Download Publication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide for Lighting the Stage
A Guide for Lighting the Stage visual environment technologies | etcconnect.com ETC® and ColorSource are either registered trademarks or trademarks of Electronic Theatre Controls, Inc. in the United States and other countries. All other trademarks, both marked and not marked, are the property of their respective owners. This content may be used, copied and freely distributed for educational purposes without written permission from ETC. Introduction The aim of this guide is to help teachers better understand and explain the basic elements of stage lighting. This resource is intended to supplement existing teaching materials, providing additional information and relevant product examples to add colour to lessons and presentations. The content can be applied to a variety of venues, including school halls, drama studios, college and university venues, dance venues, village halls, arts centres, concerts and student television studios. The following chapters cover basic illumination techniques using the ColorSource family of products from ETC and provide a pathway towards more artistic lighting designs. The guide is supported by an optional set of posters, available from ETC (send an email to [email protected] to request a poster set). Founded in 1975, ETC is a global leader in the manufacture of lighting and rigging technology for entertainment and architectural applications. ETC products are found in small and large venues worldwide. All ETC products are made to the same high standards, which is why they are used in so many professional and amateur venues. The ETC ColorSource family of equipment delivers LED lighting on a budget by offering high quality lighting, data distribution and power control in a plug- and-play format. -
Sustainable Home Guidelines
Contents Light for comfort and health 3 Glazing for natural daylight 4 Energy efficient lighting 5 Healthy lighting 6 Lights and lamps 7 A lighting plan for your home 8 Further information 10 This chapter is part of the Waitakere City Council’s Sustainable Home Guidelines. The complete set can be obtained through most libraries or from the Waitakere City Council, Private Bag 93109, Henderson, Waitakere City 0650, New Zealand, phone (09) 839 0400, email: [email protected]. The guidelines are also available on the council’s web site: http://www.waitakere.govt.nz WAITAKERE CITY COUNCIL’S SUSTAINABLE HOME GUIDELINES / LIGHT & LIGHTING / PAGE 2 Light for comfort and health Why do we need light? Besides being essential for vision, light affects human performance, alertness and mood. It influences body rhythms such as sleep patterns, ovulation and hormone secretion. The absorption of sunlight by our skin is also a necessary part of our body’s chemistry. Without sunlight there would be no life. Insufficient sunlight may cause depression and lethargy. How much light do we need? In order to see properly without eye strain we need a minimum light quantity or intensity. The light output onto a surface is measured in lux. lux = the number of lumens per square metre of surface: In offices a minimum of 500 lux In schools a minimum of 300 lux In homes a minimum of 200 lux. What kind of light do we want? The quality of the light is important too: the more natural light available, the better. Natural light offers us a balanced light spectrum with a full range of different wavelengths. -
Nonresidential Lighting and Electrical Power Distribution Guide
NONRESIDENTIAL LIGHTING AND ELECTRICAL POWER DISTRIBUTION A guide to meeting or exceeding California’s 2016 Building Energy Efficiency Standards DEVELOPED BY THE CALIFORNIA LIGHTING TECHNOLOGY CENTER, UC DAVIS © 2016, Regents of the University of California, Davis campus, California Lighting Technology Center Guide Prepared by: California Lighting Technology Center (CLTC) University of California, Davis 633 Pena Drive Davis, CA 95618 cltc.ucdavis.edu Project Partners: California Energy Commission Energy Code Ace This program is funded by California utility customers under the auspices of the California Public Utilities Commission and in support of the California Energy Commission. © 2016 Pacific Gas and Electric Company, San Diego Gas and Electric, Southern California Gas Company and Southern California Edison. All rights reserved, except that this document may be used, copied, and distributed without modification. Neither PG&E, Sempra, nor SCE — nor any of their employees makes any warranty, express of implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to patents, trademarks or copyrights. NONRESIDENTIAL LIGHTING & ELECTRICAL POWER DISTRIBUTION 1 | INTRODUCTION CONTENTS The Benefits of Efficiency ................................. 5 About this Guide ................................................7 -
Industrial Lighting a Primer
Industrial Lighting A Primer All through history people have sought better ways to illuminate their work. Even the cavemen needed torches to allow them to draw on the walls of their underground caverns. Fire brought both light and heat for thousands of years before crude lamps of animal fat gave way to the candle for general indoor illumination used around the world. Roman Grease Lamp An offshoot of the common candlestick became what we now call the Lacemakers Globe. This quite possibly could qualify as the world’s first industrial light source! It was observed that when a candle flame was aligned behind a rounded glass bottle filled with water, a magnifying and focusing effect was produced, in addition to simply lighting up a small area. This was high technology of the first order! No longer did the lacemaker have to pack it in when the sun went down, for soon the new Lacemaker’s Globe became fairly common in European Cottage Industry, enabling the production of lace at a greater rate than ever before. It is also not too much of a stretch to conclude that the repetitive patterns of the lacemaker could be looked upon as a forerunner to the theory of mass production, along with the pin makers who toiled away in the ‘second tier’ of the feeble light pool cast by the globe, hammering heads onto straightened bits of wire in order to make the common pin. This was mighty slim pickings by today’s standards to be sure, but just a few hundred years ago it represented a revolutionary increase in handiwork production after the sun went down, for the very first time in history. -
Led Lighting
LED LIGHTING from NORA LIGHTING Discover the Green advantage. It's good for the planet. It's good for you. “…no other lighting technology offers as much potential to save energy What is LED? and enhance the quality of our building environments, contributing to our nation’s The Light Emitting Diode…LED energy and climate change solutions.” Basically, LEDs are tiny light bulbs, or semiconductor diodes, Energy Efficiency and Renewable Energy Section that fit easily into an electrical circuit. But unlike ordinary U.S. Department of Energy incandescent lamps, they do not have a filament that burns out or gets hot. The diodes emit light when partnered with an electrical current and are illuminated solely by the movement of electrons in the semiconductor material. The LED is called solid state lighting or “SSL” because light is emitted Higher Color Rendering Indexes (CRI) from a solid object, the semiconductor diode, instead of a vacuum or Higher Color Rendering Indexes, CRI, have lead to the acceptance in gas tube (like an incandescent, fluorescent or HID lamp). The diode residential and commercial lighting applications. Higher CRIs mean itself is a two-terminal crystalline and when an electrical current true color rendition. Generally acceptable CRI values should be passes through it, the recombination of positive and negative charges between 80 and 100. Color output can be controlled in 2 ways, by results in the emission of visible light. phosphor coating the LED chip or by color mixing of LEDs in a array Less than one millimeter square, individual LEDs are clustered on a circuit of chips. -
The Complete Guide to Under Cabinet Lighting
THE COMPLETE GUIDE TO UNDER CABINET LIGHTING Annie Josey & Christopher Johnson Pegasus Lighting www.pegasuslighting.com Copyright © Pegasus Lighting 2013 All Rights Reserved 2 Table of Contents 1 – The Essentials of Great Lighting 2 – Choosing Under Cabinet Lights 3 – How to Install Under Cabinet Lights 4 – Under Cabinet Lighting Maintenance 5 – Beyond the Cabinet: Lights in Uncommon Places 6 – Glossary Notes 3 1 The Essentials Of Great Lighting Today, the kitchen has to be multifunctional. It’s not only a place to prepare and eat food, but also a place to relax, a place to entertain, and a place to enjoy. It should be inviting, bright, functional, and easy to control. The right kitchen lighting will help you stay clean, organized, and safe, while letting you create the perfect atmosphere for an early morning baking frenzy, board games with the kids on a rainy afternoon, or spending a couple’s night in. Most of all, light layering (having multiple light sources for different purposes) is the most important, all-encompassing rule in kitchen lighting design. A single light source never does any space justice. You need different sources of light for different purposes. Ambient lighting, task lighting, accent lighting, safety lighting, and mood lighting are all essential parts of great kitchen design. This book will first and foremost address task lighting in the kitchen. Under cabinet lights are the most popular, attractive, and handy kind of task lighting for the kitchen. Lighting designers agree that the path to any beautiful, functional kitchen starts with excellent task lights. Kitchen task lights have one simple purpose – to help you out. -
2021 Outdoor Catalog
2021 OUTDOOR CATALOG PERSONAL LIGHTING PRODUCTS OUTDOOR OUTDOOR OUTDOOR Tried and tested to help you go farther, higher and faster. Nate Dodge 1 PRINCETON TEC PRINCETON TEC 2 SNAP SERIES Magnetic Design OUTDOOR The Snap head unit can be removed from it’s headlamp bracket and secured to most metal surfaces via it’s strong magnet. Josh Preissner Seth Morris ® For those looking for an option that preserves their night vision, the SNAP Solo ® Still packing 300 lumens of dimmable white light and the popular magnetic base, RGB offers 300 lumens of dimmable white light as well as Red, Green, or Blue task the SNAP Solo is available in 4 new colors and remains the perfect hands free light SNAP SOLO RGB lighting. With its magnetic base the light can be easily removed from the included SNAP SOLO for any occasion. Changing a flat on the side of the road? Need to light up a less headlamp bracket, used as a handheld, and attached to most metallic surfaces than perfectly lit corner of the garage? Out for an evening stroll around camp? NEW MAGNETIC HEMAG- for hands free jobs. The SNAP RGB also features a unique custom programming NEW MAGNETIC HEADLAMP The simple single button interface is popular with anyone looking for a super NETIC HEADLAMP feature which allows you to set which colored LED comes on first. versatile light you can use anywhere. SPECS TECHNOLOGY SPECS TECHNOLOGY POWER 300 Lumens POWER 300 Lumens LAMP 1 Maxbright LED w/ Spot (dimmable) 300 LAMP 1 Maxbright LED w/ Spot (dimmable) 300 TRI-COLOR 1 Tri-color Red, Green, Blue LED RUNTIME 155 -
SCE Design and Engineering Services
Design & Engineering Services RECESSED LED DOWNLIGHTS ET11SCE3010 Report Prepared by: Design & Engineering Services Customer Service Business Unit Southern California Edison November 2012 Recessed LED Downlights ET11SCE3010 Acknowledgements Southern California Edison’s Design & Engineering Services (DES) group is responsible for this project. It was developed as part of Southern California Edison’s Emerging Technologies Scaled Field Placement Program under internal project number ET11SCE3010. DES project manager Yun Han conducted this technology evaluation with overall guidance and management from Teren Abear. For more information on this project, contact [email protected]. Disclaimer This report was prepared by Southern California Edison (SCE) and funded by California utility customers under the auspices of the California Public Utilities Commission. Reproduction or distribution of the whole or any part of the contents of this document without the express written permission of SCE is prohibited. This work was performed with reasonable care and in accordance with professional standards. However, neither SCE nor any entity performing the work pursuant to SCE’s authority make any warranty or representation, expressed or implied, with regard to this report, the merchantability or fitness for a particular purpose of the results of the work, or any analyses, or conclusions contained in this report. The results reflected in the work are generally representative of operating conditions; however, the results in any other situation may vary depending upon particular operating conditions. Southern California Edison Design & Engineering Services November 2012 Recessed LED Downlights ET11SCE3010 EXECUTIVE SUMMARY Recessed light-emitting diode (LED) downlights save energy when they replace incumbent incandescent, halogen, or Compact Fluorescent Lighting (CFL) downlight technologies (SCE ET07.15 – Residential LED Downlights study). -
A Practical Guide to Machine Vision Lighting
A Practical Guide to Machine Vision Lighting Daryl Martin Midwest Sales and Support Manager Advanced illumination February, 2013 A Practical Guide to Machine Vision Lighting Abstract: It is well-understood that the quality and appropriateness of lighting are critical aspects for creating a quality, robust, and timely vision inspection. In addition to an understanding of illumination types and techniques, geometry, filtering, sensor characteristics, and color, a thorough analysis of the inspection environment, including sample presentation and sample-light interactions, provide a foundation upon which to design an effective vision lighting solution. It is suggested that designing and following a rigorous lighting analysis sequence will provide a consistent, and robust environment, thereby maximizing time, effort, and resources – items better used in other critical aspects of vision system design, testing, and implementation. Introduction Perhaps no other aspect of vision system design and implementation consistently has caused more delay, cost-overruns, and general consternation than lighting. Historically, lighting often was the last aspect specified, developed, and or funded, if at all. And this approach was not entirely unwarranted, as until recently there was no real vision-specific lighting on the market, meaning lighting solutions typically consisted of standard incandescent or fluorescent consumer products, with various amounts of ambient contribution. The objective of this paper, rather than to dwell on theoretical treatments, -
Public Version
PUBLIC VERSION UNITED STATES INTERNATIONAL TRADE COMMISSION Washington, D.C. In the Matter of CERTAIN LIGHT-EMITTING DIODE INV. NO. 337-TA-1213 PRODUCTS, FIXTURES, AND COMPONENTS THEREOF INITIAL DETERMINATION ON VIOLATION OF SECTION 337 AND RECOMMENDED DETERMINATION ON REMEDY AND BOND Administrative Law Judge Clark S. Cheney (August 17, 2021) Appearances: For Complainant IDEAL INDUSTRIES LIGHTING LLC d/b/a Cree Lighting: S. Alex Lasher of Quinn Emmanuel Urquhart & Sullivan, LLP, of Washington, D.C. Raymond N. Nimrod, Richard W. Erwine, and Matthew Robson of Quinn Emmanuel Urquhart & Sullivan, LLP, of New York, NY Nathan Hamstra of Quinn Emmanuel Urquhart & Sullivan, LLP, of Chicago, IL For Respondent RAB Lighting Inc.: David A. Hickerson, George C. Beck, Bradley Roush, Kiri Lee Sharon, and Molly Hayssen of Foley & Lardner LLP of Washington, DC Jonathan E. Moskin of Foley & Lardner LLP of New York, NY PUBLIC VERSION Table of Contents I. Introduction ......................................................................................................................... 2 A. Procedural History .............................................................................................................. 2 B. The Private Parties .............................................................................................................. 4 1. Complainants ................................................................................................................ 4 2. Respondents ................................................................................................................. -
LED Recessed Lighting
LED Recessed Lighting Diamond Series LED Retrofit Platinum Series LED Housings and Trims LED Step Lighting AIR TIGHT = Helvetica Inserat Roman AIR RoHS WET C OMPLIANT T2008IGHT AIR TIGHT THIS AIRTIGHT HOUSING COMPLIES WITH WASHINGTON STATE ENERGY CODE ASTM-E283 MEASURED AT2CFM OR LESS Illuminating the f u t u r e "…no other lighting technology offers as much potential to save energy and enhance the quality of our building environments, contributing to our nation’s What is LED? energy and climate change solutions." Energy Efficiency and Renewable Energy Section The Light Emitting Diode…LED U.S. Department of Energy Basically, LEDs are tiny light bulbs, or semiconductor diodes, that fit easily into an electrical circuit. But unlike ordinary incandescent lamps, they do not have a filament that burns out or gets hot. The diodes emit light when partnered with an electrical current and are illuminated solely by the Longer Performance Life movement of electrons in the semiconductor material. LEDs have a rated life based on the time it takes for the light output to decrease to 70% of the original output, which is typically about 50,000 The LED is called solid state lighting or "SSL" because light is emitted hours or 17 years of normal use. A typical incandescent fixture will need to from a solid object, the semiconductor diode, instead of a vacuum or gas be re-lamped 10 or more times during the life of an LED fixture. tube (like an incandescent, fluorescent or HID lamp). The diode itself is a two-terminal crystalline and when an electrical current passes through it, As LED chips increase in lumens and efficacy, the lighting industry is the recombination of positive and negative charges results in the emission focused on producing better performing products. -
Office Light Management Guide
DHS|OHA Office Light Management Guide DHS|OHA Shared Services Occupational Health, Safety & Emergency Services Program [email protected] DHS and OHA Office Light Management Guide Table of Contents Purpose: ................................................................................................................................................................ 3 Background: .......................................................................................................................................................... 3 Balance of Illumination: ........................................................................................................................................ 4 Color Appearance: ................................................................................................................................................ 4 Flicker: ................................................................................................................................................................... 4 Layering: ................................................................................................................................................................ 4 Visual Comfort: ..................................................................................................................................................... 5 Personal Control: .................................................................................................................................................