Green Lighting Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ABSTRACT the Main Feature of a Conventional Terraced Housing Development Is Rows of Rectangular Shaped Houses with the Narrow Fa
MAKING A RETURN ON INVESTMENT IN PASSIVE ARCHITECTURE TERRACED HOUSES DEVELOPMENT Wan Rahmah Mohd Zaki Universiti Teknologi Malaysia(UiTM) Malaysia E-mail: [email protected] Abdul Hadi Nawawi Universiti Teknologi MalaysiaQJiTM) Malaysia E-mail: [email protected] Sabarinah Sh Ahmad Universiti Teknologi MalaysiaQJiTM) Malaysia E-mail: [email protected] ABSTRACT The main feature of a conventional terraced housing development is rows of rectangular shaped houses with the narrow facade as the frontage. Consequently, this limits natural cross ventilation and daylight penetration into the middle of the houses; and cause for unnecessary energy consumption on mechanical cooling and artijicial lighting to make the living spaces comfortable for occupants. Such inconsideration is mainly attributed to the optimum configuration of houses which offers the most economic return desired by the developer. Passive Architecture (PA) design strategies can make terraced houses more conducive for occupants as well as gives reasonable returns to the developer. The idea is demonstrated on a hypothetical double storeys terraced scheme in a 2.5 acre site whereby it is transformed intofour types of PA terraced houses development. The Return on Invesfment of the PA terraced houses is ascertained for two situations, ie., (i) fwed sales price for all types of house; and (ii) added premium to PA terraced houses due to the positive unintended effects such as low density housing, etc. If critical criteria for demand and supply in housing remain constant, it is found that PA terraced housing development offers competitive returns to the developer relative to the returns for conventional terraced housing scheme. Keyworh: Orientation, Indoor Comfort and Operational Energy 1.0 INTRODUCTION 1.1 Housing and Energy The recent public awareness on sustainability calls for housing to not only serves as a basic shelter but also to be energy efficient, i.e., designed to make occupants need low operational energy. -
1 LIGHT PHYSICS Light and Lighting Francesco Anselmo Light Intro Light Animates and Reveals Architecture
1 LIGHT PHYSICS Light and Lighting Francesco Anselmo Light intro Light animates and reveals architecture. Architecture cannot fully exist without light, since without light there would be nothing to see. Yet in architectural design light is usually either expected from nature or developed as an add-on attachment very late in the design process. The course explores the symbiotic relationship between architecture and light. As much as light can reveal architecture, architecture can animate light, making it bounce, scatter, refract, altering its spectrum and colour perception, absorbing it or reflecting it, modulating its path and strength in both space and time. It aims at developing a sensibility and intuition to the qualities of light, whilst giving the physical and computational tools to explore and validate design ideas. 4 7 1 2 5 3 6 1 LIGHT PHYSICS 4 LIGHT ELECTRIC 7 LIGHT CONNECTED 2 LIGHT BIOLOGY 5 LIGHT ARCHITECTURE 3 LIGHT NATURAL 6 LIGHT VIRTUAL Reading list Books Free online resources Bachelard, Gaston. The poetics of space, Beacon Press 1992 • http://hyperphysics.phy-astr.gsu.edu/hbase/ligcon.html Banham, Reyner. The architecture of the well-tempered Environment, Chicago University Press 1984 • http://thedaylightsite.com/ Bazerman, Charles. The languages of Edison’s light, MIT Press 2002 Berger, John. Ways of seeing, Pearson Education, Limited, 2002 • http://issuu.com/lightonline/docs/handbook-of-lighting-design Berger, John. About looking, Bloomsbury Publishing 2009 • http://www.radiance-online.org/ Bluhm, Andreas. Light! The industrial age 1750-1900, Carnegie Museum of Art 2000 Boyce, Peter R. Human Factors in Lighting, Taylor & Francis 2003 Calvino, Italo. -
Lighting and Electrics
Lighting and Electrics 1 1E See also: First Electric 2 P&G See also: Pin Connector 2-fer See also: Two-fer 2/0 Pronounced 2-aught; single conductor cable with wire size "2/0" on jacket; commonly used for feeder cable 2PG See also: Pin Connector 3-fer See also: Three-fer 4/0 Pronounced 4-aught; single conductor cable with wire size "4/0" on jacket; commonly used for feeder cable A Adapter Electrical accessory that transitions between dissimilar connectors; may be a molded unit, box or cable assembly Amp See also: Amperes Amperes Unit of measure for the quantity of electricity flowing in a conductor Synonym: A, Amp, Current AMX192 Analog Multiplexing protocol for transmitting control information from a console to a dimmer or other controllable device Synonym: AMX, USITT AMX192 eSET: Lighting & Electrics 2 Ante-proscenium See also: Front of House (FOH) Beam Asbestos Skirt Obsolete term See also: Flameproof Apron Automated Fixtures See also: Automated Luminaire Automated Lighting Control Console Lighting console capable of controlling automated luminaires Automated Luminaire Lighting instrument with attributes that are remotely controlled Synonym: Automated Fixture, Automated Light, Computerized Light, Intelligent Light, Motorized Light, Mover, Moving Light, More… Automated Yoke Remotely controlled pan and tilt device Synonym: Yokie B Backlight A lighting source that is behind the talent or subject from the viewers perspective Synonym: Backs, Back Wash, Bx, Hair Light, Rim Light Backs See also: Backlight Balcony Front See also: Balcony Rail -
Accent & Case Lighting Product Catalog
ACCENT & CASE LIGHTING PRODUCT CATALOG WHAT SETS US APART INNOVATION We combine the latest energy efficient technology and design styles to create an extensive range of attractive and sustainable luminaires. We have over 5,000 products, including many high performance products that can’t be found anywhere else. Our EcoTechnology solutions offer sustainable energy solutions that meet the qualitative needs of the visual environment with the least impact on the physical environment. SUSTAINABILITY At ConTech Lighting, our commitment to the environment is as important as our commitment to innovation, quality and our customers. We believe that lighting can be environmentally responsible and energy efficient, while providing high-quality performance and outstanding aesthetic design. EcoTechnology applies to our daily operation as well as to our products; from materials, manufacturing and transportation to the disposal process for our products and by-products. QUALITY We use the best components and manufacturing methods resulting in the highest quality fixtures. From cast housings and high performance reflectors, to the testing of each ballasted fixture before it ships, ConTech Lighting is defined by its quality. SERVICE Our responsive, personalized customer focus, and market expertise represents an oasis of outstanding service in an industry that values it, but frequently doesn’t receive it. We are here for you, live and in person, Monday through Friday 7:30am – 5:30pm CST. PRODUCT AVAILABILITY AND SPEEDSHIP™ Our products are in stock and ready to ship. Our unique SpeedShip™ process helps us toward our goal of shipping 100% of placed orders within 48 hours; at no additional cost to you. -
Download the DIA Color Chart
DEMI-PERMANENT HAIRCOLOR 2 COMPLIMENTARY LINES OF HAIRCOLOR Each with its own benefit & expertise both provide maximum creativity & freedom ADVANCED ALKALINE TECHNOLOGY GENTLE ACID TECHNOLOGY HIGH PERFORMANCE HIGH PERFORMANCE • Demi-permanent crème • Luminous demi-permanent gel-crème • Rich tones, exceptional softness • Zero lift • Covers up to 70% grey • Intense care for the hair THE PROCESS THE PROCESS • Lifts (up to 1.5 Levels with 15-vol), then deposits • Zero lift, deposit only BEFORE COLOR DURING COLOR AFTER COLOR BEFORE COLOR DURING COLOR AFTER COLOR On natural hair, the cuticle The alkaline agents slightly open DIA Richesse has the ability to lighten up On color-treated & DIA Light has an acid The cationic polymers in scales are closed. the hair fiber allowing colorants to 1.5 levels, cover up to 70% white hair sensitized hair, the cuticle pH close to the natural pH of the hair. DIA Light have a resurfacing to penetrate the cuticle. & create rich, profound tones. scales are already open. effect on the cuticle, leaving There is no lift with gentle penetration the hair with amazing shine. of colorants for long lasting color. ADVANCED ALKALINE TECHNOLOGY ADVANCED ALKALINE TECHNOLOGY HIGH PERFORMANCE • Demi-permanent crème • Rich tones, exceptional softness • Covers up to 70% grey THE PROCESS • Lifts (up to 1.5 Levels with 15-vol), then deposits BEFORE COLOR DURING COLOR AFTER COLOR On natural hair, the cuticle The alkaline agents slightly open DIA Richesse has the ability to lighten scales are closed. the hair fiber allowing colorants up to 1.5 levels, cover up to 70% white to penetrate the cuticle. -
WHITE LIGHT and COLORED LIGHT Grades K–5
WHITE LIGHT AND COLORED LIGHT grades K–5 Objective This activity offers two simple ways to demonstrate that white light is made of different colors of light mixed together. The first uses special glasses to reveal the colors that make up white light. The second involves spinning a colorful top to blend different colors into white. Together, these activities can be thought of as taking white light apart and putting it back together again. Introduction The Sun, the stars, and a light bulb are all sources of “white” light. But what is white light? What we see as white light is actually a combination of all visible colors of light mixed together. Astronomers spread starlight into a rainbow or spectrum to study the specific colors of light it contains. The colors hidden in white starlight can reveal what the star is made of and how hot it is. The tool astronomers use to spread light into a spectrum is called a spectroscope. But many things, such as glass prisms and water droplets, can also separate white light into a rainbow of colors. After it rains, there are often lots of water droplets in the air. White sunlight passing through these droplets is spread apart into its component colors, creating a rainbow. In this activity, you will view the rainbow of colors contained in white light by using a pair of “Rainbow Glasses” that separate white light into a spectrum. ! SAFETY NOTE These glasses do NOT protect your eyes from the Sun. NEVER LOOK AT THE SUN! Background Reading for Educators Light: Its Secrets Revealed, available at http://www.amnh.org/education/resources/rfl/pdf/du_x01_light.pdf Developed with the generous support of The Charles Hayden Foundation WHITE LIGHT AND COLORED LIGHT Materials Rainbow Glasses Possible white light sources: (paper glasses containing a Incandescent light bulb diffraction grating). -
Light, Color, and Atmospheric Optics
Light, Color, and Atmospheric Optics GEOL 1350: Introduction To Meteorology 1 2 • During the scattering process, no energy is gained or lost, and therefore, no temperature changes occur. • Scattering depends on the size of objects, in particular on the ratio of object’s diameter vs wavelength: 1. Rayleigh scattering (D/ < 0.03) 2. Mie scattering (0.03 ≤ D/ < 32) 3. Geometric scattering (D/ ≥ 32) 3 4 • Gas scattering: redirection of radiation by a gas molecule without a net transfer of energy of the molecules • Rayleigh scattering: absorption extinction 4 coefficient s depends on 1/ . • Molecules scatter short (blue) wavelengths preferentially over long (red) wavelengths. • The longer pathway of light through the atmosphere the more shorter wavelengths are scattered. 5 • As sunlight enters the atmosphere, the shorter visible wavelengths of violet, blue and green are scattered more by atmospheric gases than are the longer wavelengths of yellow, orange, and especially red. • The scattered waves of violet, blue, and green strike the eye from all directions. • Because our eyes are more sensitive to blue light, these waves, viewed together, produce the sensation of blue coming from all around us. 6 • Rayleigh Scattering • The selective scattering of blue light by air molecules and very small particles can make distant mountains appear blue. The blue ridge mountains in Virginia. 7 • When small particles, such as fine dust and salt, become suspended in the atmosphere, the color of the sky begins to change from blue to milky white. • These particles are large enough to scatter all wavelengths of visible light fairly evenly in all directions. -
Office Lighting: a Review of 80 Years of Standards and Recommendations
LBL-35036 WG-31I Published in the Proceedings of the 1993 IEEE Industry Applications Society AnnUalMeeting, October 2-8, 1993 in Toronto, Ontario, Canada. Office Lighting: A Review of 80 Years of Standards and Recommendations Wemer K.E. Osterhaus Energy and Environment Division Lawrence Berkeley Laboratory University of California 1 Cyclotron Road Berkeley, Califomia 94720 May 1993 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies, Building Systems and Materials Division of the U.S. Department of Energy under Contract No. DE- AC03-76SF00098. Office Lighting: A Review of 80 Years of Standards and Recommendations . Werner K. E. Osterhaus Windows and Daylighting Group Building Technologies Program Energy and Environment Division Lawrence Berkeley Laboratory Berkeley, CA 94720 U.S.A. Abstract - This paper traces the development of Lighting conditions were among the dominant complaints quantitative office lighting standards from its from workers. Illuminating engineers recognized that beginnings to the present. It discusses the inadequate lighting was responsible for many industrial oources of recommended lighting practice, the accidents. Extensive data, accumulated by Simpson [i] and nature of the quantitative recommendations, and others provide convincing proof of this condition. The loss trends in recommended values on a comparative of visual power through improper lighting could not be so basis. A critical assessment of contemporary easily recorded, but ophthalmologists [2 and 3] warned about standards is provided within this historical its dangers. context. "Insufficient and improperly applied illumination is a prolific cause of industrial accidents. In the past few years I. INTRODUCTION numerous investigators, studying the cause of accidents, have found that the accident rate in plants with poor lighting is In exploring the development of lighting standards for higher than in similar plants which are well illuminated. -
Led Lighting
LED LIGHTING from NORA LIGHTING Discover the Green advantage. It's good for the planet. It's good for you. “…no other lighting technology offers as much potential to save energy What is LED? and enhance the quality of our building environments, contributing to our nation’s The Light Emitting Diode…LED energy and climate change solutions.” Basically, LEDs are tiny light bulbs, or semiconductor diodes, Energy Efficiency and Renewable Energy Section that fit easily into an electrical circuit. But unlike ordinary U.S. Department of Energy incandescent lamps, they do not have a filament that burns out or gets hot. The diodes emit light when partnered with an electrical current and are illuminated solely by the movement of electrons in the semiconductor material. The LED is called solid state lighting or “SSL” because light is emitted Higher Color Rendering Indexes (CRI) from a solid object, the semiconductor diode, instead of a vacuum or Higher Color Rendering Indexes, CRI, have lead to the acceptance in gas tube (like an incandescent, fluorescent or HID lamp). The diode residential and commercial lighting applications. Higher CRIs mean itself is a two-terminal crystalline and when an electrical current true color rendition. Generally acceptable CRI values should be passes through it, the recombination of positive and negative charges between 80 and 100. Color output can be controlled in 2 ways, by results in the emission of visible light. phosphor coating the LED chip or by color mixing of LEDs in a array Less than one millimeter square, individual LEDs are clustered on a circuit of chips. -
The Complete Guide to Under Cabinet Lighting
THE COMPLETE GUIDE TO UNDER CABINET LIGHTING Annie Josey & Christopher Johnson Pegasus Lighting www.pegasuslighting.com Copyright © Pegasus Lighting 2013 All Rights Reserved 2 Table of Contents 1 – The Essentials of Great Lighting 2 – Choosing Under Cabinet Lights 3 – How to Install Under Cabinet Lights 4 – Under Cabinet Lighting Maintenance 5 – Beyond the Cabinet: Lights in Uncommon Places 6 – Glossary Notes 3 1 The Essentials Of Great Lighting Today, the kitchen has to be multifunctional. It’s not only a place to prepare and eat food, but also a place to relax, a place to entertain, and a place to enjoy. It should be inviting, bright, functional, and easy to control. The right kitchen lighting will help you stay clean, organized, and safe, while letting you create the perfect atmosphere for an early morning baking frenzy, board games with the kids on a rainy afternoon, or spending a couple’s night in. Most of all, light layering (having multiple light sources for different purposes) is the most important, all-encompassing rule in kitchen lighting design. A single light source never does any space justice. You need different sources of light for different purposes. Ambient lighting, task lighting, accent lighting, safety lighting, and mood lighting are all essential parts of great kitchen design. This book will first and foremost address task lighting in the kitchen. Under cabinet lights are the most popular, attractive, and handy kind of task lighting for the kitchen. Lighting designers agree that the path to any beautiful, functional kitchen starts with excellent task lights. Kitchen task lights have one simple purpose – to help you out. -
Conserving Energy in Agricultural Lighting
INTRODUCTION lighting is needed in specific areas of agricultural Innovations in lighting technologies have operations, including offices and packing and greatly improved the efficiency of lighting fixtures processing areas. Lighting used to supplement or in transforming electricity into visible light. Energy replace natural light for plant growth has very savings in lighting are further facilitated by a specific requirements and is typically the most growing body of knowledge about the effects of intensive use of energy for lighting in agriculture. light intensity and quality on plants, animals and humans. In 2005, electricity consumption by US LIGHTING TYPES agricultural operations was approximately 0.14 There are many types of lighting. The most quadrillion BTU (6), driven chiefly by lighting- and commonly used lamps are incandescent, fluorescent ventilation-related energy expenditures in the and a variety of high intensity discharge lights. livestock and greenhouse sectors. As these sectors Halogen lamps are a type of incandescent lighting comprise a comparatively large proportion of New that is slightly more efficient than incandescent Jersey agriculture, conservation of energy in lamps, but typically more expensive to purchase. lighting is an excellent way for New Jersey farmers Fluorescent lamps may be linear or curved tubes or to save energy. small diameter compact bulbs (CFLs). High This document presents an overview of how intensity discharge (HID) lamps include low- energy is consumed in lighting and ways to pressure sodium (LPS), high-pressure sodium minimize its consumption. The most important (HPS), mercury vapor and metal halide. As light opportunity for energy savings in lighting, however, emitting diode (LED) technologies evolve, LEDs is the maximal use of ambient natural light, which are used more frequently in a variety of has little to no associated energy use. -
Delamping in Most of Our Classroom Light Fixtures, There Are One to Four Individual Fluorescent Lamps
Delamping In most of our classroom light fixtures, there are one to four individual fluorescent lamps. Depending on the types of fixtures, you can remove one of the lamps while keeping the others in. Which one to take out simply depends on which appears best to you. On the newer, skinnier (T-8) lamps, the manufacturer recommends that no more than one lamp be removed from the fixture. Delamping is a simple way to reduce foot-candles of light intensity in an area. In the lighting industry, foot-candles are a common unit of measurement used to calculate adequate lighting levels of workspaces in buildings or outdoor spaces. Of course, you can also remove all the lamps in a fixture if the light is not needed at all. Some overhead light fixtures are also emergency lights that will stay on when the building loses power. The emergency light fixtures should not be deplamped. Delamping should done by qualified staff only. Keep in mind these rules for delamping: Do not compromise health, safety, or security. Do not take lamps out of new fixtures that are still covered under warranty. Do consider the needs of the building occupants. With T-8 systems, do not remove more than one lamp per fixture. Maintain recommended minimum light levels. Refer to the chart on the next page. Where would you delamp a light fixture? Delamping is possible anywhere there is a fluorescent light fixture above an area that is not being used for active reading and writing or in areas where there is more light than needed.