Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류
Korean Journal of Microbiology (2019) Vol. 55, No. 1, pp. 39-45 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2019.8099 eISSN 2383-9902 Copyright ⓒ 2019, The Microbiological Society of Korea 토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류 김현중1 ・ 정유정2 ・ 김해영1 ・ 허문석2* 1 2 경희대학교 생명과학대학 식품생명공학 전공, 국립생물자원관 생물자원연구부 미생물자원과 Isolation and characterization of 6 unrecorded Pseudomonas spp. from Korean soil 1 2 1 2 Hyun-Joong Kim , You-Jung Jung , Hae-Yeong Kim , and Moonsuk Hur * 1 Institute of Life Sciences and Resources Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea 2 Biological Resources Research Department, National Institute of Biological Resources, Incheon 22689, Republic of Korea (Received November 30, 2018; Revised December 19, 2018; Accepted December 19, 2018) In 2017, as a study to discover indigenous prokaryotic species 물의 공통된 특징은 그람 음성(Gram-negative), 호기성, Oxidase in Korea, a total of 6 bacterial strains assigned to the genus 양성 또는 음성, Catalase 양성, 형태학적으로 간균의 모양을 Pseudomonas were isolated from soil. From the high 16S 하고 있다. DNA의 GC 함량은 58~69 mol%이며 하나 혹은 몇 rRNA gene sequence similarity (≥ 99.5%) and phylogenetic 개의 극편모(polar flagella)를 이용하여 운동성을 갖는 것으로 analysis with closely related species, the isolated strains were 알려져 있으며, 현재까지 총 253개 종이 보고 되어 있다(http:// identified as independent Pseudomonas species which were unrecorded in Korea. The six Pseudomonas species were www.bacterio.net/pseudomonas.html) (Palleroni, 1984; Peix Pseudomonas mandelii, P. canadensis, P. thivervalensis, P. et al., 2009; Mulet et al., 2010). -
Evolutionary Patchwork of an Insecticidal Toxin
Ruffner et al. BMC Genomics (2015) 16:609 DOI 10.1186/s12864-015-1763-2 RESEARCH ARTICLE Open Access Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus Beat Ruffner1, Maria Péchy-Tarr2, Monica Höfte3, Guido Bloemberg4, Jürg Grunder5, Christoph Keel2* and Monika Maurhofer1* Abstract Background: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Results: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Conclusions: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Pseudomonas Chlororaphis PA23 Biocontrol of Sclerotinia Sclerotiorum on Canola
Pseudomonas chlororaphis PA23 Biocontrol of Sclerotinia sclerotiorum on Canola: Understanding Populations and Enhancing Inoculation LORI M. REIMER A Thesis Submitted to the Faculty of Graduate Studies In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba © Copyright by Lori M. Reimer 2016 GENERAL ABSTRACT Reimer, Lori M. M.Sc., The University of Manitoba, June 2016. Pseudomonas chlroraphis PA23 Biocontrol of Sclerotinia sclerotiorum on Canola: Understanding Populations and Enhancing Inoculation. Supervisor, Dr. Dilantha Fernando. Pseudomonas chlororaphis strain PA23 has demonstrated biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary, a fungal pathogen of canola (Brassica napus L.). This biocontrol is mediated through the production of secondary metabolites, of which the antibiotics pyrrolnitrin and phenazine are major contributers. The objectives of this research were two-fold: to optimize PA23 phyllosphere biocontrol and to investigate PA23’s influence in the rhizosphere. PA23 demonstrated longevity, both in terms of S. sclerotiorum biocontrol and by having viable cells after 7 days, when inoculated on B. napus under greenhouse conditions. Carbon source differentially effected growth rate and antifungal metabolite production of PA23 in culture. PA23 grew fasted in glucose and glycerol, while mannose lead to the greatest inhibition of S. sclerotiorum mycelia and fructose lead to the highest levels of antibiotic production relative to cell density. Carbon source did not have a significant effect on in vivo biocontrol. PA23 demonstrated biocontrol ability of the fungal root pathogens Rhizoctonia solani J.G. Kühn and Pythium ultimum Trow in radial diffusion assays. PA23’s ability to promote seedling root growth was demonstrated in sterile growth pouches, but in a soil system these results were reversed. -
Performance Evaluation of Microbe and Plant-Mediated Processes in Phytoremediation of Toluene in Fractured Bedrock Using Hybrid Poplars
Performance evaluation of microbe and plant-mediated processes in phytoremediation of toluene in fractured bedrock using hybrid poplars by Michael Ben-Israel A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Environmental Sciences Guelph, Ontario, Canada © Michael Ben-Israel, March, 2020 ABSTRACT PERFORMANCE EVALUATION OF MICROBE AND PLANT-MEDIATED PROCESSES IN PHYTOREMEDIATION OF TOLUENE IN FRACTURED BEDROCK USING HYBRID POPLARS Michael Ben-Israel Advisor: University of Guelph, 2020 Dr. Kari Dunfield Efficacy of hybrid poplar trees for phytoremediation of toluene in fractured bedrock aquifers is unclear and active mechanisms require validation. This multi-year field study was conducted on a pilot phytoremediation system at an urban site, implemented to address aged toluene impacts to a shallow fractured dolostone aquifer. The study aimed to establish performance by quantifying phytoremedial activities at the site. Contaminant concentrations in groundwater, soil, and soil vapour, measured in high spatial resolution, showed the main residual toluene mass is coincident with the water table and located favourably for phyto-remedial uptake and biodegradation, with shallow groundwater concentrations approaching aqueous solubility in high-impact areas. Biodegradation occurring in the vadose zone was shown through metagenomic analyses that enumerated toluene degradation genes and gene transcripts in roots and root-associated soil, and compound-specific stable isotope analysis that showed enrichment of toluene stable carbon isotopes in soil vapour. Transpiration measurement, in planta contaminant quantification, and high-throughput sequencing of microbial taxonomic genes in roots and stem tissue were employed to measure toluene uptake through phytoextraction and resolve biodegradation influences upon uptake patterns. -
Pseudomonas Populations Causing Pith Necrosis of Tomato and Pepper in Argentina Are Highly Diverse
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SEDICI - Repositorio de la UNLP Plant Pathology (2003) 52, 287-302 Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse A. M. Alippia*t, E. Dal Boa, L. B. Ronco3, M. V. Lópezb, A. C. Lópezb and O. M. Aguilarb sCentro de Investigaciones de Fitopatología, Facultad de Cs. Agrarias y Forestales, Universidad Nacional de La Plata, c.c. 31, calles 60 y 118, 1900 La Plata; andbInstituto de Bioguímica y Biología Molecular, Facultad de Cs. Exactas, UNLP, calles 47 y 115, 1900 La Plata, Argentina Pseudomonas species causing pith necrosis symptoms on tomato and pepper collected in different areas of Argentina were identified as Pseudomonas corrugata, P. viridiflava and Pseudomonas spp. Their diversity was analysed and compared with reference strains on the basis of their phenotypic characteristics, copper and antibiotic sensitivity tests, serology, pathogenicity, DNA fingerprinting and restriction fragment length polymorphism (RFLP) analysis of a 16S rRNA gene fragment. All P. corrugata strains tested were copper-resistant while P. viridiflava strains were more variable. Numerical analysis of phenotypic data showed that all P. corrugata strains formed a single phenon that clustered at a level of about 93%, while all the P. viridiflava strains clustered in a separated phenon at a level of 94%. Genomic analysis by repetitive (rep)-PCR and 16S rRNA-RFLP fingerprinting and serological analysis showed that the two species contained considerable genetic diversity. Inoculations of tomato and pepper plants with strains from both hosts caused similar pith necrosis symptoms. -
Symbiotic Bacteria Associated with Ascidian Vanadium Accumulation Identified by 16S Rrna Amplicon Sequencing
Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing Author Tatsuya Ueki, Manabu Fujie, Romaidi, Noriyuki Satoh journal or Marine Genomics publication title volume 43 page range 33-42 year 2018-11-09 Publisher Elsevier B.V. Rights (C) 2018 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000917/ doi: info:doi/10.1016/j.margen.2018.10.006 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (https://creativecommons.org/licenses/by-nc-nd/4.0/) Marine Genomics 43 (2019) 33–42 Contents lists available at ScienceDirect Marine Genomics journal homepage: www.elsevier.com/locate/margen Full length article Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing T ⁎ Tatsuya Uekia,b, , Manabu Fujiec, Romaidia,d, Noriyuki Satohe a Molecular Physiology Laboratory, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan b Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan c DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan d Biology Department, Science and Technology Faculty, State Islamic University of Malang, Malang, Jawa Timur, Indonesia e Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan ARTICLE INFO ABSTRACT Keywords: Ascidians belonging to Phlebobranchia accumulate vanadium to an extraordinary degree (≤ 350 mM). Bacterial population Vanadium levels are strictly regulated and vary among ascidian species; thus, they represent well-suited models 16S rRNA for studies on vanadium accumulation. No comprehensive study on metal accumulation and reduction in marine Marine invertebrates organisms in relation to their symbiotic bacterial communities has been published. -
Understanding the Composition and Role of the Prokaryotic Diversity in the Potato Rhizosphere for Crop Improvement in the Andes
Understanding the composition and role of the prokaryotic diversity in the potato rhizosphere for crop improvement in the Andes Jonas Ghyselinck Dissertation submitted in fulfilment of the requirements for the degree of Doctor (Ph.D.) in Sciences, Biotechnology Promotor - Prof. Dr. Paul De Vos Co-promotor - Dr. Kim Heylen Ghyselinck Jonas – Understanding the composition and role of the prokaryotic diversity in the potato rhizosphere for crop improvement in the Andes Copyright ©2013 Ghyselinck Jonas ISBN-number: 978-94-6197-119-7 No part of this thesis protected by its copyright notice may be reproduced or utilized in any form, or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without written permission of the author and promotors. Printed by University Press | www.universitypress.be Ph.D. thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. This Ph.D. work was financially supported by European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement N° 227522 Publicly defended in Ghent, Belgium, May 28th 2013 EXAMINATION COMMITTEE Prof. Dr. Savvas Savvides (chairman) Faculty of Sciences Ghent University, Belgium Prof. Dr. Paul De Vos (promotor) Faculty of Sciences Ghent University, Belgium Dr. Kim Heylen (co-promotor) Faculty of Sciences Ghent University, Belgium Prof. Dr. Anne Willems Faculty of Sciences Ghent University, Belgium Prof. Dr. Peter Dawyndt Faculty of Sciences Ghent University, Belgium Prof. Dr. Stéphane Declerck Faculty of Biological, Agricultural and Environmental Engineering Université catholique de Louvain, Louvain-la-Neuve, Belgium Dr. Angela Sessitsch Department of Health and Environment, Bioresources Unit AIT Austrian Institute of Technology GmbH, Tulln, Austria Dr. -
Sensitive and Specific Detection of Pseudomonas Avellanae Using
J. Phytopathology 149, 527±532 (2001) Ó 2001 Blackwell Wissenschafts-Verlag, Berlin ISSN 0931-1785 Istituto Sperimentale per la Frutticoltura, Ciampino Aeroporto, Roma, Italy Sensitive and Speci®c Detection of Pseudomonas avellanae using Primers based on 16S rRNA Gene Sequences M. SCORTICHINI* and U. MARCHESI Authors' address: Istituto Sperimentale per la Frutticoltura, Via di Fioranello, 52, I-00040 Ciampino Aeroporto, Rome, Italy (correspondence to M. Scortichini. E-mail: [email protected]) With 4 ®gures Received January 1, 2001; accepted May 1, 2001 Keywords: Pseudomonas avellanae, 16S rRNA gene, detection, hazelnut decline, primers Abstract up to some years. The detection of P. avellanae is A rapid polymerase chain reaction (PCR)-based proce- currently based either on traditional techniques that dure was developed for the detection of Pseudomonas include pathogenicity tests which require at least avellanae, the causal agent of hazelnut (Corylus avellana) 6±7 months for the completion or on repetitive-PCR decline in northern Greece and central Italy. The partial using the ERIC primers and requiring the isolation and sequence of the 16S rRNA gene of P. avellanae strain the production of pure cultures (Scortichini et al., PD 2390, isolated in central Italy, was compared with 2000a). The latter procedure can be completed in the sequence coding for the same gene of P. syringae pv. 4±6 days but latent infection cannot be detected. The syringae type-strain LMG 1247t1. Primers PAV 1 and possibility of utilizing a diagnostic technique enabling a PAV 22 were chosen, and after the PCR, an ampli®ca- reliable and rapid screening of the propagative material, tion product of 762 base pairs was speci®cally produced can also support the establishing of new hazelnut only by 40 strains of P. -
Étude Des Communautés Microbiennes Rhizosphériques De Ligneux Indigènes De Sols Anthropogéniques, Issus D’Effluents Industriels Cyril Zappelini
Étude des communautés microbiennes rhizosphériques de ligneux indigènes de sols anthropogéniques, issus d’effluents industriels Cyril Zappelini To cite this version: Cyril Zappelini. Étude des communautés microbiennes rhizosphériques de ligneux indigènes de sols anthropogéniques, issus d’effluents industriels. Sciences agricoles. Université Bourgogne Franche- Comté, 2018. Français. NNT : 2018UBFCD057. tel-01902775 HAL Id: tel-01902775 https://tel.archives-ouvertes.fr/tel-01902775 Submitted on 23 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE BOURGOGNE FRANCHE-COMTÉ École doctorale Environnement-Santé Laboratoire Chrono-Environnement (UMR UFC/CNRS 6249) THÈSE Présentée en vue de l’obtention du titre de Docteur de l’Université Bourgogne Franche-Comté Spécialité « Sciences de la Vie et de l’Environnement » ÉTUDE DES COMMUNAUTES MICROBIENNES RHIZOSPHERIQUES DE LIGNEUX INDIGENES DE SOLS ANTHROPOGENIQUES, ISSUS D’EFFLUENTS INDUSTRIELS Présentée et soutenue publiquement par Cyril ZAPPELINI Le 3 juillet 2018, devant le jury composé de : Membres du jury : Vera SLAVEYKOVA (Professeure, Univ. de Genève) Rapporteure Bertrand AIGLE (Professeur, Univ. de Lorraine) Rapporteur & président du jury Céline ROOSE-AMSALEG (IGR, Univ. de Rennes) Examinatrice Karine JEZEQUEL (Maître de conférences, Univ. de Haute Alsace) Examinatrice Nicolas CAPELLI (Maître de conférences HDR, UBFC) Encadrant Christophe GUYEUX (Professeur, UBFC) Co-directeur de thèse Michel CHALOT (Professeur, UBFC) Directeur de thèse « En vérité, le chemin importe peu, la volonté d'arriver suffit à tout. -
Microorganisms-08-01166-V3.Pdf
microorganisms Article Reliable Identification of Environmental Pseudomonas Isolates Using the rpoD Gene Léa Girard 1 ,Cédric Lood 1,2 , Hassan Rokni-Zadeh 3, Vera van Noort 1,4, Rob Lavigne 2 and René De Mot 1,* 1 Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; [email protected] (L.G.); [email protected] (C.L.); [email protected] (V.v.N.) 2 Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; [email protected] 3 Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; [email protected] 4 Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, The Netherlands * Correspondence: [email protected]; Tel.: +32-16329681 Received: 23 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: The taxonomic affiliation of Pseudomonas isolates is currently assessed by using the 16S rRNA gene, MultiLocus Sequence Analysis (MLSA), or whole genome sequencing. Therefore, microbiologists are facing an arduous choice, either using the universal marker, knowing that these affiliations could be inaccurate, or engaging in more laborious and costly approaches. The rpoD gene, like the 16S rRNA gene, is included in most MLSA procedures and has already been suggested for the rapid identification of certain groups of Pseudomonas. However, a comprehensive overview of the rpoD-based phylogenetic relationships within the Pseudomonas genus is lacking. In this study, we present the rpoD-based phylogeny of 217 type strains of Pseudomonas and defined a cutoff value of 98% nucleotide identity to differentiate strains at the species level. -
The Ever-Expanding Pseudomonas Genus: Description of 43
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2021 doi:10.20944/preprints202107.0335.v1 Article The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas Putida Group Léa Girard1+, Cédric Lood1,2+, Monica Höfte3, Peter Vandamme4, Hassan Rokni-Zadeh5, Vera van Noort1,6, Rob Lavigne2*, René De Mot1,* 1 Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Aren- berg 20, 3001 Leuven, Belgium; [email protected] (L.G.), [email protected] (C.L.), [email protected] (V.v.N.) 2 Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; [email protected] 3 Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium 4 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; [email protected] 5 Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; [email protected] 6 Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, The Netherlands + The authors contributed equally to this work. * Correspondence: [email protected], +3216379524; [email protected] ; Tel.: +3216329681 Abstract: The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well-known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is in constant evolution.