Characterization of the Pathogenicity of Strains of Pseudomonas Syringae Towards Cherry and Plum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Terminology
PLANT TERMINOLOGY Plant terminology for the identification of plants is a necessary evil in order to be more exact, to cut down on lengthy descriptions, and of course to use the more professional texts. I have tried to keep the terminology in the database fairly simple but there is no choice in using many descriptive terms. The following slides deal with the most commonly used terms (more specialized terms are given in family descriptions where needed). Professional texts vary from fairly friendly to down-right difficult in their use of terminology. Do not be dismayed if a plant or plant part does not seem to fit any given term, or that some terms seem to be vague or have more than one definition – that’s life. In addition this subject has deep historical roots and plant terminology has evolved with the science although some authors have not. There are many texts that define and illustrate plant terminology – I use Plant Identification Terminology, An illustrated Glossary by Harris and Harris (see CREDITS) and others. Most plant books have at least some terms defined. To really begin to appreciate the diversity of plants, a good text on plant systematics or Classification is a necessity. PLANT TERMS - Typical Plant - Introduction [V. Max Brown] Plant Shoot System of Plant – stem, leaves and flowers. This is the photosynthetic part of the plant using CO2 (from the air) and light to produce food which is used by the plant and stored in the Root System. The shoot system is also the reproductive part of the plant forming flowers (highly modified leaves); however some plants also have forms of asexual reproduction The stem is composed of Nodes (points of origin for leaves and branches) and Internodes Root System of Plant – supports the plant, stores food and uptakes water and minerals used in the shoot System PLANT TERMS - Typical Perfect Flower [V. -
Microbiological Quality and Occurrence of Antibiotic Resistant Bacteria in Ready-To-Eat Salad
Microbiological quality and occurrence of antibiotic resistant bacteria in ready-to-eat salad Tamara Lupan Master thesis for a diploma in Food Technology and Nutrition, 30 ECTS credits Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University Abstract An increase in demand for fresh vegetables resulted in an increased production of minimally processed, ready-to-eat salad in Sweden. That also brought new food safety challenges that are yet to be addressed. To assess whether ready-to-eat leafy green vegetables present a threat in terms of food borne outbreaks, aerobic bacteria, as well as bacteria belonging to the Enterobacteriaceae family, were recovered, using selective media, from 3 different sets (n=18) of ready-to-eat rocket salad. Bacterial investigation showed that most bacteria retrieved from ready-to-eat rocket salad belongs to the Pseudomonadaceae family, which are typical spoilage bacteria commonly associated with vegetables. No food-borne pathogens (e.g. Clostridium botulinum, Escherichia coli O157:H7, Salmonella spp., Shigella spp., Listeria monocytogenes) were isolated from any of three sets of rocket salad. Following the assumption that microbiological quality of the salad could change during the storage period, as well as a result of salad bags being opened, sealed, stored and opened again in the household, the total aerobic count as well as the total amount of Enterobacteriaceae were assessed every day before the best-before date. Following the NSW food Authority guidance on the microbiological status of ready-to-eat food, it can be confirmed, that each of three sets of salad were from the first day after packaging, unsatisfactory in regards to total aerobic count, showing values higher than 5 log CFU/g. -
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
Studies on Seed Germination, Seedling Growth, and in Vitro Shoot
HORTSCIENCE 44(3):751–756. 2009. plantlets are detached from the mother plant that are dried and planted. However, seed propagation is more feasible and recommen- Studies on Seed Germination, Seedling ded for survival of rare species (Van Wyk and Smith, 1996). If this species has to be Growth, and In Vitro Shoot Induction propagated on a large scale by means of seed or tissue culture methods, then currently there of Aloe ferox Mill., a Commercially is no basic information available on these aspects. Aloes are succulent and warm-cli- mate plants, where both temperature and Important Species water play an important role in establishing Michael W. Bairu, Manoj G. Kulkarni, Rene´e A. Street, Rofhiwa them. This study was therefore conducted to B. Mulaudzi, and Johannes Van Staden1 examine 1) the effects of different temper- atures, growth-promoting substances, and Research Centre for Plant Growth and Development, School of Biological watering frequencies on seed germination and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, and seedling growth of A. ferox; and 2) to Private Bag X01, Scottsville 3209, South Africa assess the applicability of an in vitro propa- gation protocol developed for other Aloe spp. Additional index words. cytokinins, growth regulators, multiplication rate, smoke solutions, temperature, tissue culture Materials and Methods Abstract. A study was done to investigate the effects of some physical and chemical factors on growth and development of Aloe ferox ex vitro and in vitro. The effects of light, Seed collection. Dried seeds of A. ferox temperature, and smoke–water on seed germination, ex vitro seedling growth require- were collected between the middle to the end ments, and effect of germination medium and cytokinins on shoot induction and of August from the Botanical Garden, Uni- multiplication in vitro were investigated. -
Chapter 5: the Shoot System I: the Stem
Chapter 5 The Shoot System I: The Stem THE FUNCTIONS AND ORGANIZATION OF THE SHOOT SYSTEM PRIMARY GROWTH AND STEM ANATOMY Primary Tissues of Dicot Stems Develop from the Primary Meristems The Distribution of the Primary Vascular Bundles Depends on the Position of Leaves Primary Growth Differs in Monocot and Dicot Stems SECONDARY GROWTH AND THE ANATOMY OF WOOD Secondary Xylem and Phloem Develop from Vascular Cambium Wood Is Composed of Secondary Xylem Gymnosperm Wood Differs from Angiosperm Wood Bark Is Composed of Secondary Phloem and Periderm Buds Are Compressed Branches Waiting to Elongate Some Monocot Stems Have Secondary Growth STEM MODIFICATIONS FOR SPECIAL FUNCTIONS THE ECONOMIC VALUE OF WOODY STEMS SUMMARY ECONOMIC BOTANY: How Do You Make A Barrel? 1 KEY CONCEPTS 1. The shoot system is composed of the stem and its lateral appendages: leaves, buds, and flowers. Leaves are arranged in different patterns (phyllotaxis): alternate, opposite, whorled, and spiral. 2. Stems provide support to the leaves, buds, and flowers. They conduct water and nutrients and produce new cells in meristems (shoot apical meristem, primary and secondary meristems). 3. Dicot stems and monocot stems are usually different. Dicot stems tend to have vascular bundles distributed in a ring, whereas in monocot stems they tend to be scattered. 4. Stems are composed of the following: epidermis, cortex and pith, xylem and phloem, and periderm. 5. Secondary xylem is formed by the division of cells in the vascular cambium and is called wood. The bark is composed of all of the tissues outside the vascular cambium, including the periderm (formed from cork cambium) and the secondary phloem. -
Sensitive and Specific Detection of Pseudomonas Avellanae Using
J. Phytopathology 149, 527±532 (2001) Ó 2001 Blackwell Wissenschafts-Verlag, Berlin ISSN 0931-1785 Istituto Sperimentale per la Frutticoltura, Ciampino Aeroporto, Roma, Italy Sensitive and Speci®c Detection of Pseudomonas avellanae using Primers based on 16S rRNA Gene Sequences M. SCORTICHINI* and U. MARCHESI Authors' address: Istituto Sperimentale per la Frutticoltura, Via di Fioranello, 52, I-00040 Ciampino Aeroporto, Rome, Italy (correspondence to M. Scortichini. E-mail: [email protected]) With 4 ®gures Received January 1, 2001; accepted May 1, 2001 Keywords: Pseudomonas avellanae, 16S rRNA gene, detection, hazelnut decline, primers Abstract up to some years. The detection of P. avellanae is A rapid polymerase chain reaction (PCR)-based proce- currently based either on traditional techniques that dure was developed for the detection of Pseudomonas include pathogenicity tests which require at least avellanae, the causal agent of hazelnut (Corylus avellana) 6±7 months for the completion or on repetitive-PCR decline in northern Greece and central Italy. The partial using the ERIC primers and requiring the isolation and sequence of the 16S rRNA gene of P. avellanae strain the production of pure cultures (Scortichini et al., PD 2390, isolated in central Italy, was compared with 2000a). The latter procedure can be completed in the sequence coding for the same gene of P. syringae pv. 4±6 days but latent infection cannot be detected. The syringae type-strain LMG 1247t1. Primers PAV 1 and possibility of utilizing a diagnostic technique enabling a PAV 22 were chosen, and after the PCR, an ampli®ca- reliable and rapid screening of the propagative material, tion product of 762 base pairs was speci®cally produced can also support the establishing of new hazelnut only by 40 strains of P. -
Plant Pathology
Plant Pathology 330-1 Reading / Reference Materials CSU Extension Fact Sheets o Aspen and poplar leaf spots – #2.920 o Backyard orchard: apples and pears [pest management] – #2.800 o Backyard orchard: stone fruits [pest management] – #2.804 o Bacterial wetwood – #2.910 o Cytospora canker – #2.937 o Diseases of roses in Colorado – #2.946 o Dollar spot disease of turfgrass – #2.933 o Dutch elm disease – #5.506 o Dwarf mistletoe management – #2.925 o Fairy ring in turfgrass – #2.908 o Fire blight – #2.907 o Forest fire – Insects and diseases associated with forest fires – #6.309 o Friendly pesticides for home gardens – #2.945 o Greenhouse plant viruses (TSWV-INSV) – #2.947 o Honeylocust diseases – #2.939 o Juniper-hawthorn rust – #2.904 o Juniper-hawthorn rust – #2.904 o Leaf spot and melting out diseases – #2.909 o Necrotic ring spot in turfgrass – #2.900 o Non-chemical disease control – #2.903 o Pesticides – Friendly pesticides for home gardens – #2.945 o Pinyon pine insects and diseases – #2.948 o Powdery mildew – #2.902 o Roses – Diseases of roses in Colorado – #2.946 o Russian olive decline and gummosis – #2.942 o Strawberry diseases – #2.931 o Sycamore anthracnose – #2.930 CSU Extension Publications o Insects and diseases of woody plants of the central Rockies – 506A Curriculum developed by Mary Small, CSU Extension, Jefferson County • Colorado State University, U.S. Department of Agriculture and Colorado counties cooperating. • CSU Extension programs are available to all without discrimination. • No endorsement of products named is intended, nor is criticism implied of products not mentioned. -
Principal Types of Vegetative Shoot Apex Organization in Vascular Plants1
PRINCIPAL TYPES OF VEGETATIVE SHOOT APEX ORGANIZATION IN VASCULAR PLANTS1 RICHARD A. POPHAM Department of Botany and Plant Pathology, The Ohio State University, Columbus 10 Before progress can be made in research, a problem must be recognized. Once the problem has been perceived, a research program may be directed toward a solution. The problem of how and where a shoot grows and the organization of the shoot apex was apparently first conceived by Kaspar Friedrich Wolff (1759). Although his observations on the structure, formation, and growth of cells were fantastically inaccurate, he made a great contribution to our knowledge of the growing plant by setting forth a new and important problem. In a very real sense, Wolff is the father of developmental plant anatomy. Disagreement is the life blood of many research problems. Strenuous opposition is often engendered by a dogmatic statement or a theory which is proposed as a universal truth. Opposition to Wolff's (1759) original proposition regarding the organization and growth of shoot apices prompted plant anatomists, some 85 years later, to investigate the truth of the statement. The factual solution of the problem of shoot apex organization had its beginnings in the work of Nageli (1845). Following this work on many lower cryptogams, Nageli concluded that the cells of all tissues of the shoot of cryptogams and higher plants have their genesis in a single apical cell. The new-born apical cell theory supported by Hofmeister (1851) and others provided the impetus for a renewed, vigorous attack on the problem of shoot apex organization. A little later a new proposal, Hanstein's (1868) histogen theory was born of more careful observations and in a mind unfettered by the prevailing fanaticism of the apical cell theorists. -
Red Shoot Disease of Cranberry
Cranberry Pest Management Red Shoot Disease of Cranberry Red shoot, caused by the fungus Symptoms and spindly with red or yellow Exobasidium perenne, is a rela- leaves that are slightly more tively minor disease of the culti- Signs round than typical oblong cran- vated American cranberry Symptoms Þrst appear in the berry leaves (Figures 1Ð3). By (Vaccinium macrocarpon) and the spring on current yearÕs shoots mid summer the lower surfaces wild small cranberry (Vaccinium that occur singly or as a cluster of leaves become covered with oxycoccus). The red shoot fun- arising from a node on a buried white, powdery fungal spores. gus is related to the fungus that runner. Affected shoots do not Shoots wither after the fungus causes red leaf spot. Red shoot produce ßowers but rather are has shed its spores. Diseased has been reported in Wisconsin, shoots break off easily from the Massachusetts, the PaciÞc Northwest, and in the Atlantic maritime provinces of Canada. Red shoot is not an economi- cally important disease, and speciÞc control recommenda- tions have not been developed. However, the distorted, red or yellow shoots have sometimes been misidentiÞed as a weed, making growers think that an herbicide should be applied. The fact that red shoot is a dis- ease has been conÞrmed by tak- ing fungal spores from infected plants and inoculating them Figure1. Clusters of red shoot in a bed of ‘Searles’. The orangish-rust col- onto healthy plants; the inocu- ored shoots to the left are not affected by red shoot, but rather a different lated plants then developed red problem such as upright dieback. -
Vegetative Vs. Reproductive Morphology
Today’s lecture: plant morphology Vegetative vs. reproductive morphology Vegetative morphology Growth, development, photosynthesis, support Not involved in sexual reproduction Reproductive morphology Sexual reproduction Vegetative morphology: seeds Seed = a dormant young plant in which development is arrested. Cotyledon (seed leaf) = leaf developed at the first node of the embryonic stem; present in the seed prior to germination. Vegetative morphology: roots Water and mineral uptake radicle primary roots stem secondary roots taproot fibrous roots adventitious roots Vegetative morphology: roots Modified roots Symbiosis/parasitism Food storage stem secondary roots Increase nutrient Allow dormancy adventitious roots availability Facilitate vegetative spread Vegetative morphology: stems plumule primary shoot Support, vertical elongation apical bud node internode leaf lateral (axillary) bud lateral shoot stipule Vegetative morphology: stems Vascular tissue = specialized cells transporting water and nutrients Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Modified stems Asexual (vegetative) reproduction Stolon: above ground Rhizome: below ground Stems elongating laterally, producing adventitious roots and lateral shoots Vegetative morphology: stems Modified stems Food storage Bulb: leaves are storage organs Corm: stem is storage organ Stems not elongating, packed with carbohydrates Vegetative -
Host Specificity and Virulence of the Phytopathogenic Bacteria Pseudomonas Savastanoi Eloy Caballo Ponce Caballo Eloy
Host specificity and virulence of the phytopathogenic bacteria Pseudomonas savastanoi Eloy Caballo Ponce Caballo Eloy TESIS DOCTORAL Eloy Caballo Ponce Director: Cayo Ramos Rodríguez Programa de Doctorado: Biotecnología Avanzada TESIS DOCTORAL TESIS Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” Universidad de Málaga – CSIC 2017 Año 2017 Memoria presentada por: Eloy Caballo Ponce para optar al grado de Doctor por la Universidad de Málaga Host specificity and virulence of the phytopathogenic bacteria Pseudomonas savastanoi Director: Cayo J. Ramos Rodríguez Catedrático. Área de Genética. Departamento de Biología Celular, Genética y Fisiología. Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM) Universidad de Málaga – Consejo Superior de Investigaciones Científicas Málaga, 2016 AUTOR: Eloy Caballo Ponce http://orcid.org/0000-0003-0501-3321 EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial- SinObraDerivada 4.0 Internacional: http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cualquier parte de esta obra se puede reproducir sin autorización pero con el reconocimiento y atribución de los autores. No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas. Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga (RIUMA): riuma.uma.es COMITÉ EVALUADOR Presidente Dr. Jesús Murillo Martínez Departamento de Producción Agraria Universidad Pública de Navarra Secretario Dr. Francisco Manuel Cazorla López Departamento de Microbiología Universidad de Málaga Vocal Dra. Chiaraluce Moretti Departamento de Ciencias Agrarias, Alimentarias y Medioambientales Universidad de Perugia Suplentes Dr. Pablo Rodríguez Palenzuela Departamento de Biotecnología – Biología Vegetal Universidad Politécnica de Madrid Dr. -
Comparative Analysis of the Core Proteomes Among The
Diversity 2020, 12, 289 1 of 25 Article Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species‐Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis Marios Nikolaidis 1, Dimitris Mossialos 2, Stephen G. Oliver 3 and Grigorios D. Amoutzias 1,* 1 Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 2 Microbial Biotechnology‐Molecular Bacteriology‐Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; [email protected] 3 Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; [email protected] * Correspondence: [email protected]; Tel.: +30‐2410‐565289; Fax: +30‐2410‐565290 Received: 22 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core‐orthologues. The subsequent phylogenomic analysis revealed two well‐defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus‐level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group‐specific core proteins were also identified, with P.