FORMAT Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cathode Rays 89 Cathode Rays
Cathode Rays 89 Cathode Rays Theodore Arabatzis C The detection of cathode rays was a by-product of the investigation of the discharge of electricity through rarefied gases. The latter phenomenon had been studied since the early eighteenth century. By the middle of the nineteenth century it was known that the passage of electricity through a partly evacuated tube produced a glow in the gas, whose color depended on its chemical composition and its pressure. Below a certain pressure the glow assumed a stratified pattern of bright and dark bands. During the second half of the nineteenth century the discharge of electricity through gases became a topic of intense exploratory experimentation, primarily in Germany [21]. In 1855 the German instrument maker Heinrich Geißler (1815– 1879) manufactured improved vacuum tubes, which made possible the isolation and investigation of cathode rays [23]. In 1857 Geissler’s tubes were employed by Julius Pl¨ucker (1801–1868) to study the influence of a magnet on the electrical dis- charge. He observed various complex and striking phenomena associated with the discharge. Among those phenomena were a “light which appears about the negative electrode” and a fluorescence in the glass of the tube ([9], pp. 122, 130). The understanding of those phenomena was advanced by Pl¨ucker’s student and collaborator, Johann Wilhelm Hittorf (1824–1914), who observed that “if any ob- ject is interposed in the space filled with glow-light [emanating from the negative electrode], it throws a sharp shadow on the fluorescent side” ([5], p. 117). This effect implied that the “rays” emanating from the cathode followed a straight path. -
History of Physics Group Newsletter No 21 January 2007
History of Physics Group Newsletter No 21 January 2007 Cover picture: Ludwig Boltzmann’s ‘Bicykel’ – a piece of apparatus designed by Boltzmann to demonstrate the effect of one electric circuit on another. This, and the picture of Boltzmann on page 27, are both reproduced by kind permission of Dr Wolfgang Kerber of the Österreichische Zentralbibliothek für Physik, Vienna. Contents Editorial 2 Group meetings AGM Report 3 AGM Lecture programme: ‘Life with Bragg’ by John Nye 6 ‘George Francis Fitzgerald (1851-1901) - Scientific Saint?’ by Denis Weaire 9 ‘Benjamin Franklin (1706-1790) - a brief biography by Peter Ford 15 Reports Oxford visit 24 EPS History of physics group meeting, Graz, Austria 27 European Society for the History of Science - 2nd International conference 30 Sir Joseph Rotblat conference, Liverpool 35 Features: ‘Did Einstein visit Bratislava or not?’ by Juraj Sebesta 39 ‘Wadham College, Oxford and the Experimental Tradition’ by Allan Chapman 44 Book reviews JD Bernal – The Sage of Science 54 Harwell – The Enigma Revealed 59 Web report 62 News 64 Next Group meeting 65 Committee and contacts 68 2 Editorial Browsing through a copy of the group’s ‘aims and objectives’, I notice that part of its aims are ‘to secure the written, oral and instrumental record of British physics and to foster a greater awareness concerning the history of physics among physicists’ and I think that over the years much has been achieved by the group in tackling this not inconsiderable challenge. One must remember, however, that the situation at the time this was written was very different from now. -
Tracing the Recorded History of Thin-Film Sputter Deposition: from the 1800S to 2017
Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017 Cite as: J. Vac. Sci. Technol. A 35, 05C204 (2017); https://doi.org/10.1116/1.4998940 Submitted: 24 March 2017 . Accepted: 10 May 2017 . Published Online: 08 September 2017 J. E. Greene COLLECTIONS This paper was selected as Featured ARTICLES YOU MAY BE INTERESTED IN Review Article: Plasma–surface interactions at the atomic scale for patterning metals Journal of Vacuum Science & Technology A 35, 05C203 (2017); https:// doi.org/10.1116/1.4993602 Microstructural evolution during film growth Journal of Vacuum Science & Technology A 21, S117 (2003); https://doi.org/10.1116/1.1601610 Overview of atomic layer etching in the semiconductor industry Journal of Vacuum Science & Technology A 33, 020802 (2015); https:// doi.org/10.1116/1.4913379 J. Vac. Sci. Technol. A 35, 05C204 (2017); https://doi.org/10.1116/1.4998940 35, 05C204 © 2017 Author(s). REVIEW ARTICLE Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017 J. E. Greenea) D. B. Willett Professor of Materials Science and Physics, University of Illinois, Urbana, Illinois, 61801; Tage Erlander Professor of Physics, Linkoping€ University, Linkoping,€ Sweden, 58183, Sweden; and University Professor of Materials Science, National Taiwan University Science and Technology, Taipei City, 106, Taiwan (Received 24 March 2017; accepted 10 May 2017; published 8 September 2017) Thin films, ubiquitous in today’s world, have a documented history of more than 5000 years. However, thin-film growth by sputter deposition, which required the development of vacuum pumps and electrical power in the 1600s and the 1700s, is a much more recent phenomenon. -
Third ICESHS, Austrian Academy of Sciences, Vienna 2008 Electron – A
Third ICESHS, Austrian Academy of Sciences, Vienna 2008 Isabel Serra, Francisca Viegas, Elisa Maia Department of History and Philosophy of Science, University of Lisbon Lisboa, Portugal [email protected] Electron – a main actor in scientific controversies1 1. Introduction The story of the electron can contribute to the study of the continuity-discontinuity of the scientific thinking in modern age, as well as to discuss models and metaphors in history of science. Actually, the electron played a central role in several scientific controversies: nature of electricity and cathode rays, structure and properties of matter. The idea of an atom of electricity was introduced by Faraday and adopted by Helmholtz. In 1874, Stoney estimated its charge and named it electron. However, Maxwell had stated that a complete knowledge of electricity would eliminate the necessity of such particles. The controversy about the nature of electricity was to lie dormant for years until it was brightened by the study of discharges in gases. The nature of cathode rays divided physicists and chemists, with the electron playing the major role in the dispute. The experiences of Perrin (1895) and Thomson (1897), seemed to confirm the existence of the electron, but did not convince all scientists. The electron became the main protagonist of a controversial image of matter: the atomistic view. In 1913, Bohr’s atomic theory was received with enthusiasm by some physicists but with criticism by others. Nevertheless, the atomic structure of matter gradually wins acceptance in reason of its extraordinary power in predicting spectral lines. At last, electrons were particles, coherent with facts and theories. -
Nanoscience Education
Livre de Lyon Academic Works of Livre de Lyon Educational Sciences 2020 NANOSCIENCE EDUCATION Ruhan Benlikaya Balikesir University, [email protected] Follow this and additional works at: https://academicworks.livredelyon.com/edu_sci Part of the Education Commons Recommended Citation Benlikaya, Ruhan, "NANOSCIENCE EDUCATION" (2020). Educational Sciences. 35. https://academicworks.livredelyon.com/edu_sci/35 This Book is brought to you for free and open access by Livre de Lyon, an international publisher specializing in academic books and journals. Browse more titles on Academic Works of Livre de Lyon, hosted on Digital Commons, an Elsevier platform. For more information, please contact [email protected]. ACADEMIC STUDIES IN EDUCATIONAL SCIENCES Editor Prof. Dr. Hulya GUR Lyon 2020 Editor • Prof. Dr. Hulya GUR 0000-0001-8479-8811 Cover Design • Aruull Raja First Published • December 2020, Lyon ISBN: 978-2-38236-041-5 © copyright All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by an means, electronic, mechanical, photocopying, recording, or otherwise, without the publisher’s permission. The chapters in this book have been checked for plagiarism by Publisher • Livre de Lyon Address • 37 rue marietton, 69009, Lyon France website • http://www.livredelyon.com e-mail • [email protected] PREFACE This book provides a detailed and up-to-date overview of works in education, science and mathematics education. This book is informative for especially educators, reseachers, academics, postgraduate students, preservive teachers, teachers and school leaders own development. It gives suggestions to educators, reseachers, academics, postgraduate students, preservive teachers, teachers, school leadersand policy makers and so on.. -
Should Physical Laws Be Unit-Invariant?
Should physical laws be unit-invariant? 1. Introduction In a paper published in this journal in 2015, Sally Riordan reviews a recent debate about whether fundamental constants are really “constant”, or whether they may change over cosmological timescales. Her context is the impending redefinition of the kilogram and other units in terms of fundamental constants – a practice which is seen as more “objective” than defining units in terms of human artefacts. She focusses on one particular constant, the fine structure constant (α), for which some evidence of such a variation has been reported. Although α is not one of the fundamental constants involved in the proposed redefinitions, it is linked to some which are, so that there is a clear cause for concern. One of the authors she references is Michael Duff, who presents an argument supporting his assertion that dimensionless constants are more fundamental than dimensioned ones; this argument employs various systems of so-called “natural units”. [see Riordan (2015); Duff (2004)] An interesting feature of this discussion is that not only Riordan herself, but all the papers she cites, use a formula for α that is valid only in certain systems of units, and would not feature in a modern physics textbook. This violates another aspect of objectivity – namely, the idea that our physical laws should be expressed in such a way that they are independent of the particular units we choose to use; they should be unit-invariant. In this paper I investigate the place of unit-invariance in the history of physics, together with its converse, unit-dependence, which we will find is a common feature of some branches of physics, despite the fact that, as I will show in an analysis of Duff’s argument, unit-dependent formulae can lead to erroneous conclusions. -
Unit II. the Atom: Early Models
Unit II. The Atom: Early Models READING ASSIGNMENT 1: Read Ch. 5 p107-112. Build a time line showing the scientists who contributed to our understanding of the atom and their contributions. You will add to this time line as the unit progresses. I. A History of the Atomic Theory- “How Small is Small” A. Democritus- Greek- “atomos” – indivisible -“All matter is composed of indivisible units.” Atoms of Salt, Water & Iron. The chemical properties were conserved in the structure of the atoms B. John Dalton- English Physicist (1766-1844) . See a section of Dalton's book as well as an excerpt of his writings. Dalton’s Atomic Theory- 1. All elements are composed of atoms and the atom is the smallest piece of that element 2. All atoms of the same element are the same. These atoms then have the same mass. 3. Atoms of different elements combine in whole number ratios producing compounds. a. Law of Definite Proportions ( Law of Constant Composition) - All compounds are composed of specific ratios of elements. -This was actually coined by Joseph Proust, which Dalton used to develop his theory. 4. Chemical reactions occur when atoms are separated, joined or rearranged. ASSIGNMENT 1. Quiz over Dalton's Atomic Theory II. Composition of the Atom & Historical Atomic Models Simplified View of the Subatomic Particles. A. Electron- negative particles, very small 1. William Crookes (1832-1919)- Cathode Ray Tube- (Crookes Tube) -cathode rays- a. travel from cathode to anode in straight lines b. heated metals placed in path of rays c. deflected by electric & magnetic charges- shows rays are made of negative particles. -
Dissertation
Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Master of Science Fabian Heiße Born in Zschopau Oral examination: October 16th, 2019 High-precision measurement of the proton’s atomic mass First referee: Priv. Doz. Dr. Wolfgang Quint Second referee: Prof. Dr. Selim Jochim Groß sind die Werke des HERRN; wer sie erforscht, der hat Freude daran. Die Bibel, Buch der Psalmen, Kapitel 111 Vers 2. Hochpräzise Messung der atomaren Masse des Protons Zusammenfassung - Im Rahmen dieser Doktorarbeit wurden große Teile des neuen Penningfallen-Experimentes LIONTRAP (Light-Ion Trap) aufgebaut, das gesamte Experiment erstmalig in Betrieb genommen und vollständig charak- terisiert. Weiterhin wurden die ersten beiden Messkampagnen zur Bestimmung der atomaren Masse des Protons und des Sauerstoffatoms durchgeführt. Das LIONTRAP Experiment ist speziell für die Massenbestimmung von leich- ten Ionen optimiert. Dabei wird die Zyklotronfrequenz eines hochgeladenen Kohlenstoffions mit der des zu messenden Ions verglichen, um über dieses Zyk- lotronfrequenzverhältnis die atomare Masse des Ions zu extrahieren. Dafür wurde in LIONTRAP die harmonischste zylindrische Penningfalle realisiert, welche bisher in der Literatur beschrieben wurde. In der ersten Messkampagne wurde die atomare Masse des Protons mit einer bisher unerreichten relativen Genauigkeit von 3 × 10−11 bestimmt. Der neue Messwert ist nicht nur einen Faktor drei genauer als der zum Zeitpunkt der Messung gültige Literaturwert, sondern weist auch eine Diskrepanz von drei Standardabweichungen dazu auf. Zusätzlich wurde auch noch der zweitgenauste Wert für die Sauerstoffmasse bestimmt, welcher mit dem Literaturwert über- einstimmt. -
Elementary Charge and Electron: One Entity Two Identities
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2021 doi:10.20944/preprints202104.0716.v1 Elementary Charge and Electron: One Entity Two Identities MISHECK KIRIMI1, 2 1. Department of Health Sciences, Moi University, Eldoret, Kenya 2. email: [email protected], [email protected] Our knowledge of electricity is based on two nearly parallel concepts – charge and electron. The charge concept is symmetrical: nature has equal numbers of positive and negative charges playing equivalent roles in atoms. The electron concept has two asymmetries. One, the observable universe has more positive than negative electrons. Two, atoms contain negative- but no positive electrons. Here I propose that charge is static electron and electron is moving charge. That is, resting (electrostatic) and moving (electrodynamic) behaviours exclusively make charge and electron different. The proposal reveals previously unnoticed symmetries in the electron concept and has experimental backing. Faraday, Stoney and Millikan observed charges in static conditions – electrolytes, oil drops, doorknobs etc. In contrast, Thomson and Anderson observed electrons at high speeds in cathode tubes and cloud chambers. Beta decays were initially interpreted to mean existence of electrons in atomic nuclei. Equating ‘charge’ to ‘static electron’ reinstates and validates the interpretation. Key words: Charge, electricity, electron, electrodynamics, electrostatics, elementary charge George Thomson observed that electron “can never be separated” from its charge1. This fact is unique to the electron. Other charged particles do lose their charge. Proton, for example, loses its positive charge in β+ decay2. In contrast, electron does not decay to anything simpler3. Thus, nature has no chargeless (electrically neutral) electron. -
Electrons 195 Secondary Literature
Electrons 195 Secondary Literature 29. R. Loudon: The quantum theory of light (Oxford University Press, Oxford 2000) 30. The Feynman Lectures on Physics (Addison-Wesley 2005, Vol. 3) 31. J.C.H. Spence: Lensless (Diffractive) Imaging, in: Science of Microscopy.P.Hawkes, J.C.H. Spence Eds. (Springer, Berlin 2007, Ch. 19) E Electrons Theodore Arabatzis The discovery of the electron was a complex and extended process, stretching from Faraday’s investigation of electrolysis to Millikan’s oil-drop experiments [18]. The results of four different fields (electrochemistry, electromagnetic theory, spec- troscopy,and cathode rays) converged to support the existence of a novel subatomic constituent of matter. Faraday’s experiments on electrolysis, interpreted from the perspective of the atomic theory of matter, implied that electricity has an atomic structure [4]. That is, electricity appears in naturally occurring units. In 1891 George Johnstone Stoney (1826–1911) named those units “electrons” ( [13], p. 583, [30]). In 1894 Stoney’s electrons were appropriated by Joseph Larmor (1857–1942) to overcome certain empirical and conceptual problems faced by Maxwell’s electro- magnetic theory ([6], pp. 806 ff.). Larmor’s electrons were supposed to be universal constituents of matter and were represented as structures in the all-pervading ether. On the continent a similar electromagnetic theory had been proposed by Hendrik Antoon Lorentz (1853–1928), who developed a synthesis of British and Continental traditions in electromagnetism [7]. Lorentz’s theory incorporated Maxwell’s sug- gestion that electromagnetic phenomena are wave processes in the ether and the suggestion of continental theorists (e.g., Wilhelm Weber) that these phenomena are due to the action of charged particles. -
The Cathode Ray Tube Site, Crookes Tubes. 09/20/2006 09:21 AM
The Cathode Ray Tube site, Crookes tubes. 09/20/2006 09:21 AM The Cathode Ray Tube site electronic glassware Crookes tubes history and Physics Instruments The scientist Sir William Crookes paved the way for many discoveries. He worked in his own laboratory in PREV HOME NEXT London where he did all of his experiments with different types of near vacuum tubes. A lot of Crookes tubes stood at the base of further discoveries like the X-ray tube and the Braun tube which developed later on into our well known TV tube. German glassblowers like Otto Pressler, Emil Gundelach and Müller-Uri made many types of Crookes, Hittorf and Geissler tubes in the beginning of the 20th Century. The tubes were sold to schools and universities for classroom demonstration by companies like Max Kohl and Leybold. In WW II the Pressler factory was bombed but they managed to go on, after the war the name changed in VEB and produced then manly radiometers for hard western currency. On the website of Jogis-Röhrenbude you can find the complete Pressler story. The biography of Sir William Crookes can be found on the website of the University of Oxford For everyone who likes to know more about the background of this old tubes, there is now a new book in German language. Check this website for more info. Caution. Sir William Crookes When these tubes are activated with high 1832-1919 voltage a small amount of soft X-Ray's are produced ! Don't use tensions more than 5000 Volts. The Maltese Cross tube is one of the most famous Crookes tubes. -
The History of Stellar Photometry
The History of Stellar Photometry Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.58, on 25 Sep 2021 at 17:46:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100007326 George M. Minchin, FRS (1845-1914) William H.S. Monck (1839-1915) George F. Fitzgerald, FRS (1851-1901) Stephen M. Dixon (1866-1940) Downloaded from https://www.cambridge.org/core. IP address: 170.106.202.58, on 25 Sep 2021 at 17:46:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0252921100007326 at^sa^^ii^^^^^-^^^jijfiigjj Biographical and Historical Notes on the Pioneers of Photometry in Ireland The Editors Introduction As the circumstances of the early electrical measurements of starlight in Ireland are not widely known we wish to take this opportunity to set down the facts, as far as they are known to us. Corrections or new information will be welcomed. The observations made in Dublin in 1892 were the result of a collaboration be tween four graduates of Trinity College: George M. Minchin, William H.S. Monck, Stephen M. Dixon and George F. Fitzgerald. The observations in 1895 were made at Daramona Observatory, Co. Westmeath with a 24-inch reflector by Minchin, Fitzger ald and the owner of the telescope, William E. Wilson. In 1875 Minchin was appointed Professor of Applied Mechanics at the Royal Indian Engineering College at Coopers Hill, near Staines in London. In 1877 he started a long series of investigations of photoelectricity using a small optical laboratory at Coopers Hill and the laboratories of University College London.