Published Version

Total Page:16

File Type:pdf, Size:1020Kb

Published Version [Palaeontology, Vol. 54, Part 2, 2011, pp. 397–415] THE CAPSULE: AN ORGANIC SKELETAL STRUCTURE IN THE LATE CRETACEOUS BELEMNITE GONIOTEUTHIS FROM NORTH-WEST GERMANY by LARISA A. DOGUZHAEVA and STEFAN BENGTSON Department of Palaeozoology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden; e-mails [email protected]; [email protected] Typescript received 7 February 2009; accepted in revised form 1 June 2010 Abstract: An unusual, bilaterally symmetrical black struc- A flare along the periphery of the alveolus marks a region ture that embraces the protoconch and the phragmocone where the rostrum was not yet formed, suggesting that the and is overlain by a rostrum has been studied in the Santo- capsule extended beyond the rostrum. Modification of the nian–early Campanian (Late Cretaceous) belemnite genus skeleton in Gonioteuthis comprises a set of supposedly inter- Gonioteuthis from Braunschweig, north-west Germany. The related changes, such as innovation of the organic capsule, structure is here named the capsule. Energy dispersed spec- partial elimination of the calcareous rostrum and a diminish- trometry analyses of the capsule show a co-occurrence of sul- ing of the pro-ostracum, resulting in the appearance of a phur with zinc, barium, iron, lead and titanium, suggesting new type of pro-ostracum that became narrower and shorter their chemical association. The capsule was originally made and lost the spatula-like shape and gently curved growth of organic material that was diagenetically transformed into lines of a median field that are typical for the majority of sulphur-containing matter. The material of the capsule dif- Jurassic and Cretaceous belemnites. The partial replacement fers from the chitin of the connecting rings in the same spec- of a calcareous rostrum with an organic capsule in belemni- imens. The capsule has a complex morphology: (1) ventral tellids may have been an adaptive reaction to an unfavour- and dorsal wing-like projections that are repeated in a brevi- able environmental condition, perhaps related to difficulties conic shape of the alveolus, (2) an aperture with lateral lobes in calcium carbonate secretion during the Late Cretaceous and ventral and dorsal sinuses copied by growth lines and that forced animals to reduce carbonate production and to (3) a ventral ridge that fits with the position of the fissure in secret an organic capsule around the protoconch and the the rostrum. The alveolus in the most anterior part of the phragmocone. rostrum is crater-like. It is lined with thin, pyritized, lami- nated material, which appears to be the outermost portion Key words: Germany, Late Cretaceous, cephalopods, cole- of the capsule attached to the inner surface of the rostrum. oids, belemnites, shell ultrastructure, organic skeleton. T he pioneering Early Carboniferous members of the belemnites, the rostra lack their anterior part (see Chris- Belemnoidea can be recognized by the presence of a tensen 1975, 1997a; Christensen and Schulz 1997; Kosˇtˇa´k rostrum (Flower 1945; Flower and Gordon 1959), an ink 2005; Kosˇtˇa´k and Wiese 2008). These belemnites represent sac and arm hooks (Mapes et al. 2007, 2010). From that fewer than ten genera of the family Belemnitellidae time until the Jurassic, the rostrum went through signifi- Pavlow, 1914, which was the only existing family in the cant morphological and ultrastructural transformations, northern hemisphere from the Late Cenomanian to the but without attaining the characteristics of the rostrum in latest Maastrichtian (see Christensen 1997b). Two more Jurassic to Cretaceous belemnoids. The rare Hettangian peculiar features of the rostrum in the belemnitellids are (earliest Jurassic) small-sized rostra supposedly mark the the ventral fissure and the vascular imprints on the sur- rising of the order Belemnitida (Schwegler 1939; Weis face (see Jeletzky 1950, fig. 1; Christensen 1975, fig. 22, and Delsate 2005; Weis and Mariotti 2008). Through the pl. 12, figs 1–4; Christensen and Schulz 1997, fig. 69A–D, Early Jurassic, the rostra became larger, more diverse in pls 1–3). The selective postmortem destruction of the shape and more widely distributed geographically. Most alveolar part of the rostrum in belemnitellids points out Jurassic to Cretaceous belemnites retained the radial-con- an unknown structural peculiarity that made this part of centric structure of the rostra. In some Late Cretaceous the rostrum less resistant to fossilization than the rest of ª The Palaeontological Association doi: 10.1111/j.1475-4983.2010.01027.x 397 398 PALAEONTOLOGY, VOLUME 54 the rostrum. The missing part of the rostrum was trum. This study was aided using scanning electron believed to be originally built up either of some unstable, microscopy and energy dispersive spectrometry. presumably organic material, which was lost during fossil- The genus Gonioteuthis populated the Central European ization (Saemann 1861–1862; Schlu¨ter 1876; Moberg Subprovince in the late middle Coniacian–early Campa- 1885; Crick 1904; Naidin 1964; Christensen 1975) or of nian and rarely reached also the northernmost part of the aragonite that was not preserved (Bandel and Spath 1988; Tethyan Realm (Jeletzky 1950; Christensen 1997a, b). The Barskov et al. 1997; Christensen 1997a; Kosˇtˇa´k and Wiese presence of the capsule indicates the partial substitution 2008). Since then, the hypothesis of an organic composi- of calcareous material of the rostrum with an organic tion of the alveolus part of the rostrum has remained substance. This change in skeletal material may have been untested and no observations supporting it have been an adaptive reaction to an environment in the Central reported. The idea of an aragonitic composition of the European Subprovince during the Late Cretaceous that alveolar part of the rostrum is based on stable-isotope was possibly unfavourable to calcium carbonate secretion data from the Turonian in northern Siberia showing con- (see Worsley 1971). sistently high d18O values in the belemnite rostra and lower values in the co-occurring calcitic shells of gastro- pods and inoceramids, as well as different 13C contents in MATERIAL AND METHODS the alveolus and postalveolar parts, respectively (Naidin et al. 1987; Barskov et al. 1997; Dauphin et al. 2007). The belemnites under examination, purchased in Ger- A perishable substance of unknown composition lining many in the beginning of the twentieth century, are now a pseudoalveolus (an unusually shortened alveolus typical housed at the Department of Palaeozoology of the for belemnitellid genera Praeactinocamax Naidin, Actinoc- Swedish Museum of Natural History. Their original labels amax Miller, Goniocamax Naidin, Gonioteuthis Bayle, contain the following information: ‘Actinocamax granula- Belemnellocamax Naidin) and continuing a calcareous tus Blainv., Upper Cretaceous, Braunschweig; Collegium rostrum was discovered in the belemnitellid belemnite Coralinum, Braunschweig’. Judging from the distribution Gonioteuthis granulata (de Blainville) and briefly of Gonioteuthis granulata in northern Germany, the speci- described by Ernst (Ernst 1964, pp. 156–157). Based on mens must have come from Santonian to lower Campa- his observations, Ernst concluded that the perishable sub- nian strata (Christensen 1976). stance was associated with the pseudoalveolus, and the Twenty fragmentary rostra are available for study; their latter was an original shell character rather than a post- maximum diameter is 12 mm, and the maximum pre- mortem broadening of the alveolus. Since then, this idea served length is 68 mm; seven rostra preserve the alveolus has attracted little attention. with a fragmentary phragmocone inside. Initially, the cap- Shells of Gonioteuthis preserving what could be referred sule was noticed in the alveolus because of its black col- to as ‘a perishable substance of unknown composition our, which contrasts with the brown hue of the rostrum. lining a pseudoalveolus’ (Ernst 1964, pp. 156–157) have The specimens were split longitudinally to expose the been recovered in collections of the Department of Palae- alveolus and to access the site of the potentially preserved ozoology, Swedish Museum of Natural History. They structure. Because of the ventral fissure of the rostrum, come from Braunschweig, north-west Germany. The pres- the longitudinal fracture usually runs in the sagittal plane. ent article reports our recent study on this enigmatic, In four of the split specimens, a protoconch was exposed rarely observed skeleton structure. This originally organic as well. The portions of rostra that revealed morphologi- skeletal element – here named a capsule – embraces the cal features of the structure under study, such as a black protoconch and phragmocone and is overlain by the ros- material and curved growth lines, were examined in a EXPLANATION OF PLATE 1 Figs 1–7. Gonioteuthis granulata, Santonian–early Campanian, Late Cretaceous; Braunschweig, north-west Germany; NRM-PZ Mo. 8183, a ventro-dorsally split specimen. 1, general view of the phragmocone surrounded by the capsule showing ventral (left) and dorsal (right) wing-like projections on the longitudinal fracture of the rostrum; scale bar represents 5 mm. 2, view of orad end of the capsule and surrounding alveolus of the rostrum; scale bar represents 5 mm. 3, enlarged detail of 1 to show the ventral portion of the capsule-bearing longitudinal ridges and adjoined part of the fissure; scale bar represents 500 lm. 4, enlarged detail of 3 to show that material of the capsule continues into the material lining the fissure; scale bar represents 250 lm. 5, enlarged detail of 3 showing a cross section of the capsule and its granular ultrastructure; scale bar represents 25 lm. 6, a fragment of the thin conotheca with a mural ring of a septum; scale bar represents 100 lm. 7, enlarged detail of 1, a granular ultrastructure of the dorsal wing-like projection of the capsule; scale bar represents 100 lm. PLATE 1 1 2 3 4 5 6 7 DOGUZHAEVA and BENGTSON, Gonioteuthis granulata 400 PALAEONTOLOGY, VOLUME 54 scanning electron microscope (Hitachi S-4300) equipped ues along the chamber length and forms the phragmo- with an energy dispersive spectrometer (EDS).
Recommended publications
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies
    New Eocene coleoid (Cephalopoda) diversity from statolith remains: taxonomic assignation, fossil record analysis, and new data for calibrating molecular phylogenies. Pascal Neige, Hervé Lapierre, Didier Merle To cite this version: Pascal Neige, Hervé Lapierre, Didier Merle. New Eocene coleoid (Cephalopoda) diversity from sta- tolith remains: taxonomic assignation, fossil record analysis, and new data for calibrating molecu- lar phylogenies.. PLoS ONE, Public Library of Science, 2016, 11 (5), pp.e0154062. 10.1371/jour- nal.pone.0154062. hal-01319404 HAL Id: hal-01319404 https://hal.archives-ouvertes.fr/hal-01319404 Submitted on 23 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies Pascal Neige1*, Hervé Lapierre2, Didier Merle3 1 Univ. Bourgogne Franche-Comté, CNRS, Biogéosciences, 6 bd Gabriel, 21000, Dijon, France, a11111 2 Département Histoire de la Terre, (MNHN, CNRS, UPMC-Paris6), Paris, France, 3 Département Histoire de la Terre, Sorbonne Universités (CR2P—MNHN, CNRS, UPMC-Paris6), Paris, France * [email protected] Abstract OPEN ACCESS New coleoid cephalopods are described from statolith remains from the Middle Eocene Citation: Neige P, Lapierre H, Merle D (2016) New (Middle Lutetian) of the Paris Basin.
    [Show full text]
  • Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
    GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance.
    [Show full text]
  • Vita Scientia Revista De Ciências Biológicas Do CCBS
    Volume III - Encarte especial - 2020 Vita Scientia Revista de Ciências Biológicas do CCBS © 2020 Universidade Presbiteriana Mackenzie Os direitos de publicação desta revista são da Universidade Presbiteriana Mackenzie. Os textos publicados na revista são de inteira responsabilidade de seus autores. Permite-se a reprodução desde que citada a fonte. A revista Vita Scientia está disponível em: http://vitascientiaweb.wordpress.com Dados Internacionais de Catalogação na Publicação (CIP) Vita Scientia: Revista Mackenzista de Ciências Biológi- cas/Universidade Presbiteriana Mackenzie. Semestral ISSN:2595-7325 UNIVERSIDADE PRESBITERIANA MACKENZIE Reitor: Marco Túllio de Castro Vasconcelos Chanceler: Robinson Granjeiro Pro-Reitoria de Graduação: Janette Brunstein Pro-Reitoria de Extensão e Cultura: Marcelo Martins Bueno Pro-Reitoria de Pesquisa e Pós-Graduação: Felipe Chiarello de Souza Pinto Diretora do Centro de Ciências Biológicas e da Saúde: Berenice Carpigiani Coordenador do Curso de Ciências Biológicas: Adriano Monteiro de Castro Endereço para correspondência Revista Vita Scientia Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie Rua da Consolação 930, São Paulo (SP) CEP 01302907 E-mail: [email protected] Revista Vita Scientia CONSELHO EDITORIAL Adriano Monteiro de Castro Camila Sachelli Ramos Fabiano Fonseca da Silva Leandro Tavares Azevedo Vieira Patrícia Fiorino Roberta Monterazzo Cysneiros Vera de Moura Azevedo Farah Carlos Eduardo Martins EDITORES Magno Botelho Castelo Branco Waldir Stefano CAPA Bruna Araujo PERIDIOCIDADE Publicação semestral IDIOMAS Artigos publicados em português ou inglês Universidade Presbiteriana Mackenzie, Revista Vita Scientia Rua da Consolaçãoo 930, Edíficio João Calvino, Mezanino Higienópolis, São Paulo (SP) CEP 01302-907 (11)2766-7364 Apresentação A revista Vita Scientia publica semestralmente textos das diferentes áreas da Biologia, escritos em por- tuguês ou inglês: Artigo resultados científicos originais.
    [Show full text]
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • Malcolm T. Sanders, Jérémie Bardin, Mohammed Benzaggagh & Fabrizio Cecca
    Early Toarcian (Jurassic) belemnites from northeastern Gondwana (South Riffian ridges, Morocco) Malcolm T. Sanders, Jérémie Bardin, Mohammed Benzaggagh & Fabrizio Cecca Paläontologische Zeitschrift Scientific Contributions to Palaeontology ISSN 0031-0220 Paläontol Z DOI 10.1007/s12542-013-0214-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Pala¨ontol Z DOI 10.1007/s12542-013-0214-0 RESEARCH PAPER Early Toarcian (Jurassic) belemnites from northeastern Gondwana (South Riffian ridges, Morocco) Malcolm T. Sanders • Je´re´mie Bardin • Mohammed Benzaggagh • Fabrizio Cecca Received: 3 May 2013 / Accepted: 30 October 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract A belemnite fauna collected in the lowermost post-date the earliest Toarcian Polymorphum—Tenuicost- Toarcian succession that crops out near Moulay Idriss atum Chronozone. However, records of Early Jurassic be- (northern Morocco) is studied in this article. This is the first lemnites are still too sparse to recognize the establishment palaeontological study of Early Toarcian belemnites from of provincialism and the timing of its onset.
    [Show full text]
  • Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A
    ISSN 0869-5938, Stratigraphy and Geological Correlation, 2008, Vol. 16, No. 3, pp. 267–294. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.G. Olfer’ev, V.N. Beniamovski, V.S. Vishnevskaya, A.V. Ivanov, L.F. Kopaevich, M.N. Ovechkina, E.M. Pervushov, V.B. Sel’tser, E.M. Tesakova, V.M. Kharitonov, E.A. Shcherbinina, 2008, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2008, Vol. 16, No. 3, pp. 47–74. Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A. G. Olfer’eva, V. N. Beniamovskib, V. S. Vishnevskayab, A. V. Ivanovc, L. F. Kopaevichd, M. N. Ovechkinaa, E. M. Pervushovc, V. B. Sel’tserc, E. M. Tesakovad, V. M. Kharitonovc, and E. A. Shcherbininab a Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia b Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia c Saratov State University, Astrakhanskaya ul., 83, Saratov, 410012 Russia d Moscow State University, Vorob’evy Gory, Moscow, 119991 Russia Received November 7, 2006; in final form, March 21, 2007 Abstract—Problems of geochronological correlation are considered for the formations established in the study region with due account for data on the Mezino-Lapshinovka, Lokh and Teplovka sections studied earlier on the northwest of the Saratov region. New paleontological data are used to define more precisely stratigraphic ranges of some stratigraphic subdivisions, to consider correlation between standard and local zones established for different groups of fossils, and to suggest how the Upper Cretaceous regional scale of the East European platform can be improved.
    [Show full text]
  • The Pro-Ostracum and Primordial Rostrum at Early Ontogeny of Lower Jurassic Belemnites from North-Western Germany
    Coleoid cephalopods through time (Warnke K., Keupp H., Boletzky S. v., eds) Berliner Paläobiol. Abh. 03 079-089 Berlin 2003 THE PRO-OSTRACUM AND PRIMORDIAL ROSTRUM AT EARLY ONTOGENY OF LOWER JURASSIC BELEMNITES FROM NORTH-WESTERN GERMANY L. A. Doguzhaeva1, H. Mutvei2 & W. Weitschat3 1Palaeontological Institute of the Russian Academy of Sciences 117867 Moscow, Profsoyuznaya St., 123, Russia, [email protected] 2 Swedish Museum of Natural History, Department of Palaeozoology, S-10405 Stockholm, Sweden, [email protected] 3 Geological-Palaeontological Institute and Museum University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany, [email protected] ABSTRACT The structure of pro-ostracum and primordial rostrum is presented at early ontogenic stages in Lower Jurassic belemnites temporarily assigned to ?Passaloteuthis from north-western Germany. For the first time the pro-ostracum was observed in the first camerae of the phragmocone. The presence of a pro-ostracum in early shell ontogeny supports Naef”s opinion (1922) that belemnites had an internal skeleton during their entire ontogeny, starting from the earliest post-hatching stages. This interpretation has been previously questioned by several writers. The outer and inner surfaces of the juvenile pro-ostracum were studied. The gross morphology of these surfaces is similar to that at adult ontogenetic stages. Median sections reveal that the pro-ostracum consists of three thin layers: an inner and an outer prismatic layer separated by a fine lamellar, predominantly organic layer. These layers extend from the dorsal side of the conotheca to the ventral side. The information obtained herein confirms the idea that the pro-ostracum represents a structure not present in the shell of ectocochleate cephalopods (Doguzhaeva, 1999, Doguzhaeva et al.
    [Show full text]
  • Primer Registro De Los Géneros Actinotheca Xiao & Zou, 1984 Y
    PRIMER REGISTRO DE LOS GÉNEROS ACTINOTHECA XIAO Y ZOU, 1984, Y CONOTHECA MISSARZHEVSKY, 1969, EN EL CÁMBRICO INFERIOR DE LA PENÍNSULA IBÉRICA DAVID C. FERNÁNDEZ-REMOLAR1 | CENTRO DE ASTROBIOLOGÍA, TORREJÓN DE ARDOZ RESUMEN En este trabajo se describe el primer registro en la península Ibérica de los géneros Actinotheca Xiao y Zou, 1984, incluido en la familia Cupithecidae Duan, 1984, y Conotheca Missarzhevsky, 1969 (in ROZANOV et al., 1969), perteneciente a la familia Circothecidae Syssoiev, 1962, de la Clase Hyolitha Marek, 1963, que se obtuvieron por el muestreo de los niveles fosfáticos de la Formación Pedroche del Ovetiense Inferior en la Sierra de Córdoba. La correlación de estos niveles con otras regiones con asociaciones de fósiles fosfáticos por medio de la cronoestrati- grafía de arqueociatos indica que los materiales con Actinotheca y Conotheca de Córdoba se corresponderían con el techo de la Zona de Retecoscinus zegebarti o el muro de la Zona de Carinacyathus pinus, que se sitúan desde la parte inferior hasta la media del Atdabaniense de la Plataforma de Siberia. Esta posición es correlacionable con la Asociación III en Yunnan (China) y la parte baja de la Zona de Abadiella huoi de los Flinders Ranges (Australia), las cuales presentan algunos taxones afines a los presentes en la Sierra de Córdoba. Además, la comparación de las asociaciones de fósiles de la Sierra de Córdoba con aquéllas de restos fos- fáticos con la misma edad en otras regiones cámbricas sugiere que la capacidad de dispersión de Conotheca era mucho mayor que la de Actinotheca, el cual apa- rece casi exclusivamente limitado a materiales del Cámbrico Inferior de áreas gondwánicas.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Reconstruction of Belemnite Evolution Using Formal Concept Analysis
    Reconstruction of Belemnite Evolution Using Formal Concept Analysis Radim Belohlavek,1,2∗ Martin Koˇst’´ak3†, and Petr Osicka2 1State University of New York at Binghamton, Binghamton, NY [email protected] 2Palacky University, Olomouc, Czech Republic 3Charles University, Prague, Czech Republic Abstract The paper presents results on using for- mal concept analysis in the problem of identification of taxa and reconstructing evolution from paleontological data. We present results of experiments performed with belemnites—a group of extinct marine cephalophods which seems particularly suit- Figure 1: Schematic sketch of belemnite body with able for such a purpose. We demonstrate position of the internal shell. Apical grey part repre- that the methods of formal concept analysis sents the rostrum. are capable of revealing taxa and relation- ships among them which are relevant from a paleobiological point of view. Coleoid cephalopods played an important role in the Cretaceous ecosystem in both the Northern and Southern hemispheres. Inside this diverse group, es- 1 Introduction and Problem Setting pecially belemnites were a common part of nectonic An important system-theoretic concept is that of a assemblages in marine shallower water ecosystems. taxonomy, i.e. a classification scheme arranged in They belong to coleoids with internal shell. The ex- a hierarchical structure. Biological taxonomies and ternal morphology of belemnites resembles partly Re- the methods of devising them are perhaps the best cent squids and their behavior—larger sets of spec- known and most widely studied. There exist sev- imens concentrated probably during spawning acts. eral approaches to biological classification, with phy- However, the internal shell characteristic is strongly logenetics (cladistics) and phenetics (numerical taxon- different in both, non related cephalopod groups.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Cretaceous Research 32 (2011) 623e645 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous climate oscillations in the southern palaeolatitudes: New stable isotope evidence from India and Madagascar Yuri D. Zakharov a,*, Yasunari Shigeta b, Raghavendramurthy Nagendra c, Peter P. Safronov a, Olga P. Smyshlyaeva a, Alexander M. Popov a, Tatiana A. Velivetskaya a, Tamara B. Afanasyeva a a Far Eastern Geological Institute of Russian Academy of Sciences (Far Eastern Branch), Stoletiya Prospect 159, Vladivostok 690022, Russia b National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan c Department of Geology, Anna University, Chennai 600025, India article info abstract Article history: Palaeotemperatures for the Cretaceous of India and Madagascar have been determined on the basis of Received 18 March 2010 oxygen isotopic analysis of well-preserved Albian belemnite rostra and Maastrichtian bivalve shells of Accepted in revised form 18 April 2011 from the Trichinopoly district, southern India, and Albian nautiloid and ammonoid cephalopods from the Available online 23 April 2011 Mahajang Province, Madagascar.
    [Show full text]