Gordon, Pinetum 292. 1858, Nom. Cons. 金钱松属 Jin Qian Song Shu Chrysolarix H
Flora of China 4: 41–42. 1999. 7. PSEUDOLARIX Gordon, Pinetum 292. 1858, nom. cons. 金钱松属 jin qian song shu Chrysolarix H. E. Moore; Laricopsis Kent. Trees deciduous; trunk monopodial, straight, terete; branches irregularly whorled; branchlets strongly dimorphic: long branchlets with leaves spirally arranged and radially spreading; short branchlets with leaves radially arranged in false whorls of 10–30 (often spirally spread like a discoid star). Leaves green, turning golden yellow before falling in autumn, narrowly oblanceolate-linear, flattened, 1.5–4 mm wide, flexible, stomatal lines abaxial, in 2 bands, separated by midvein, vascular bundle 1, resin canals 2 or 3 (–7), marginal. Pollen cones terminal on short branchlets, borne in umbellate clusters of 10–25, pendulous at maturity; pollen 2-saccate. Seed cones solitary, shortly pedunculate, erect or ± spreading, ovoid-globose, 2-seeded, maturing in 1st year. Seed scales thick, woody, deciduous at maturity. Bracts adnate to seed scales at base and shed together with them at maturity. Seeds with large, backward projecting wing extending beyond scale margin at maturity. Cotyledons 4–7. 2n = 44*. • One species: China. 1. Pseudolarix amabilis (J. Nelson) Rehder, J. Arnold Arbor. 1: 53. 1919. 金钱松 jin qian song Larix amabilis J. Nelson, Pinaceae 84. 1866; Abies kaempferi Lindley; Chrysolarix amabilis (J. Nelson) H. E. Moore; Laricopsis kaempferi (Lindley) Kent; Pseudolarix fortunei Mayr; P. kaempferi Gordon; P. pourtetii Ferré. Trees to 40 m tall; trunk to 3 m d.b.h.; bark gray-brown, rough, scaly, flaking; crown broadly conical; long branchlets initially reddish brown or reddish yellow, glossy, glabrous, becoming yellowish gray, brownish gray, or rarely purplish brown in 2nd or 3rd year, finally gray or dark gray; short branchlets slow growing, bearing dense rings of leaf cushions; winter buds ovoid, scales free at apex. -
Botsad 03 2018.Indd
БЮЛЛЕТЕНЬ ГЛАВНОГО БОТАНИЧЕСКОГО САДА 3/2018 (Выпуск 204) ISSN: 0366-502Х СОДЕРЖАНИЕ Учредители: Федеральное государственное ИНТРОДУКЦИЯ И АККЛИМАТИЗАЦИЯ бюджетное учреждение науки Главный ботанический сад им. Н.В. Цицина РАН ООО «Научтехлитиздат»; ООО «Мир журналов». Издатель: Фирсов Г.А. ООО «Научтехлитиздат» Журнал зарегистрирован федеральной службой по надзору в сфере связи Представители рода тисс (Taxus L.) в Ботаническом саду Петра Великого .........3 информационных технологий и массовых коммуникаций (Роскомнадзор). Шейко В.В. Свидетельство о регистрации СМИ ПИ № ФС77-46435 Lonicera chamissoi Bunge ex P.Kir. в природе и культуре ......................................12 Подписные индексы ОАО «Роспечать» 83164 «Пресса России» 11184 Волчанская А.В., Фирсов Г.А. Главный редактор: Демидов А.С., доктор биологических Долговечность и устойчивость редких древесных растений флоры наук, профессор, Россия Редакционная коллегия: России в Ботаническом саду Петра Великого .......................................................19 Бондорина И.А. доктор биол. наук, Россия Виноградова Ю.К. доктор биол. наук Россия Горбунов Ю.Н. доктор биол. наук, Сахарова С.Г., Орлова Л.В., Тарасевич В.Ф. (зам. гл. редактора), Россия Иманбаева А.А. канд. биол. наук, Казахстан Молканова О.И. канд. с/х наук, Россия К уточнению таксономии видов коллекции ботанического сада Плотникова Л.С. доктор биол. наук, проф. Россия Решетников В.Н. доктор биол. наук, СПбГЛТА (на примере Pseudolarix amabilis (J. Nelson) Rehder )..........................27 проф., Беларусь Романов М.С. канд.биол.наук, Россия Семихов В.Ф. доктор биол.наук, проф. Россия Кабанов А.В. Ткаченко О.Б. доктор биол. наук, Россия Шатко В.Г. канд. биол. наук (отв. секретарь), Россия Особенности формирования коллекции астильбы в ГБС РАН ............................40 Швецов А.Н. канд. биол. наук, Россия Huang Hongwen Prof., China Peter Wyse Jackson Dr., Prof.,USA Бугаев В.В. -
Phylogeny and Biogeography of Tsuga (Pinaceae)
Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T. -
Lepidoptera, Tortricidae) from Mt
Accepted Manuscript Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China Kyu-Tek Park, Bong-Woo Lee, Yang-Seop Bae, Hui-Lin Han, Bong-Kyu Byun PII: S2287-884X(14)00025-9 DOI: 10.1016/j.japb.2014.04.007 Reference: JAPB 19 To appear in: Journal of Asia-Pacific Biodiversity Received Date: 28 February 2014 Revised Date: 13 March 2014 Accepted Date: 4 April 2014 Please cite this article as: Park K-T, Lee B-W, Bae Y-S, Han H-L, Byun B-K, Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China, Journal of Asia-Pacific Biodiversity (2014), doi: 10.1016/ j.japb.2014.04.007. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT J. of Asia-Pacific Biodiversity Tortricinae (Lepidoptera, Tortricidae) from Mt. Changbai-shan, China Kyu-Tek Park a, Bong-Woo Lee b, Yang-Seop Bae c, Hui-Lin Han d, Bong-Kyu Byun e* a The Korean Academy of Science and Technology, Seongnam, 463-808, Korea b Division of Forest Biodiversity, Korea National Arboretum, Sumokwokgil, Pocheon, 487-821, Korea c Division of Life Sciences, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon, 406-772, Korea dSchool of Forestry, Northeast Forestry University, Harbin, 150040, P.R.