Kidney – Filters Blood, Allowing Toxins, Metabolic Wastes, and Excess Ions to Leave the Body in Urine

Total Page:16

File Type:pdf, Size:1020Kb

Kidney – Filters Blood, Allowing Toxins, Metabolic Wastes, and Excess Ions to Leave the Body in Urine Urinary System Organs . Kidney – Filters blood, allowing toxins, metabolic wastes, and excess ions to leave the body in urine . Urinary bladder – provides a temporary storage reservoir for urine . Paired ureters – transport urine from the kidneys to the bladder . Urethra – transports urine from the bladder out of the body 10/20/13 MDufilho 1 Figure 25.1 The urinary system. Hepatic veins (cut) Esophagus (cut) Inferior vena cava Adrenal gland Renal artery Renal hilum Aorta Renal vein Kidney Iliac crest Ureter Rectum (cut) Uterus (part of female reproductive system) Urinary bladder Urethra MDufilho10/20/13 2 Kidneys -Overview . Blood passes through kidney – filtration occurs at capillaries – 20% of plasma becomes filtrate . Filtrate passes through nephrons – water and electrolytes are reabsorbed . Some electrolytes, drugs and toxins may be secreted into filtrate by tubular secretion = Urine 10/20/13 MDufilho 3 Figure 25.9 A schematic, uncoiled nephron showing the three major renal processes that adjust plasma composition. Afferent arteriole Glomerular capillaries Efferent arteriole Cortical radiate artery Glomerular capsule 1 Renal tubule and collecting duct containing filtrate Peritubular 2 capillary 3 To cortical radiate vein Three major renal processes: Urine 1 Glomerular filtration 2 Tubular reabsorption MDufilho 3 Tubular secretion 10/20/13 4 Figure 25.8 Juxtaglomerular complex (JGC) of a nephron. Glomerular capsule Glomerulus Foot Efferent processes arteriole Parietal layer of podocytes of glomerular capsule Podocyte cell body (visceral layer) Capsular Afferent space Red blood cell arteriole Efferent Proximal arteriole tubule cell Juxtaglomerular complex • Macula densa cells of the ascending limb of nephron loop Lumens of • Extraglomerular glomerular mesangial cells capillaries • Granular Endothelial cell cells Afferent of glomerular arteriole capillary Glomerular mesangial cells Juxtaglomerular complex Renal corpuscle MDufilho 10/20/13 5 Figure 25.10 The filtration membrane. Glomerular Efferent capsular space Cytoplasmic extensions arteriole of podocytes Filtration slits Podocyte Afferent cell body arteriole Proximal convoluted Glomerular capillary tubule covered by podocytes Parietal layer that form the visceral layer of glomerular Fenestrations of glomerular capsule capsule (pores) Glomerular capillaries and the visceral layer of the glomerular capsule Glomerular capillary endothelium (podocyte covering and basement Foot processes membrane removed) of podocyte Filtration slits Podocyte cell body Filtration membrane • Capillary endothelium Capillary • Basement membrane • Foot processes of podocyte of glomerular capsule Foot processes Filtration slit Slit Plasma diaphragm Filtrate in capsular space Foot Fenestration processes (pore) of podocyte MDufilho 6 Filtration slits between the podocyte foot processes 10/20/13 Three layers of the filtration membrane Figure 25.5 Location and structure of nephrons. Renal cortex Renal medulla Renal pelvis Glomerular capsule: parietal layer Basement membrane Ureter Podocyte Kidney Fenestrated endothelium Renal corpuscle of the glomerulus • Glomerular capsule Glomerular capsule: visceral layer • Glomerulus Distal convoluted Apical Mitochondria tubule microvilli Proximal Highly infolded basolateral convoluted tubule membrane Proximal convoluted tubule cells Cortex Apical side Medulla Thick Basolateral side Thin segment segment Distal convoluted tubule cells Nephron loop • Descending limb • Ascending limb Nephron loop (thin-segment) cells Collecting duct Principal Intercalated cell cell MDufilho10/20/13 Collecting duct cells 7 Renal Tubule . Proximal convoluted tubule (PCT) – composed of cuboidal cells with numerous microvilli and mitochondria . Reabsorbs water and solutes from filtrate and secretes substances into it . Reabsorbs 100% of glucose, amino acids, escaped proteins, some vitamins, 60-70% of Na+, K+, Cl-, Ca++ and water . Secretes H+, NH3 (ammonia), drugs, toxins, uric acid and histamine 10/20/13 MDufilho 8 Renal Tubule . Loop of Henle – a hairpin-shaped loop of the renal tubule . Descending Limb . Impermeable to electrolytes, permeable to water . 80% Water is absorbed, filtrate becomes hypertonic . Ascending Limb . Permeable to Na+ and Cl- but not water . Filtrate becomes hypotonic 10/20/13 MDufilho 9 Renal Tubule . Distal convoluted tubule (DCT) Reabsorbs: . Na+ directed by aldosterone . Water directed by ADH . Ca++ directed by PTH . Some HCO3-, depending on pH of blood Secretes: . NH3, K+, drugs, toxins, and creatinine . Some H+, depending on pH of blood 10/20/13 MDufilho 10 Collecting Tubule Reabsorbs . Na+ directed by aldosterone . HCO3- depending on blood pH . Urea to maintain hypertonic interstitial fluid around nephron tubules . Water directed by ADH 10/20/13 MDufilho 11 Capillary Beds of the Nephron . Every nephron has two capillary beds . Glomerulus . Peritubular capillaries . Each glomerulus is: . Fed by an afferent arteriole - larger . Drained by an efferent arteriole - smaller 10/20/13 MDufilho 12 Figure 25.8 Juxtaglomerular complex (JGC) of a nephron. Glomerular capsule Glomerulus Foot Efferent processes arteriole Parietal layer of podocytes of glomerular capsule Podocyte cell body (visceral layer) Capsular Afferent space Red blood cell arteriole Efferent Proximal arteriole tubule cell Juxtaglomerular complex • Macula densa cells of the ascending limb of nephron loop Lumens of • Extraglomerular glomerular mesangial cells capillaries • Granular Endothelial cell cells Afferent of glomerular arteriole capillary Glomerular mesangial cells Juxtaglomerular complex Renal corpuscle MDufilho 10/20/13 13 Figure 25.7 Blood vessels of cortical and juxtamedullary nephrons. Cortical nephron Juxtamedullary nephron • Short nephron loop • Long nephron loop • Glomerulus further from the cortex-medulla junction • Glomerulus closer to the cortex-medulla junction • Efferent arteriole supplies peritubular capillaries • Efferent arteriole supplies vasa recta Renal Glomerulus Efferent corpuscle (capillaries) arteriole Cortical radiate vein Cortical radiate artery Glomerular capsule Afferent arteriole Collecting duct Proximal convoluted Distal convoluted tubule tubule Afferent arteriole Efferent arteriole Peritubular capillaries Ascending limb of nephron loop Cortex- medulla Arcuate vein junction Kidney Vasa recta Arcuate artery Descending Nephron loop limb of nephron loop Peritubular capillary bed Glomerulus Afferent arteriole Efferent arteriole MDufilho 10/20/13 14 Hemodialysis . Diffusion of solutes through semipermeable membrane . Dialysis machine- group of tubules that act like a nephron . Membrane allows free passage of glucose, electrolytes and nitrogenous wastes . Filtration and production of filtrate is not required 10/20/13 MDufilho 15 .
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Excretory Products and Their Elimination
    290 BIOLOGY CHAPTER 19 EXCRETORY PRODUCTS AND THEIR ELIMINATION 19.1 Human Animals accumulate ammonia, urea, uric acid, carbon dioxide, water Excretory and ions like Na+, K+, Cl–, phosphate, sulphate, etc., either by metabolic System activities or by other means like excess ingestion. These substances have to be removed totally or partially. In this chapter, you will learn the 19.2 Urine Formation mechanisms of elimination of these substances with special emphasis on 19.3 Function of the common nitrogenous wastes. Ammonia, urea and uric acid are the major Tubules forms of nitrogenous wastes excreted by the animals. Ammonia is the most toxic form and requires large amount of water for its elimination, 19.4 Mechanism of whereas uric acid, being the least toxic, can be removed with a minimum Concentration of loss of water. the Filtrate The process of excreting ammonia is Ammonotelism. Many bony fishes, 19.5 Regulation of aquatic amphibians and aquatic insects are ammonotelic in nature. Kidney Function Ammonia, as it is readily soluble, is generally excreted by diffusion across 19.6 Micturition body surfaces or through gill surfaces (in fish) as ammonium ions. Kidneys do not play any significant role in its removal. Terrestrial adaptation 19.7 Role of other necessitated the production of lesser toxic nitrogenous wastes like urea Organs in and uric acid for conservation of water. Mammals, many terrestrial Excretion amphibians and marine fishes mainly excrete urea and are called ureotelic 19.8 Disorders of the animals. Ammonia produced by metabolism is converted into urea in the Excretory liver of these animals and released into the blood which is filtered and System excreted out by the kidneys.
    [Show full text]
  • Urinary System
    URINARY SYSTEM Ján Líška DVM, PhD Institut of Histology and Embryology, Faculty of Medicine, Comenius University Urinary system • The kidneys are the organ with multiple functions: • filtration of the blood • excretion of metabolic waste products and related removal of toxins • maintenance blood volume • regulation of acid-base balance • regulation of fluid and electrolyte balance • production of the hormones The other components of urinary system are accessory. Their function is essentially in order to eliminate urine. Urinary system - anatomy • Kidney are located in the retroperitoneal space • The surface of the kidney is covered by a fibrous capsule of dense connective tissue. • This capsule is coated with adipose capsule. • Each kidney is attached to a ureter, which carries urine to the bladder and urine is discharged out through the urethra. ANATOMIC STRUCTURE OF THE KIDNEY RENAL LOBES CORTEX outer shell columns Excretory portion medullary rays MEDULLA medullary pyramids HILUM Collecting system blood vessels lymph vessels major calyces nerves RENAL PELVIS minor calyces ureter Cortex is the outer layer surrounding the internal medulla. The cortex contains renal corpuscles, convoluted parts of prox. and dist. tubules. Renal column: the renal tissue projection between two medullary pyramids which supports the cortex. Renal pyramids: the conical segments within the medulla. They contain the ductal apparatus and stright parts of the tubules. They posses papilla - having openings through which urine passes into the calyces. Each pyramid together with the associated overlying cortex forms a renal lobe. renal pyramid papilla minor calix minor calyx Medullary rays: are in the middle of cortical part of the renal lobe, consisting of a group of the straight portiones of nephrons and the collec- medullary rays ting tubules (only straight tubules).
    [Show full text]
  • Myofibroblasts Correlate with Lymphatic Microvessel Density and Lymph Node Metastasis in Early-Stage Invasive Colorectal Carcinoma
    ANTICANCER RESEARCH 25: 2705-2712 (2005) Myofibroblasts Correlate with Lymphatic Microvessel Density and Lymph Node Metastasis in Early-stage Invasive Colorectal Carcinoma PIN LIANG1, JIAN-WEI HONG2, HIDEYUKI UBUKATA1, GE LIU1, MOTONOBU KATANO1, GYO MOTOHASHI1, TERUHIKO KASUGA1, YOSHINORI WATANABE1, ICHIRO NAKADA1 and TAKAFUMI TABUCHI1 1Fourth Department of Surgery and 2Department of Pathology, Tokyo Medical University Kasumigaura Hospital, Ibaraki, Japan Abstract. Background: Recent studies have shown that the Myofibroblasts are the main component cells in tumor interactions between tumor cells and stromal cells are stroma, and alpha-smooth muscle actin (·-SMA)-positive important in tumor development. A possible correlation myofibroblasts were found to participate in the synthesis of between tumor-activated myofibroblasts, the main component extracellular matrix components of tumor stroma, and to cells of tumor stroma, and lymphatic microvessel density produce lytic enzymes able to degrade the basement (LMVD) or other clinical parameters in carcinoma was membrane surrounding tumor glands. Although present in investigated. Materials and Methods: Immunohistochemical the progressive tumor nodules, they disappear during tumor examination of alpha-smooth muscle actin and podoplanin regression (5, 6). The correlation between microvessel were performed in 83 cases of early-stage invasive colorectal density and myofibroblasts was shown by Zidar et al. (7), but carcinoma. Results: There was a good correlation between the influence of myofibroblasts in lymphagiogenesis remains proliferation of myofibroblasts (PMpt) and LMVD (LMVDpt) unclear. Only recently, podoplanin, a 43-kd glomerular in the peri-tumoral area (p=0.0034). Increased PMpt was also podocyte membrane mucoprotein and a specific lymphatic associated with lymphatic invasion (p=0.0051) and with vessel marker, has enabled the investigation of the lymph node metastasis (p=0.011).
    [Show full text]
  • Renal Corpuscle Renal System > Histology > Histology
    Renal Corpuscle Renal System > Histology > Histology Key Points: • The renal corpuscles lie within the renal cortex; • They comprise the glomerular, aka, Bowman's capsule and capillaries The capsule is a double-layer sac of epithelium: — The outer parietal layer folds upon itself to form the visceral layer. — The inner visceral layer envelops the glomerular capillaries. • As blood passes through the glomerular capillaries, aka, glomerulus, specific components, including water and wastes, are filtered to create ultrafiltrate. • The filtration barrier, which determines ultrafiltrate composition, comprises glomerular capillary endothelia, a basement membrane, and the visceral layer of the glomerular capsule. • Nephron tubules modify the ultrafiltrate to form urine. Overview Diagram: • Tuft of glomerular capillaries; blood enters the capillaries via the afferent arteriole, and exits via efferent arteriole. • The visceral layer of the glomerular capsule envelops the capillaries, then folds outwards to become the parietal layer. • The capsular space lies between the parietal and visceral layers; this space fills with ultrafiltrate. • Vascular pole = where the arterioles pass through the capsule • Urinary pole = where the nephron tubule begins • Distal tubule passes by the afferent arteriole. Details of Capillary and Visceral Layer: • Fenestrated glomerular capillary; fenestrations are small openings, aka, pores, in the endothelium that confer permeability. • Thick basement membrane overlies capillaries • Visceral layer comprises podocytes: — Cell bodies — Cytoplasmic extensions, called primary processes, give rise to secondary foot processes, aka, pedicles. • The pedicles interdigitate to form filtration slits; molecules pass through these slits to form the ultrafiltrate in the 1 / 3 capsular space. • Subpodocyte space; healthy podocytes do not adhere to the basement membrane. Clinical Correlation: • Podocyte injury causes dramatic changes in shape, and, therefore, their ability to filter substances from the blood.
    [Show full text]
  • Kidney Function • Filtration • Reabsorption • Secretion • Excretion • Micturition
    About This Chapter • Functions of the kidneys • Anatomy of the urinary system • Overview of kidney function • Filtration • Reabsorption • Secretion • Excretion • Micturition © 2016 Pearson Education, Inc. Functions of the Kidneys • Regulation of extracellular fluid volume and blood pressure • Regulation of osmolarity • Maintenance of ion balance • Homeostatic regulation of pH • Excretion of wastes • Production of hormones © 2016 Pearson Education, Inc. Anatomy of the Urinary System • Kidneys, ureters, bladder, and urethra • Kidneys – Bean-shaped organ – Cortex and medulla © 2016 Pearson Education, Inc. Anatomy of the Urinary System • Functional unit is the nephron – Glomerulus in the Bowman’s capsule – Proximal tubule – The loop of Henle • Descending limb and ascending limb twisted between arterioles forming the juxtaglomerular apparatus – Distal tubule – Collecting ducts © 2016 Pearson Education, Inc. Figure 19.1b Anatomy summary The kidneys are located retroperitoneally at the level of the lower ribs. Inferior Diaphragm vena cava Aorta Left adrenal gland Left kidney Right kidney Renal artery Renal vein Ureter Peritoneum Urinary Rectum (cut) bladder (cut) © 2016 Pearson Education, Inc. Figure 19.1c Anatomy summary © 2016 Pearson Education, Inc. Figure 19.1d Anatomy summary © 2016 Pearson Education, Inc. Figure 19.1f-h Anatomy summary Some nephrons dip deep into the medulla. One nephron has two arterioles and two sets of capillaries that form a portal system. Efferent arteriole Arterioles Peritubular Juxtaglomerular capillaries The cortex apparatus contains all Bowman’s Nephrons Afferent capsules, arteriole Glomerulus proximal Juxtamedullary nephron and distal (capillaries) with vasa recta tubules. Peritubular capillaries Glomerulus The medulla contains loops of Henle and Vasa recta collecting ducts. Collecting duct Loop of Henle © 2016 Pearson Education, Inc.
    [Show full text]
  • Embryology of the Kidney Rizaldy Paz Scott | Yoshiro Maezawa | Jordan Kreidberg | Susan E
    1 Embryology of the Kidney Rizaldy Paz Scott | Yoshiro Maezawa | Jordan Kreidberg | Susan E. Quaggin CHAPTER OUTLINE MAMMALIAN KIDNEY DEVELOPMENT, 2 MOLECULAR GENETICS OF MODEL SYSTEMS TO STUDY KIDNEY NEPHROGENESIS, 22 DEVELOPMENT, 8 GENETIC ANALYSIS OF MAMMALIAN KIDNEY DEVELOPMENT, 15 KEY POINTS • The development of the kidney relies on reciprocal signaling and inductive interactions between neighboring cells. • Epithelial cells that comprise the tubular structures of the kidney are derived from two distinct cell lineages: the ureteric epithelia lineage that branches and gives rise to collecting ducts and the nephrogenic mesenchyme lineage that undergoes mesenchyme to epithelial transition to form connecting tubules, distal tubules, the loop of Henle, proximal tubules, parietal epithelial cells, and podocytes. • Nephrogenesis and nephron endowment requires an epigenetically regulated balance between nephron progenitor self-renewal and epithelial differentiation. • The timing of incorporation of nephron progenitor cells into nascent nephrons predicts their positional identity within the highly patterned mature nephron. • Stromal cells and their derivatives coregulate ureteric branching morphogenesis, nephrogenesis, and vascular development. • Endothelial cells track the development of the ureteric epithelia and establish the renal vasculature through a combination of vasculogenic and angiogenic processes. • Collecting duct epithelia have an inherent plasticity enabling them to switch between principal and intercalated cell identities. MAMMALIAN KIDNEY DEVELOPMENT The filtration function of the kidneys is accomplished by basic units called nephrons (Fig. 1.1). Humans on average have 1 million nephrons per adult kidney but the range of ANATOMIC OVERVIEW OF THE 4 MAMMALIAN KIDNEY total nephrons is highly variable across human populations. Each mouse kidney may contain up to 12,000–16,000 nephrons The kidney is a sophisticated, highly vascularized organ that depending on the strain.5 This wide range in nephron number plays a central role in overall body homeostasis.
    [Show full text]
  • Urinary Tract Eod Stage & Treatment
    2/20/2020 SHRI VIDEO TRAINING SERIES 2018 DX forward Recorded 2/2020 URINARY TRACT EOD STAGE & TREATMENT PRESENTED BY LORI SOMERS, RN IOWA CANCER REGISTRY 1 BLADDER C670‐C679 EOD PRIMARY TUMOR EOD REGIONAL LYMPH NODES EOD METASTASIS 2 1 2/20/2020 EOD • General Coding instructions, 32 pg pdf • https://seer.cancer.gov/tools/staging/2018‐ EOD‐General‐Instructions.pdf • Timing rules • What to include re clinical or path findings • Rules re neoadjuvant therapy • Discrepancies between op/path 3 BLADDER EOD PRI TUMOR • Note 1: Two main types of bladder cancer – Flat (sessile) • Called in situ when tumor has not penetrated basement membrane – Papillary type • Called noninvasive when tumor has not penetrated basement membrane 4 2 2/20/2020 EOD PRI TUMOR • Note 2: Noninvasive papillary transitional carcinoma: Pathologists use many descriptive terms for noninvasive papillary TCC. Frequently the path report does not contain a definitive statement of non‐invasion. – Non‐invasion can be inferred from microscopic description – List of terms in SEER*RSA schema 5 Definite statements non‐invasion ‘for papillary TCC’ • Noninfiltrating • Noninvasive • No evidence of invasion • No extension into lamina propria • No stromal invasion • No extension into underlying supporting tissue • Neg lamina propria and superficial muscle • Neg muscle and (subepithelial) connective tissue • No infiltrative behavior/component 6 3 2/20/2020 Inferred descriptions of non‐invasion ‘for papillary TCC’ • No involvement of musc propria and no mention of subepthelium/submucosa • No statement of invasion (microscopic description present • (Underlying) tissue insufficient to judge depth of invasion • No involvement of muscularis propria • Benign deeper tissue • Microscopic description problematic (non‐invas vs superficial invas) • Frond surfaced by transitional cell • No mural infiltration • No evid of invasion (no sampled stroma) • Confined to mucosa 7 EOD PRI TUMOR Note 3: Noninvasive (in situ) flat transitional cell carcinoma: .
    [Show full text]
  • Urinary System
    OUTLINE 27.1 General Structure and Functions of the Urinary System 818 27.2 Kidneys 820 27 27.2a Gross and Sectional Anatomy of the Kidney 820 27.2b Blood Supply to the Kidney 821 27.2c Nephrons 824 27.2d How Tubular Fluid Becomes Urine 828 27.2e Juxtaglomerular Apparatus 828 Urinary 27.2f Innervation of the Kidney 828 27.3 Urinary Tract 829 27.3a Ureters 829 27.3b Urinary Bladder 830 System 27.3c Urethra 833 27.4 Aging and the Urinary System 834 27.5 Development of the Urinary System 835 27.5a Kidney and Ureter Development 835 27.5b Urinary Bladder and Urethra Development 835 MODULE 13: URINARY SYSTEM mck78097_ch27_817-841.indd 817 2/25/11 2:24 PM 818 Chapter Twenty-Seven Urinary System n the course of carrying out their specific functions, the cells Besides removing waste products from the bloodstream, the uri- I of all body systems produce waste products, and these waste nary system performs many other functions, including the following: products end up in the bloodstream. In this case, the bloodstream is ■ Storage of urine. Urine is produced continuously, but analogous to a river that supplies drinking water to a nearby town. it would be quite inconvenient if we were constantly The river water may become polluted with sediment, animal waste, excreting urine. The urinary bladder is an expandable, and motorboat fuel—but the town has a water treatment plant that muscular sac that can store as much as 1 liter of urine. removes these waste products and makes the water safe to drink.
    [Show full text]
  • The Urinary System Dr
    The urinary System Dr. Ali Ebneshahidi Functions of the Urinary System • Excretion – removal of waste material from the blood plasma and the disposal of this waste in the urine. • Elimination – removal of waste from other organ systems - from digestive system – undigested food, water, salt, ions, and drugs. + - from respiratory system – CO2,H , water, toxins. - from skin – water, NaCl, nitrogenous wastes (urea , uric acid, ammonia, creatinine). • Water balance -- kidney tubules regulate water reabsorption and urine concentration. • regulation of PH, volume, and composition of body fluids. • production of Erythropoietin for hematopoieseis, and renin for blood pressure regulation. Anatomy of the Urinary System Gross anatomy: • kidneys – a pair of bean – shaped organs located retroperitoneally, responsible for blood filtering and urine formation. • Renal capsule – a layer of fibrous connective tissue covering the kidneys. • Renal cortex – outer region of the kidneys where most nephrons is located. • Renal medulla – inner region of the kidneys where some nephrons is located, also where urine is collected to be excreted outward. • Renal calyx – duct – like sections of renal medulla for collecting urine from nephrons and direct urine into renal pelvis. • Renal pyramid – connective tissues in the renal medulla binding various structures together. • Renal pelvis – central urine collecting area of renal medulla. • Hilum (or hilus) – concave notch of kidneys where renal artery, renal vein, urethra, nerves, and lymphatic vessels converge. • Ureter – a tubule that transport urine (mainly by peristalsis) from the kidney to the urinary bladder. • Urinary bladder – a spherical storage organ that contains up to 400 ml of urine. • Urethra – a tubule that excretes urine out of the urinary bladder to the outside, through the urethral orifice.
    [Show full text]
  • Laboratory 8 - Urinary and Reproductive Systems
    Laboratory 8 - Urinary and Reproductive Systems Urinary System Please read before starting: It is easy to damage the structures of the reproductive system as you expose structures associated with excretion, so exercise caution as you do this. Please also note that we will have drawings available as well to help you find and identify the structures described below. The major blood vessels serving the kidneys are the Renal renal artery and the renal pyramid vein., which are located deep in the parietal peritoneum. The renal artery is a branch of the dorsal aorta that comes off Renal further caudal than the cranial pelvis mesenteric artery. Dissect the left kidney in situ, dividing it into dorsal and ventral portions by making a frontal section along the outer periphery. Observe the renal cortex renal medulla (next layer in) renal pyramids renal pelvis ureter (see above diagram) The kidneys include a variety of structures including an arterial supply, a venous return, extensive capillary networks around each nephron and then, of course, the filtration and reabsorption apparatus. These structures are primarily composed of nephrons (the basic functional unit of the kidney) and the ducts which carry urine away from the nephron (the collecting ducts and larger ducts eventually draining these into the ureters from each kidney. The renal pyramids contain the extensions of the nephrons into the renal medulla (the Loops of Henle) and the collecting ducts. Urine is eventually emptied into the renal pelvis before leaving the kidneys in the ureters. The ureters leaves the kidneys medially at approximately the midpoint of the organs and then run caudal to the urinary bladder.
    [Show full text]