This Article Appeared in a Journal Published by Elsevier. the Attached
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Cretaceous Nautilid Beaks from Near-Shore/Shallow Water Deposits of the Bohemian Cretaceous Basin (Czech Republic)
Acta Geologica Polonica , Vol. 60 (2010), No. 3, pp. 417 –428 Late Cretaceous nautilid beaks from near-shore/shallow water deposits of the Bohemian Cretaceous Basin (Czech Republic) MaRtiN KošťáK 1, RadeK VodRážKa 1,2 , Jiří FRaNK 1, MaRtiN MazuCh 1 aNd JaRosLaV MaReK 1 1Institute of Geology and Palaeontology, Faculty of Science, Charles University in Prague, 128 43 Czech Republic. E-mail: [email protected] 2Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic aBstRaCt: Košťák, M., Vodrážka, R., Frank, J., Mazuch, M. and Marek, J. 2010. Late Cretaceous nautilid beaks from near- shore/shallow water deposits of the Bohemian Cretaceous Basin (Czech Republic). Acta Geologica Polonica , 60 (3), 417 –428 . Warszawa. More than 30 isolated nautilid jaws have been discovered in washed samples of late Cretaceous (turonian) near- shore/shallow water deposits located in the southern part of the Bohemian Cretaceous Basin (BCB). upper and lower jaws discovered in genetically-similar early turonian deposits are described in detail herein. the nautilid jaw appa - ratuses comprise rhyncholites (upper jaws) assigned to Nautilorhynchus simplex (Fritsch), and conchorhynchs (lower jaws) assigned to Conchorhynchus cretaceus Fritsch. some rhyncholites show signs of abrasion and corrosion, and may also form a substrate for sessile organisms. in one specimen, signs of acid digestion in the stomach of a preda - tor were recognized. N. simplex is synonymized with “ Rhyncholithus ” bohemicus (till), “ R.” curvatus ” (till), “ R”. rectus (till) and “ R” . curtus (till). the significant morphological variability observed in N. simplex is supported by biometric data. although the jaws were not found associated with body chambers, it is inferred from the extremely low nautilid biodiversity across the Cenomanian/turonian boundary interval in the BCB, and from the range and rel - ative abundance of the only early turonian nautilid taxon present, that the jaws are probably referable to the genus Eutrephoceras hyatt and specifically to the common and long-ranging species E. -
Late Cretaceous Nautilid Juveniles of Cymatoceras Reussi and Eutrephoceras Aff
SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE Řada B – Přírodní vědy • sv. 70 • 2014 • čís. 3–4 • s. 143–152 Series B – Historia Naturalis • vol. 70 • 2014 • no. 3–4 • pp. 143–152 LATE CRETACEOUS NAUTILID JUVENILES OF CYMATOCERAS REUSSI AND EUTREPHOCERAS AFF. SUBLAEVIGATUM – SCARCE FOSSILS UNDER RISK OF PYRITE DEGRADATION JIŘÍ FRANK JAN SKLENÁŘ BORIS EKRT National Museum, Department of Palaeontology, Václavské náměstí 68, 115 74 Praha 1, the Czech Republic; e-mails: [email protected]; [email protected]; [email protected] Frank, J., Sklenář, J. Ekrt, B. (2014): Late Cretaceous nautilid juveniles of Cymatoceras reussi and Eutrephoceras aff. sublaevigatum – scarce fossils under risk of pyrite degradation. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat., 70(3-4): 143–152, Praha. ISSN 1804-6479. Abstract. The syntype collection of “Nautilus reussi” has been subject to a detailed revision resulting in confirmation of at least provisional validity of the species represented by a single juvenile specimen. This species, restricted now to the Late Coniacian, is inserted into the genus Cymatoceras Hyatt, 1884. The rest of the collection differs from the original description and is left separately as Eutrephoceras aff. sublaevi- gatum, being considered juveniles of the species. The lithology, geographic and stratigraphic position of the type locality of Cymatoceras reussi (FRITSCH IN FRITSCH ET SCHLÖNBACH, 1872) as well as the other sites are discussed here. The valuable material is endangered due to pyrite degradation as relics of this unstable sulphide are still at present hidden in the secondary limonitic material. The degradation products cause volumetric expansion resulting in formation of crevices and loss of integrity. -
Trans-Tethyan Correlation
Acta Geologica Polonica, Vol. 67 (2017), No. 1, pp. 75–108 DOI: 10.1515/agp-2017-0005 Trans-Tethyan correlation of the Lower–Middle Cenomanian boundary interval; southern England (Southerham, near Lewes, Sussex) and Douar el Khiana, northeastern Algeria WILLIAM J. KENNEDY1 and ANDREW S. GALE2 1Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, and Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom. E-mail: [email protected] 2Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom. E-mail: [email protected] ABSTRACT: Kennedy, W.J. and Gale, A.S. 2017. Trans-Tethyan correlation of the Lower–Middle Cenomanian boundary interval; southern England (Southerham, near Lewes, Sussex) and Douar el Khiana, northeastern Algeria. Acta Geologica Polonica, 67 (1), 75–108. Warszawa. A 480 m section of marls with widely separated levels of nodular limestone in the Fahdene Formation north of Bou Khadra in Tebessa Province, northeastern Algeria, spans the Lower/Middle Cenomanian boundary. A total of 30 ammonite species are present, of which two: Forbesiceras reversum and Calycoceras (Newboldiceras) algeriense are new. The fauna allows recognition of the Northwest European upper Lower Cenomanian Mantelliceras dixoni Zone, the succeeding lower Middle Cenomanian Cunningtoniceras inerme Zone, the Acanthoceras rhotomagense Zone and its subzones of Turrilites costatus and Turrilites acutus. The sequence of index species occurs in the same order in both north-eastern Tunisia and the Southerham Grey Pit in Sussex (and indeed elsewhere in North- west Europe), indicating these to be robust assemblage zones and subzones that can be recognised on both the north and south sides of the Tethys. -
11. Nautiliden 11
62: 59 – 102 29 Dec 2016 © Senckenberg Gesellschaft für Naturforschung, 2016. 11. Nautiliden 11. Nautilids Markus Wilmsen Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Land- straße 159, 01109 Dresden, Deutschland; [email protected] Revision accepted 18 July 2016. Published online at www.senckenberg.de/geologica-saxonica on 29 December 2016. Kurzfassung Nautiliden sind in der sächsischen Kreide (Elbtal-Gruppe, untere Oberkreide) in der Pläner- und Mergelfazies nicht selten. Allerdings handelt es sich bei den Funden zumeist um mehr oder weniger stark verdrückte Steinkerne, die in der Regel schwierig zu bestimmen sind. Diese taphonomische Komplikation führte in Verbindung mit der oft unklaren systematischen Stellung kreidezeitlicher Nautiliden und dem Fehlen moderner Revisionsarbeiten zu einer beträchtlichen Unklarheit über die Taxonomie und Diversität der Gruppe in der sächsischen Kreide. Anhand der systematischen Revision der bedeutenden Sammlungsbestände der Sektion Paläozoologie im Museum für Mineralo- gie und Geologie der Senckenberg Naturhistorische Sammlungen Dresden konnten für den Zeitraum des späten Cenomaniums bis späten Turoniums acht Nautilidenarten in vier Gattungen nachgewiesen werden: Eutrephoceras sublaevigatum (d’Orbigny, 1850), E. sphaericum (Forbes, 1845), E. justum (Blanford, 1861), Angulithes fleuriausianus (d’Orbigny, 1840), Cymatoceras elegans (J. Sowerby, 1816), Delto- cymatoceras rugatum (Fritsch, 1872), D. galea (Fritsch, 1872) und D. leiotropis? (Schlüter, 1876). Vertreter der weitgehend skulpturlosen Gattungen Eutrephoceras und Angulithes kommen bevorzugt in der offenmarinen Pläner- und Mergelfazies vor, wohingegen die berippten Formen der Gattungen Cymatoceras und Deltocymatoceras auch in der küstennahen Sandfazies gefunden werden. Abstract Nautilids are not rare in the Saxonian Cretaceous (lower Upper Cretaceous Elbtal Group), especially in the Pläner and marl facies. -
Upper Jurassic (Lower Kimmeridgian-Olvido) Carbonate Strata from the La Popa Basin Diapirs, NE Mexico
BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA OLUMEN NÚM P V 63, . 2, 2011, . 313-321 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Upper Jurassic (Lower Kimmeridgian-Olvido) carbonate strata from the La Popa Basin diapirs, NE Mexico Francisco J. Vega1, *, Timothy F. Lawton2 1 Instituto de Geología, Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510 Coyoacán, México, D. F. 2 Institute of Tectonic Studies, New Mexico State University. Las Cruces, New Mexico 88003, United States of America * [email protected] Abstract Carbonate strata that occur as blocks encased in gypsum of three different salt diapirs in La Popa Basin contain a single invertebrate fauna indicating a Late Jurassic (Kimmeridgian) age for all sampled fossiliferous blocks. The most biostratigraphically significant species, present in all diapirs, is the gryphaeid oyster Nanogyra virgula. Other species identified in the blocks include the bivalves Astarte gracilicostula, Cercomya durangensis, Myophorella sp., Grammatodon sp. and the nautiloid Cymatoceras? sp. Geologic relations of the entire assemblage of carbonate blocks, including nodular gypsum interbedded with the fossiliferous beds, salt casts in micrite of the blocks, random structural position of blocks within the diapiric evaporite, absence of blocks younger than Early Kimmeridgian in the diapirs, and regional stratigraphic relations, suggest that the carbonate strata were originally interbedded with, or directly overlie, evaporite strata. This inference is corroborated by the presence of Nanogyra virgula (previously reported as Exogyra cf. E. susplicifera) in carbonate strata directly overlying massive gypsum at Potrero Minas Viejas, adjacent to La Popa Basin. -
New Mexico Geological Society Proceedings Volume Uranium In
New Mexico Geological Society Proceedings Volume Uranium in New Mexico: the Resource and the Legacy 2017 Annual Spring Meeting Macey Center New Mexico Tech Socorro, NM 1 NEW MEXICO GEOLOGICAL SOCIETY 2017 SPRING MEETING Friday, April 7, 2017 Macey Center New Mexico Tech Campus Socorro, New Mexico 87801 TABLE OF CONTENTS Schedule of Events ........................................................………3 Abstracts arranged alphabetically by first author..…………...12 NMGS EXECUTIVE COMMITTEE President: Matthew Heizler Vice President: Susan Lucas Kamat Treasurer: Dan Koning Secretary: Shannon Williams Past President: David Ennis 2017 SPRING MEETING COMMITTEE General Chair: Bonnie Frey Technical Program Chair: Virginia T. McLemore Registration Chair: Connie Apache ON-SITE REGISTRATION Connie Apache WEB SUPPORT Adam Read ORAL SESSION CHAIRS Kelsey McNamara, Stacy Timmons, Bruce Allen, David Ennis, Sara Chudnoff, Gary Axen 2 Registration Lower Lobby: 7:15 AM - 12:00 PM NMGS Business Meeting and Awards Ceremony Auditorium: 8:00 AM - 8:15 AM Welcoming Remarks: Nelia Dunbar, Director of New Mexico Bureau of Geology and Mineral Resources and State Geologist Auditorium: 8:15 AM - 8:25 AM Energy in New Mexico: Watersheds and hydrology: Auditorium: 8:30 AM - 9:50 AM Galena Room: 8:30 AM - 9:50 AM Chair: Kelsey McNamara Chair: Gary Axen THE UPPER MANCOS SHALE IN THE SAN JUAN TURNING TOYS INTO TOOLS: UNMANNED BASIN: THREE OIL AND GAS PLAYS, AIRCRAFTS FOR THE 21ST CENTURY GEOSCIENTIST CONVENTIONAL AND UNCONVENTIONAL — Matthew J. Zimmerer and Jake I. Ross — Ronald F Broadhead 8:30 AM - 8:50 AM 8:30 AM - 8:50 AM RELATIONSHIP BETWEEN TREE CANOPY COVER GEOTHERMAL POTENTIAL OF THE SOUTHERN SAN AND DISCHARGE OF UPPER GALLINAS LUIS BASIN, TAOS COUNTY, NEW MEXICO WATERSHED, NEW MEXICO, 1939 – 2015 — Shari Kelley and Jeff D. -
An Inventory of Belemnites Documented in Six Us National Parks in Alaska
Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian. -
GY 112L Earth History
GY 112L Earth History Lab 11 The Mesozoic: Part Two GY 112L Instructors: Douglas Haywick, James Connors, Mary Anne Connors Department of Earth Sciences, University of South Alabama Fifth Edition: August 2009© The Fine Print Contents of these lab exercises are the intellectual property of the authors, particularly Dr. Doug Haywick. Contents cannot be reproduced outside of the University of South Alabama “family” (faculty and students) without the permission of D. Haywick. Internet users can seek this permission by contacting Dr. Haywick through the web address provided below. This manual is constantly being updated and occasionally, even improved. Typos, grammatical errors and sections that make no sense whatsoever may, or may not, be intentional. If you find an error, show it to your instructor. You may get bonus points. More likely you will be told to go away The recipes that are included in some sections are intended to prove that you can eat anything as long as you serve it with plenty of ketchup. Neither Haywick, nor the Connors are responsible for any food poisoning that might occur if you actually try them. http:/www.southalabama.edu/geology/haywick 1 Week Eleven The Mesozoic, Part Two: Molluscs (Cephalopods), Echinoderms and Alabama Stratigraphy Background: Well the good news is that we are rapidly approaching the end of this course. The bad news is that we are rapidly approaching the end of this course and we still have several important animal groups to consider. When we last visited the molluscs two weeks ago, we only had time to consider the gastropods and bivalves. -
Robert Bowen Paleotemperature
ROBERT BOWEN PALEOTEMPERATURE ANALYSES OF MESOZOIC BELEMNOIDEA FROM AUSTRALIA AND NEW GUINEA Abstract: Paleotemperature analyses were carried ing from the Jurassic into the Cretaceous and are out on more than 60 Belemnoidea obtained from consistent with the extension of the Albian and Mesozoic strata in West and South Australia and Coniacian-Santonian climatic maxima, previously New Guinea. One set of data records mean rostral demonstrated in Europe, into the Australian area. temperatures, and another derived by analyzing The Cretaceous readings dispose of the idea of an successive increments of powdered carbonate from ice age in South Australia at that time. It appears the rostra shows the variations of temperature dur- that the Belemnoidea were eurythermal through ing ontogenies. The latter probably represent and most of their evolutionary history. The paleotem- in this event would confirm seasonal changes dur- perature results are in accord with a possibly large ing the Mesozoic. The former demonstrate a cool- migration of Australia during the Mesozoic. Since the preliminary work of Urey (1947; mum delta value obtained was — 0.45%o; 1948) showed that the abundance of the O18 assuming the mean ocean delta in the Jurassic isotope in calcium carbonate is related to the to be 0.00%0, this corresponds to a tempera- temperature of deposition of this compound, ture of 18.5°C. The maximum delta value was measurement by means of sensitive mass -2.72%0 (29.2°C). The average delta value spectrometers has been used to reconstruct past for the entire assemblage was — 1.73%o climates. This paper is concerned with data (24.4°C), and about two-thirds of the belem- derived from such analyses of a number of noids were within 3°C of this figure. -
Cephalopod Reproductive Strategies Derived from Embryonic Shell Size
Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12341 Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa Vladimir Laptikhovsky1,∗, Svetlana Nikolaeva2,3,4 and Mikhail Rogov5 1Fisheries Division, Cefas, Lowestoft, NR33 0HT, U.K. 2Department of Earth Sciences Natural History Museum, London, SW7 5BD, U.K. 3Laboratory of Molluscs Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia 4Laboratory of Stratigraphy of Oil and Gas Bearing Reservoirs Kazan Federal University, Kazan, 420000, Russia 5Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow, 119017, Russia ABSTRACT An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small-egged taxa, as is also seen in simultaneously evolving fish taxa. Key words: embryonic shell, initial chamber, hatchling, egg size, Cephalopoda, Ammonoidea, reproductive strategy, Nautilida, Coleoidea. -
Doguzhaeva Etal 2014 Embryo
Embryonic shell structure of Early–Middle Jurassic belemnites, and its significance for belemnite expansion and diversification in the Jurassic LARISA A. DOGUZHAEVA, ROBERT WEIS, DOMINIQUE DELSATE AND NINO MARIOTTI Doguzhaeva, L.A., Weis, R., Delsate, D. & Mariotti N. 2014: Embryonic shell structure of Early–Middle Jurassic belemnites, and its significance for belemnite expansion and diversification in the Jurassic. Lethaia, Vol. 47, pp. 49–65. Early Jurassic belemnites are of particular interest to the study of the evolution of skel- etal morphology in Lower Carboniferous to the uppermost Cretaceous belemnoids, because they signal the beginning of a global Jurassic–Cretaceous expansion and diver- sification of belemnitids. We investigated potentially relevant, to this evolutionary pat- tern, shell features of Sinemurian–Bajocian Nannobelus, Parapassaloteuthis, Holcobelus and Pachybelemnopsis from the Paris Basin. Our analysis of morphological, ultrastruc- tural and chemical traits of the earliest ontogenetic stages of the shell suggests that modified embryonic shell structure of Early–Middle Jurassic belemnites was a factor in their expansion and colonization of the pelagic zone and resulted in remarkable diversification of belemnites. Innovative traits of the embryonic shell of Sinemurian– Bajocian belemnites include: (1) an inorganic–organic primordial rostrum encapsulating the protoconch and the phragmocone, its non-biomineralized compo- nent, possibly chitin, is herein detected for the first time; (2) an organic rich closing membrane which was under formation. It was yet perforated and possessed a foramen; and (3) an organic rich pro-ostracum earlier documented in an embryonic shell of Pliensbachian Passaloteuthis. The inorganic–organic primordial rostrum tightly coat- ing the protoconch and phragmocone supposedly enhanced protection, without increase in shell weight, of the Early Jurassic belemnites against explosion in deep- water environment. -
Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale).