Cathode Rays 89 Cathode Rays

Total Page:16

File Type:pdf, Size:1020Kb

Cathode Rays 89 Cathode Rays Cathode Rays 89 Cathode Rays Theodore Arabatzis C The detection of cathode rays was a by-product of the investigation of the discharge of electricity through rarefied gases. The latter phenomenon had been studied since the early eighteenth century. By the middle of the nineteenth century it was known that the passage of electricity through a partly evacuated tube produced a glow in the gas, whose color depended on its chemical composition and its pressure. Below a certain pressure the glow assumed a stratified pattern of bright and dark bands. During the second half of the nineteenth century the discharge of electricity through gases became a topic of intense exploratory experimentation, primarily in Germany [21]. In 1855 the German instrument maker Heinrich Geißler (1815– 1879) manufactured improved vacuum tubes, which made possible the isolation and investigation of cathode rays [23]. In 1857 Geissler’s tubes were employed by Julius Pl¨ucker (1801–1868) to study the influence of a magnet on the electrical dis- charge. He observed various complex and striking phenomena associated with the discharge. Among those phenomena were a “light which appears about the negative electrode” and a fluorescence in the glass of the tube ([9], pp. 122, 130). The understanding of those phenomena was advanced by Pl¨ucker’s student and collaborator, Johann Wilhelm Hittorf (1824–1914), who observed that “if any ob- ject is interposed in the space filled with glow-light [emanating from the negative electrode], it throws a sharp shadow on the fluorescent side” ([5], p. 117). This effect implied that the “rays” emanating from the cathode followed a straight path. Further- more, Hittorf showed that those rays could be deflected by the action of a magnet. In 1876 they were dubbed cathode rays (Kathodenstrahlen) by Eugen Goldstein (1850–1930) [2, 24]. Thus, by the late 1870s cathode rays had been identified and some of their main observable properties had been established. The nature of cathode rays remained a controversial subject for some years to come. There were two opposing views concerning their constitution. The first view was maintained by British and French scientists, who identified cathode rays with streams of charged particles. A well-known advocate of that view was the British ex- perimentalist William Crookes (1832–1919). Crookes studied electrical discharges through highly rarefied gases: “[T]he exhaustion carried out [is so high] that the dark space around the negative pole ... entirely fills the tube.” ([1], p. 6) Under those conditions the behavior of cathode rays could be studied in isolation, without interference from other discharge phenomena. Thus, Crookes determined, in a par- ticularly clear manner, several properties of cathode rays: their “power of exciting phosphorescence” (p. 7), their propagation in straight lines (p. 12), their power to cast shadows (p. 15), their capacity to “exert strong mechanical action where they strike” (p. 17) and to “produce heat when their motion is arrested” (p. 24), and their deflection by a magnet (p. 20). He put forward the hypothesis that cathode rays were charged molecules, “molecular bullets”, which he justified on the basis 90 Cathode Rays of their magnetic deflection and their capacity to perform mechanical work. Fur- thermore, from the direction of their magnetic deflection he inferred that they were negatively charged. Several years later, in 1895, Jean B. Perrin (1870–1942) would arrive at the same conclusion by means of a different experiment [8]. Another eminent scientist who defended the particulate interpretation of cathode rays was Arthur Schuster (1851–1934). In 1884 he suggested that they were nega- tively charged atoms [10]. In 1890 he calculated the upper and lower bounds of their charge to mass ratio (e/m), based on measurements of their magnetic deflection and an estimate of their velocity. The lower limit was close to the charge to mass ratio of electrolytic ions. The upper limit was three orders of magnitude higher ([11], pp. 546–547). The second view concerning the nature of cathode rays was advocated by some German physicists, who identified them with processes in the ether. Their main argument was that cathode rays have some of the properties of light-waves. For instance, they both travel in straight lines and produce fluorescence. The ethereal interpretation of cathode rays received additional support in 1883, when Heinrich Hertz (1857–1894) failed to deflect them by an electric field [3,22]. In the following years, new experimental facts were discovered which seemed to undermine further the interpretation of cathode rays as charged particles. In 1892 Hertz showed that they could penetrate thin sheets of metal (e.g., gold, silver, aluminum) [4]. In 1893 his student, Philipp Lenard (1862–1947), built upon Hertz’s work to investigate the behavior of cathode rays outside the vacuum tube. He devised a tube with a thin metallic “window” facing the cathode. The cathode rays passed through that window and, thus, Lenard could measure their mean free path outside the tube. As it turned out, it was much longer than that of atoms and molecules. Furthermore, he showed that their absorption depended only on the density of the absorbing substance [7]. Thus, different experimental results supported different accounts of the nature of cathode rays. Furthermore, the evidential import of some of those results was am- biguous. On the one hand, the magnetic deflection of cathode rays, which indicated that they were charged particles, was compatible with an ethereal interpretation of their nature. It was conceivable that the magnetic field altered the state of the ether so as to produce a deflection of the rays ([17], p. 285). On the other hand, the capac- ity of cathode rays to pass through thin metallic sheets, which suggested that they were waves in the ether, could be accommodated by the hypothesis that cathode rays were charged particles. In 1893 J. J. Thomson (1856–1940) argued that the capacity in question was only apparent: what really happened, according to Thomson, was that the material bombarded by cathode rays turned into a source of cathode rays itself. The cathode ray controversy was resolved by Thomson in 1897. He had studied electrical discharges in gases since 1883 and the discovery of X-rays by Wilhelm Conrad R¨ontgen (1845–1923) rekindled his interest in cathode rays. In a lecture to the Royal Institution on 30 April 1897, Thomson argued that cathode rays were composed of minute, sub-atomic particles that he named “corpuscles”. Their small size followed, according to Thomson, from Lenard’s results concerning their mean free path outside the cathode ray tube. A further indication of their small size was Cathode Rays 91 provided by Thomson measurements of their mass to charge ratio, which turned out to be very small in comparison to the corresponding ratio of hydrogen ions [12]. A few months later, in October 1897, Thomson presented his case for the partic- ulate interpretation of cathode rays in more detail [13]. He reported a novel result favoring that interpretation: the deflection of cathode rays by an electric field. Fur- C thermore, he reported a series of measurements of the mass to charge ratio (m/e) of cathode ray particles, whose purpose was to enable him to figure out their iden- tity. He obtained those measurements by means of two different approaches. The first one was based on measurements of the charge carried by cathode rays, the heat produced by their impact on a target, and the effect of a magnetic field on their tra- jectory. A combination of those data led to an estimate of m/e. The guiding idea behind the second approach was to place cathode rays under the influence of an electric and a magnetic field and to adjust the intensity of the latter “so that the elec- trostatic deflexion [sic] was the same as the magnetic” ([13], p. 309). It was then possible to calculate m/e on the basis of directly measurable parameters. Thomson obtained the following value: m/e = H 2l/FΘ,whereH and F were, respectively, the intensities of the magnetic and the electric fields, l the length of the region un- der the influence of the field, and Θ the angle of electric (or magnetic) deflection. Both methods indicated that the value of m/e was three orders of magnitude smaller than “the smallest value of this quantity previously known, and which is the value for the hydrogen ion in electrolysis” ([13], p. 310). Furthermore, the value of m/e was independent of the material of the cathode and the chemical composition of the gas within the cathode ray tube. This independence suggested to Thomson that the “corpuscles” were universal constituents of all material substances. In the early months of 1897 analogous results of the charge to mass ratio of cathode rays were reported by Emil Wiechert (1861–1928) and Walter Kaufmann (1871–1947). Those physicists, however, drew different conclusions from their ex- periments. Wiechert identified the constituents of cathode rays with disembodied charges [14, 15]; and Kaufmann suggested that the unexpectedly large ratio of e/m refuted the particulate interpretation of cathode rays [6]. According to our knowl- edge today, the cathode rays are nothing but swiftly moving electrons. Primary Literature 1. W. Crookes, On Radiant Matter, Nature 20, 419–423, 436–440 (1879). 2. E. Goldstein, Vorl¨aufige Mittheilungenuber ¨ elektrische Entladungen in verd¨unnten Gasen, K¨onigliche Preussische Akademie der Wissenschaften zu Berlin. Monatsberichte, 279–295 (1876). 3. H. Hertz, Versucheuber ¨ die Glimmentladung, Annalen der Physik 19, 782–816 (1883); Engl. transl. Experiments on the Cathode Discharge, in H. Hertz, Miscellaneous Papers (London, 1896), pp. 224–254. 4. H. Hertz, Ueber den Durchgang der Kathodenstrahlen durch d¨unne Metallschichten, An- nalen der Physik und Chemie 45, 28–32 (1892); Engl.
Recommended publications
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • Tracing the Recorded History of Thin-Film Sputter Deposition: from the 1800S to 2017
    Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017 Cite as: J. Vac. Sci. Technol. A 35, 05C204 (2017); https://doi.org/10.1116/1.4998940 Submitted: 24 March 2017 . Accepted: 10 May 2017 . Published Online: 08 September 2017 J. E. Greene COLLECTIONS This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Review Article: Plasma–surface interactions at the atomic scale for patterning metals Journal of Vacuum Science & Technology A 35, 05C203 (2017); https:// doi.org/10.1116/1.4993602 Microstructural evolution during film growth Journal of Vacuum Science & Technology A 21, S117 (2003); https://doi.org/10.1116/1.1601610 Overview of atomic layer etching in the semiconductor industry Journal of Vacuum Science & Technology A 33, 020802 (2015); https:// doi.org/10.1116/1.4913379 J. Vac. Sci. Technol. A 35, 05C204 (2017); https://doi.org/10.1116/1.4998940 35, 05C204 © 2017 Author(s). REVIEW ARTICLE Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017 J. E. Greenea) D. B. Willett Professor of Materials Science and Physics, University of Illinois, Urbana, Illinois, 61801; Tage Erlander Professor of Physics, Linkoping€ University, Linkoping,€ Sweden, 58183, Sweden; and University Professor of Materials Science, National Taiwan University Science and Technology, Taipei City, 106, Taiwan (Received 24 March 2017; accepted 10 May 2017; published 8 September 2017) Thin films, ubiquitous in today’s world, have a documented history of more than 5000 years. However, thin-film growth by sputter deposition, which required the development of vacuum pumps and electrical power in the 1600s and the 1700s, is a much more recent phenomenon.
    [Show full text]
  • Front Matter (PDF)
    PROCEEDINGS OF THE OYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. LXXXV. LONDON: P rinted for THE ROYAL SOCIETY and S old by HARRISON AND SONS, ST. MARTIN’S LANE, PRINTERS IN ORDINARY TO HIS MAJESTY. N ovember, 1911. LONDON: HARRISON AND SONS, PRINTERS IN ORDINARY TO HTS MAJESTY, ST. MARTIN’S LANE. CONTENTS --- 0 0 ^ 0 0 ----- SERIES A. VOL. LXXXV. No. A 575.—March 14, 1911. P AG-E The Chemical Physics involved in the Precipitation of Free Carbon from the Alloys of the Iron-Carbon System. By W. H. Hatfield, B. Met. (Sheffield University). Communicated by Prof. W. M. Hicks, F.R.S. (Plates 1—5) ................... .......... 1 On the Fourier Constants of a Function. By W. H. Young, Se.D., F.R.S................. 14 The Charges on Ions in Gases, and some Effects that Influence the Motion of Negative Ions. By Prof. John S. Townsend, F.R.S............................................... 25 On the Energy and Distribution of Scattered Rontgen Radiation. By J. A. Crowtlier, M.A., Fellow of St. John's College, Cambridge. Com­ municated by Prof. Sir J. J. Thomson, F.R.S...........................*.............................. 29 The Origin of Magnetic Storms. By Arthur Schuster, F.R.S...................................... 44 On the Periodicity of Sun-spots. By Arthur Schuster, F.R.S..................................... 50 The Absorption Spectx*a of Lithium and Caesium. By Prof. P. V. Bevan, M.A., Royal Holloway College. Communicated by Sir J. J. Thomson, F.R.S.............. 54 Dispersion in Vapours of the Alkali Metals. By Prof. P. V. Bevan, M.A., Royal Holloway College.
    [Show full text]
  • 1 Ethers, Religion and Politics In
    ORE Open Research Exeter TITLE Ethers, religion and politics in late-Victorian physics: beyond the Wynne thesis AUTHORS Noakes, Richard JOURNAL History of Science DEPOSITED IN ORE 16 June 2008 This version available at http://hdl.handle.net/10036/30065 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ETHERS, RELIGION AND POLITICS IN LATE-VICTORIAN PHYSICS: BEYOND THE WYNNE THESIS RICHARD NOAKES 1. INTRODUCTION In the past thirty years historians have demonstrated that the ether of physics was one of the most flexible of all concepts in the natural sciences. Cantor and Hodge’s seminal collection of essays of 1981 showed how during the eighteenth and nineteenth centuries British and European natural philosophers invented a range of ethers to fulfil diverse functions from the chemical and physiological to the physical and theological.1 In religious discourse, for example, Cantor identified “animate” and spiritual ethers invented by neo-Platonists, mystics and some Anglicans to provide a mechanism for supporting their belief in Divine immanence in the cosmos; material, mechanistic and contact-action ethers which appealed to atheists and Low Churchmen because such media enabled activity in the universe without constant and direct Divine intervention; and semi-spiritual/semi-material ethers that appealed to dualists seeking a mechanism for understanding the interaction of mind and matter. 2 The third type proved especially attractive to Oliver Lodge and several other late-Victorian physicists who claimed that the extraordinary physical properties of the ether made it a possible mediator between matter and spirit, and a weapon in their fight against materialistic conceptions of the cosmos.
    [Show full text]
  • Front Matter (PDF)
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. G LONDON: P rinted for THE ROYAL SOCIETY and Sold by HARRISON AND SONS, Ltd., ST. MARTIN’S LANE,. PRINTERS in ordinary to h is m a jesty . March, 1922. LONDON : HARRISON AND SONS, LTD., PRINTERS IN ORDINARY TO HIS MAJESTY, ST. MARTIN^ LANE. CONTENTS ---------------- SERIES A. VOL. C. i PAGE Minutes of Meetings, November 3, 1021—February 23, 1922 .................................. i No. A 702.—October 4, 1921. On the Velocity of Sound in Gases at High Temperatures, and the Ratio of the Specific Heats. By Harold B. Dixon, C.B.E., F.R.S., Colin Campbell, D.Sc., and A. Parker, D.Sc....................................................................................................... 1 The Ratio of the Specific Heats of Air and of Carbon Dioxide. By J. R. Partington, D.Sc. Communicated by Dr. J. A. Harker, F.R.S............................ 27 On the Currents induced in a Conductor by the Passage of a Mass of Magnetic Material over it. By E. S. Bieler, M.Sc., 1851 Scholar of McGill University. Communicated by Sir E. Rutherford, F.R.S. (Plate 1 ) ............. ................ 1.......... 50 On some New Formuke for the Numerical Calculation of the Mutual Induction of Coaxial Circles. By Louis V. King, D.Sc., Macdonald Professor of Physics, McGill University, Montreal. Communicated by Prof. A. S. Eve, F.R.S......... 60 Gaseous Combustion at High Pressures. Part II.—The Explosion of Hydrogen-Air and Carbon Monoxide-Air Mixtures. By William A rthur Bone, D.Sc., Ph.D., F.R.S.,'and the late William Arthur Haward, M.Sc., Salters’Research Fellow..
    [Show full text]
  • Nanoscience Education
    Livre de Lyon Academic Works of Livre de Lyon Educational Sciences 2020 NANOSCIENCE EDUCATION Ruhan Benlikaya Balikesir University, [email protected] Follow this and additional works at: https://academicworks.livredelyon.com/edu_sci Part of the Education Commons Recommended Citation Benlikaya, Ruhan, "NANOSCIENCE EDUCATION" (2020). Educational Sciences. 35. https://academicworks.livredelyon.com/edu_sci/35 This Book is brought to you for free and open access by Livre de Lyon, an international publisher specializing in academic books and journals. Browse more titles on Academic Works of Livre de Lyon, hosted on Digital Commons, an Elsevier platform. For more information, please contact [email protected]. ACADEMIC STUDIES IN EDUCATIONAL SCIENCES Editor Prof. Dr. Hulya GUR Lyon 2020 Editor • Prof. Dr. Hulya GUR 0000-0001-8479-8811 Cover Design • Aruull Raja First Published • December 2020, Lyon ISBN: 978-2-38236-041-5 © copyright All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by an means, electronic, mechanical, photocopying, recording, or otherwise, without the publisher’s permission. The chapters in this book have been checked for plagiarism by Publisher • Livre de Lyon Address • 37 rue marietton, 69009, Lyon France website • http://www.livredelyon.com e-mail • [email protected] PREFACE This book provides a detailed and up-to-date overview of works in education, science and mathematics education. This book is informative for especially educators, reseachers, academics, postgraduate students, preservive teachers, teachers and school leaders own development. It gives suggestions to educators, reseachers, academics, postgraduate students, preservive teachers, teachers, school leadersand policy makers and so on..
    [Show full text]
  • December 4, 1954 NATURE 1037
    No. 4440 December 4, 1954 NATURE 1037 COPLEY MEDALLISTS, 1915-54 is that he never ventured far into interpretation or 1915 I. P. Pavlov 1934 Prof. J. S. Haldane prediction after his early studies in fungi. Here his 1916 Sir James Dewar 1935 Prof. C. T. R. Wilson interpretation was unfortunate in that he tied' the 1917 Emile Roux 1936 Sir Arthur Evans word sex to the property of incompatibility and 1918 H. A. Lorentz 1937 Sir Henry Dale thereby led his successors astray right down to the 1919 M. Bayliss W. 1938 Prof. Niels Bohr present day. In a sense the style of his work is best 1920 H. T. Brown 1939 Prof. T. H. Morgan 1921 Sir Joseph Larmor 1940 Prof. P. Langevin represented by his diagrams of Datura chromosomes 1922 Lord Rutherford 1941 Sir Thomas Lewis as packets. These diagrams were useful in a popular 1923 Sir Horace Lamb 1942 Sir Robert Robinson sense so long as one did not take them too seriously. 1924 Sir Edward Sharpey- 1943 Sir Joseph Bancroft Unfortunately, it seems that Blakeslee did take them Schafer 1944 Sir Geoffrey Taylor seriously. To him they were the real and final thing. 1925 A. Einstein 1945 Dr. 0. T. Avery By his alertness and ingenuity and his practical 1926 Sir Frederick Gow­ 1946 Dr. E. D. Adrian sense in organizing the Station for Experimental land Hopkins 1947 Prof. G. H. Hardy Evolution at Cold Spring Harbor (where he worked 1927 Sir Charles Sherring- 1948 . A. V. Hill Prof in 1942), ton 1949 Prof. G.
    [Show full text]
  • Portraits from Our Past
    M1634 History & Heritage 2016.indd 1 15/07/2016 10:32 Medics, Mechanics and Manchester Charting the history of the University Joseph Jordan’s Pine Street Marsden Street Manchester Mechanics’ School of Anatomy Medical School Medical School Institution (1814) (1824) (1829) (1824) Royal School of Chatham Street Owens Medicine and Surgery Medical School College (1836) (1850) (1851) Victoria University (1880) Victoria University of Manchester Technical School Manchester (1883) (1903) Manchester Municipal College of Technology (1918) Manchester College of Science and Technology (1956) University of Manchester Institute of Science and Technology (1966) e University of Manchester (2004) M1634 History & Heritage 2016.indd 2 15/07/2016 10:32 Contents Roots of the University 2 The University of Manchester coat of arms 8 Historic buildings of the University 10 Manchester pioneers 24 Nobel laureates 30 About University History and Heritage 34 History and heritage map 36 The city of Manchester helped shape the modern world. For over two centuries, industry, business and science have been central to its development. The University of Manchester, from its origins in workers’ education, medical schools and Owens College, has been a major part of that history. he University was the first and most Original plans for eminent of the civic universities, the Christie Library T furthering the frontiers of knowledge but included a bridge also contributing to the well-being of its region. linking it to the The many Nobel Prize winners in the sciences and John Owens Building. economics who have worked or studied here are complemented by outstanding achievements in the arts, social sciences, medicine, engineering, computing and radio astronomy.
    [Show full text]
  • William Bateson: Scientific Correspondence and Papers (MS Add.8634)
    Cambridge University Library, Department of Archives and Modern Manuscripts Finding Aid - William Bateson: Scientific Correspondence and Papers (MS Add.8634) Generated by Access to Memory (AtoM) 2.4.0 Printed: February 27, 2019 Language of description: English Cambridge University Library, Department of Archives and Modern Manuscripts https://archive.lib.cam.ac.uk/index.php/william-bateson-scientific-correspondence-and-papers William Bateson: Scientific Correspondence and Papers Table of contents Summary information .................................................................................................................................... 20 Administrative history / Biographical sketch ................................................................................................ 20 Scope and content ......................................................................................................................................... 20 Notes .............................................................................................................................................................. 21 Access points ................................................................................................................................................. 21 Collection holdings ........................................................................................................................................ 22 MS Add.8634/A.1-A.84, Biographical papers (c.1859-1935 & 1972) .....................................................
    [Show full text]
  • FORMAT Bulletin
    Members’ Paper From IRPS Bulletin Vol 10 No 3 September/October, 1996 ONE HUNDRED YEARS OF ELECTRONS above hypothesis but also to the brilliant discoveries made in the closing years of the 19th century: that of X- Leif Gerwarda and Christopher Cousinsb rays by Wilhelm Conrad Röntgen in 1895 and that of radioactivity by Henri Becquerel in 1896. a. Department of Physics, Technical University of Denmark, Lyngby, Denmark Cathode rays occurs when electricity is discharged in a rarefied gas. At a given low pressure of the gas, rays are b. Department of Physics, University of Exeter, emitted from the negative pole, the cathode. The Exeter, UK cathode rays themselves are invisible, but they can be observed by the phosphorescence that they induce at the The search for the true nature of electricity led walls of the glass tube and by the shadows from objects to the discovery of the electron and the proof placed in their path. The cathode rays propagate in that it is a constituent of all atoms. These straight lines, but unlike ordinary light rays they can be achievements gave the scientists the first deflected by a magnetic field. definite line of attack on the constitution of the atom and on the structure of matter. The phenomena exhibited by the electric discharge in rarefied gas had long been familiar from studies by In a lecture on 'The Stability of Atoms' given to the Royal Julius Plücker, Wilhelm Hittorf, Eugen Goldstein and Society of Arts in 1924, Ernest Rutherford said: other physicists. In a lecture delivered before the British Association at the Sheffield Meeting in 1879, William The trend of physics during the past twenty-five years has Crookes first used the expression radiant matter or been largely influenced by three fundamental discoveries matter in the ultra-gaseous state, to explain the made in the closing years of the nineteenth century.
    [Show full text]
  • Who Got Moseley's Prize?
    Chapter 4 Who Got Moseley’s Prize? Virginia Trimble1 and Vera V. Mainz*,2 1Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, United States 2Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States *E-mail: [email protected]. Henry Gwyn Jeffreys Moseley (1887-1915) made prompt and very skilled use of the then new technique of X-ray scattering by crystals (Bragg scattering) to solve several problems about the periodic table and atoms. He was nominated for both the chemistry and physics Nobel Prizes by Svante Arrhenius in 1915, but was dead at Gallipoli before the committees finished their deliberations. Instead, the 1917 physics prize (announced in 1918 and presented on 6 June 1920) went to Charles Glover Barkla (1877-1944) “for discovery of the Röntgen radiation of the elements.” This, and his discovery of X-ray polarization, were done with earlier techniques that he never gave up. Moseley’s contemporaries and later historians of science have written that he would have gone on to other major achievements and a Nobel Prize if he had lived. In contrast, after about 1916, Barkla moved well outside the scientific mainstream, clinging to upgrades of his older methods, denying the significance of the Bohr atom and quantization, and continuing to report evidence for what he called the J phenomenon. This chapter addresses the lives and scientific endeavors of Moseley and Barkla, something about the context in which they worked and their connections with other scientists, contemporary, earlier, and later. © 2017 American Chemical Society Introduction Henry Moseley’s (Figure 1) academic credentials consisted of a 1910 Oxford BA with first-class honors in Mathematical Moderations and a second in Natural Sciences (physics) and the MA that followed more or less automatically a few years later.
    [Show full text]
  • Sir Arthur Schuster, F.R.S
    Sir Arthur Schuster. 217 Sir Arthur Schuster, F.R.S. ARTHUR SCHUSTER was born in Frankfurt-on-Main on September 12, 1851, of a wealthy banking family, but emigrated to Manchester with his parents in boyhood. He remained closely connected with Manchester throughout most of his active life, for he occupied first a chair in applied mathematics from 1881 to 1888, and then succeeded Balfour Stewart as Professor of Physics, holding this chair till he retired in 1907. This was the period during which the English provincial universities were expanding, and Schuster took an important part in the development. Schuster's chief period of scientific activity fell in the interregnum between the older discoveries of the era of Maxwell and the newer of radioactivity and the electron. This was a curiously stagnant period in the history of physics, and, though he made many fine contributions to knowledge, there is no great discovery to his name; yet the record of his work shows that he was definitely a precursor of the new physics rather than an elaborator of the old. Perhaps his most noteworthy feat was to have made the first determination of that important physical quantity elm; but the time was not ripe and he explained away the result he obtained, making it plausible to believe that the m was the mass of an atom, instead of the much more startling value thousands of times lighter, the mass of the electron. He also had a great interest in geophysics, and made important studies in meteorology and terrestrial magnetism. In this connection he was closely connected with the establishment of the Eskdalemuir Observatory.
    [Show full text]