Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt, 1900_____ 55 Grantsville formation (Middle Triassic)__________ 10 Order Nautiloidea_____-_______________- 56 Luning formation (Upper Triassic)______________ 14 Genus Germanonautilus Mojsisovics, Gabbs and Sunrise formations undifferentiated (Up­ 1902_ _____________________ 56 Genus PUoioceras Hyatt, 1883_______ 57 per Triassic and Lower Jurassic)______________ 25 Genus Clydonautilus Mojsisovics, 1882_ 58 Dunlap formation (Middle Jurassic)____________ 29 Class Pelecypoda__________________________ 59 Intrusive rocks_____________________________________ 31 Order Prionodesmacea.________________ 59 Structure of the pre-Tertiary rocks__________________ 32 Genus Myophoria Bronn, 1834________ 59 Genus Septocardia Hall and Whitfield, 1877. 59 Paleontology.______________________________________ 36 References cited-________-----_____-____--__-_-__-_. 61 General features-____--__________--_---___---__- 36 Index _____________________________________________ 65 ILLUSTRATIONS [Plates 1-9 follow index] Page PLATE 1. Mojsisovicsites and Klamathites. FIGURE 1. Index map showing the location of the Union 2-4. Tropites. district, Nevada______________________ 5. Tropites, T. (AnatropiteJ), and Tropiceltites!. 2. Age relationships suggested for the upper 6, 7. Guembelites. Karnian and lower Norian faunal zones and 8. Discophyllites, Clydonautilus, and Germanonau­ rock unitS-_--_--------------_-_------- 22 tilus. 3. Lithologic correlation of the Luning forma­ 9. Septocardia!, Myophoria, and Phloioceras. tion between the Union district, north cen­ 10. Geologic map and sections of the pre-Tertiary tral Pilot Mountains, and southwest Gabbs rocks of the Union district, Nye County, Valley Range._________________________ 24 Nev_-_-_-___-___-______--_-_-__-__ In pocket 11. Composite columnar section.___________ In pocket m PRE-TERTIARY STRATIGRAPHY AND UPPER TRIASSIC PALEONTOLOGY OF THE UNION DISTRICT, SHOSHONE MOUNTAINS, NEVADA By N. J. SlLBEKLING ABSTRACT Gabbs and Sunrise formations in the Union district agree in The pre-Tertiary rocks of the Union district are exposed in lithology and age with the type sections of these formations in an elongate belt extending south from the town of lone for the Gabbs Valley Range, the Gabbs and Sunrise formations are about 12 miles along the west flank of the Shoshone Mountains not differentiated because the minor lithologic change that marks in the northwest part of Nye County, Nev. their mutual boundary in the type area cannot be recognized in Within this area lies an exposure of a nearly complete the Union district. The exposed section of the undifferentiated sequence of stratigraphic units ranging in age from late Paleo­ Gabbs and Sunrise formations is 2,700 feet thick in the Union zoic to Middle Jurassic. At the base of this sequence is the district and is composed largely of argillaceous silty limestone predominantly volcanic Pablo formation of Permian (?) age in and calcareous siltstone ranging from latest Triassic (Rhaetian) which three local members are recognized. The lowest mem­ to at least late Early Jurassic (Toarcian) age. Several hundred ber of the Pablo formation exposed in the Union district is com­ feet of strata assigned to the Dunlap formation conformably posed of coarse- and fine-grained sedimentary rocks interstrati- overlie the undifferentiated Gabbs and Sunrise formations. The fled with andesitic volcanic rocks. Gradationally overlying this Dunlap formation in the Union district consists mainly of non- thick clastic member is a relatively thin limestone member calcareous, possibly nonmarine, sandstone including two rela­ which is in turn overlain by a thick greenstone member com­ tively thin dolomitic carbonate units near the top of the exposed posed of altered andesitic flows and volcanic breccia. section. The Grantsville formation, with little, if any, angular dis­ A thick unit of quartzite and an equally thick unit of dolomite, cordance, overlies the Pablo. It is about 700 feet thick and is both of which are tentatively assigned to the Cambrian, occupy composed of a lower clastic member, of siliceous conglomerate a small area east of lone. The stratigraphic and structural rela­ grading upward into sandstone and argillite, and an upper tionship of these units to the upper Paleozoic and lower Mesozoic limestone member. The marine invertebrate fauna of the lime­ section is not known. stone member of the Grantsville is late Middle Triassic (Ladin- The generally eastward-dipping pre-Tertiary rocks in the ian) in age, represents a biofacies of the Middle Triassic that is northern two-thirds of the area are considered part of the upright unique to North America, and is closely related to the fauna of limb of a large-scale overturned anticline, the axis of which the German Muschelkalk. strikes and plunges southeast. The complexly folded and thrust- The overlying Luning formation of Late Triassic age rests faulted Mesozoic rocks in and south of Grantsville Canyon repre­ with erosional disconformity upon the Grantsville formation. sent the axial region and overturned limb of this fold. Pour informal members are recognized within the Luning. In Subsequent to folding and thrust faulting, an intricate pattern ascending order they are the clastic member, composed of of normal faults developed. Most of the normal faulting pre­ siliceous conglomerate, sandstone, and argillite with a thickness ceded the deposition of Tertiary volcanic rocks, but some of the of about 600 feet; the shaly limestone member, also about 600 faults displace both pre-Tertiary and Cenozoic rocks. feet thick; the calcareous shale member, about 550 feet thick; The species of Late Triassic marine mollusks selected for and the carbonate member, composed of massive limestone and description are those significant in recognizing the Karnian- dolomite with an exposed thickness of at least 2,000 feet. Norian stage boundary. A total of 21 species, including 10 new Three local faunal zones, characterized mainly by cephalopods, species, are described and are assigned to the following genera: occur in the shaly limestone and calcareous shale mem­ of ammonites, Klamathites, Mojsisovicsites, Tropites, T. (Ana- bers of the Luning formation. The stratigraphically lowest of tropites), Tropiceltites?, Guembelites, and Discophyttites; of these zones is tentatively correlated with the upper part of the nautiloids, Clydonautilus, Germanonautilus, and Phloioceras; Tropites auWullatus zone. Based on this correlation, the and of pelecypods, Myophoria and Septocardial. Karnian-Norian stage boundary is provisionally placed between the middle zone, characterized by new species of the am­ INTRODUCTION monite genus Tropites, and the uppermost zone, the fauna of Kocks of late Paleozoic and early Mesozoic age are which is dominated by the lower Norian ammonite Guembelites. present in many isolated localities in northwestern The upper part of the Luning formation and strata equivalent to the lower part of the Gabbs formation of the Gabbs Valley Nevada, geographically separated from one another by Range are not exposed in the Union district. By analogy with Cenozoic volcanic and sedimentary rocks. The geo­ the section in the Gabbs Valley Range, however, the contact logic relationships between these areas of outcrop are between the Luning formation and the undifferentiated Gabbs and Sunrise formations in the Union district is presumably con­ generally obscured by the absence of continuity be­ formable. Although the rocks assigned to the undifferentiated tween them. Consequently, the regional stratigraphic PRE-TERTIARY STRATIGRAPHY, UPPER TRIASSIC PALEONTOLOGY, SHOSHONE MOUNTAINS, NEV. history of the pre-Tertiary rocks exposed in northwest­ of Austin via Nevada State Highway 21, about 70 miles ern Nevada must be obtained by gradually fitting to­ north of Tonopah by way of the Cloverdale Eanch, gether the information gained by the study of each and about 40 miles east of Gabbs by way of Lodi Valley isolated area of outcrop. In
Recommended publications
  • Waterloo Bay, Larne, Northern Ireland
    Michael J. Simms Andrew J. Jeram, Waterloo Bay, Larne, Northern Ireland: Department of Geology, Mullaghdubh House, Ulster Museum, 27 Gobbins Path, Botanic Gardens, Islandmagee, The ammonites of the earliest Jurassic Belfast BT9 5AB, Co. Antrim BT40 3SP, Northern Ireland. Northern Ireland. [email protected] [email protected] Ammonites are a conspicuous element of the earliest 24 34 Jurassic macrofauna at this site. Most taxa are represented by at least some 3-dimensional material, preserved either in pyrite or early diagenetic carbonate 33g concretions. 23 33f Caloceras sp. Selected specimens are illustrated here at actual size, unless indicated otherwise. 33e top Bed 27 22 The strata in the picture to the left encompass the top of Psiloceras cf. plicatulum Caloceras johnstoni top Bed 26 the ‘Pre-planorbis Beds’, the erugatum Horizon (Bed 24) and the stratigraphic range of Neophyllites (beds 25 33d to 27). 21 top Bed 25 The site has significant potential for designation as a Bed 24 nodules Global Stratotype Section and Point for the base of the 33c Jurassic System. In addition, this part of the foreshore 20 top Bed 23 would make an ideal stratotype location for the erugatum, imitans and antecedens biohorizons, for which surface stratotypes have yet to be designated. Psiloceras plicatulum 19 33b Psiloceras plicatulum A diverse macro- and microfauna Specimen from lower 33a part of Bed 25 (ammonites, bivalves, gastropods, 18 Psiloceras cf. sampsoni (enlarged x3) This highly evolute example is the echinoids, crinoids, trace-fossils and 32 stratigraphically highest example of occasional vertebrates) is present in the sampsoni recovered from the site.
    [Show full text]
  • New Data on the Jaw Apparatus of Fossil Cephalopods
    New dataon the jaw apparatus of fossil cephalopods YURI D. ZAKHAROV AND TAMAZ A. LOMINADZE \ Zakharov, Yuri D. & Lominadze, Tamaz A. 19830115: New data on the jaw apparatus of fossil LETHAIA cephalopods. Lethaia, Vol. 16, pp. 67-78. Oslo. ISSN 0024-1164. A newly discovered fossil cephalopod jaw apparatus that may belong to Permian representatives of the Endocochlia is described. Permorhynchus dentatus n. gen. n. sp. is established on the basis of this ~ apparatus. The asymmetry of jaws in the Ectocochlia may be connected with the double function of the ventral jaw apparatus, and the well-developed, relatively large frontal plate of the ventral jaw should be regarded as a feature common to all representatives of ectocochlian cephalopods evolved from early Palaeozoic stock. Distinct features seen in the jaw apparatus of Upper Pcrmian cndocochlians include the pronounced beak form of both jaws and the presence of oblong wings on the ventral mandible. o Cephalopoda. jaw. operculum. aptychus, anaptychus, Permorhynchus n.gen.• evolution. Permian. Yuri D. Zakharov llOpllll Ilscumpueeu« Gaxapoe], Institute of Biology and Pedology, Far-Eastern Scientific Centre. USSR Academy of Science, Vladivostok 690022, USSR (EUOJl020-n9~BnlHbliiuucmu­ my m Ilaot.neeocmo-cnoro Ha."~H020 uenmpav Axaoeuuu 'HayK CCCP, Bnaoueocmo« 690022, CCCP); Tamaz A. Lominadze ITa.'W3 Apl.j1L10BUl.j Jlouunaoee), Institute of Palaeobiology of Georgian SSR Academy of Science. Tbilisi 380004. USSR (Hncmumvm naJle06UOJl02UU Atcaoeuuu naytc TpY3UHUjKOii CCP. T6'LJUCU 380004. CCP; 19th August. 1980 (revised 1982 06 28). The jaw apparatus of Recent cephalopods is re­ Turek 1978, Fig. 7, but not the reconstruction in presented by two jaw elements (Fig.
    [Show full text]
  • Phylloceratina (Ammonoidea) Del Pliensbachiano Italiano
    00 o Riv. Ital. Paleont. > n . 2 pp. 193-250 tav. 19-20 Milano 1974 PHYLLOCERATINA (AMMONOIDEA) DEL PLIENSBACHIANO ITALIANO N e r in a F a n t i n i S e s t i n i Abstract. This paper concerns thè conclusive researchs on Pliensbachian Phyllo- ceratina from Italy, among which thè genera Geyeroceras Hyatt, 1900 and Partschiceras Fucini, 1923 were already investigated (Fantini Sestini, 1969, 1971). The fossils were collected in stratigraphic sections from Selva di Zandobbio and Alpe Turati in Lombar- dy and from thè M. Nerone area in thè centrai Apennines. They consist of internai moulds and complete shells. The family Juraphyllitidae is present with genera: Jura- phyllites Miiller, Meneghiniceras Hyatt, Harpophylloceras Spath e Galaticeras Spath. Only four genera of Pliensbachian age can be attributed to thè fam. Phylloceratidae; they are as follows: Phylloceras Suess, 1865 with thè two subgenera Phylloceras s.s. e Zetoceras Kovacs, 1939. Test with ornaments visible at low magnification; internai mould smooth, section elliptical, ovai or sublanceolate; E/L and L/U with or without phylloids (minor subdivisions of folioles). Partschiceras Fucini, 1923 ( = Procliviceras Fucini, 1923; Phyllopachyceras Spath, 1925). Test with well distinct riblets, sometimes with ribs and periumbilical ridges; inter­ nai mould with weak constrictions in thè inner whorls and with very weakly outlined ornaments on thè venter; E/L with phylloids; Hantkeniceras Kovacs, 1939 (= Calaiceras Kovacs, 1939). Test smooth; internai mould smooth with rare weak nearly straight constrictions; L/U with 2/3 folioles jointed at their base. Calliphylloceras Spath, 1927. Test with very well developed riblets along with strong rounded ribs; internai mould smooth with 4 to 8 deep arcuate constrictions; L/U with 2 folioles jointed at their base.
    [Show full text]
  • Hydrographic Basins Information
    A p p e n d i x A - B a s i n 54 Crescent Valley Page 1 of 6 Basin 54 - Crescent Valley Crescent Valley is a semi-closed basin that is bounded on the west by the Shoshone Range, on the east by the Cortez Mountains, on the south by the Toiyabe Range, and on the north by the Dry Hills. The drainage basin is about 45 miles long, 20 miles wide, and includes an area of approximately 750 square miles. Water enters the basin primarily as precipitation and is discharged primarily through evaporation and transpiration. Relatively small quantities of water enter the basin as surface flow and ground water underflow from the adjacent Carico Lake Valley at Rocky Pass, where Cooks Creek enters the southwestern end of Crescent Valley. Ground water generally flows northeasterly along the axis of the basin. The natural flow of ground water from Crescent Valley discharges into the Humboldt River between Rose Ranch and Beowawe. It is estimated that the average annual net discharge rate is approximately 700 to 750 acre-feet annually. Many of the streams which drain snowmelt of rainfall from the mountains surrounding Crescent Valley do not reach the dry lake beds on the Valley floor: instead, they branch into smaller channels that eventually run dry. Runoff from Crescent Valley does not reach Humboldt River with the exception of Coyote Creek, an intermittent stream that flows north from the Malpais to the Humboldt River and several small ephemeral streams that flow north from the Dry Hills. Surface flow in the Carico Lake Valley coalesces into Cooks Creek, which enters Crescent Valley through Rocky Pass.
    [Show full text]
  • North American Coral Recovery After the End-Triassic Mass Extinction, New York Canyon, Nevada, USA
    North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA Montana S. Hodges* and George D. Stanley Jr., University of INTRODUCTION Montana Paleontology Center, 32 Campus Drive, Missoula, Mass extinction events punctuate the evolution of marine envi- Montana 59812, USA ronments, and recovery biotas paved the way for major biotic changes. Understanding the responses of marine organisms in the ABSTRACT post-extinction recovery phase is paramount to gaining insight A Triassic-Jurassic (T/J) mass extinction boundary is well repre- into the dynamics of these changes, many of which brought sented stratigraphically in west-central Nevada, USA, near New sweeping biotic reorganizations. One of the five biggest mass York Canyon, where the Gabbs and Sunrise Formations contain a extinctions was that of the end-Triassic, which was quickly continuous depositional section from the Luning Embayment. followed by phases of recovery in the Early Jurassic. The earliest The well-exposed marine sediments at the T/J section have been Jurassic witnessed the loss of conodonts, severe reductions in extensively studied and reveal a sedimentological and paleonto- ammonoids, and reductions in brachiopods, bivalves, gastropods, logical record of intense environmental change and biotic turn- and foraminifers. Reef ecosystems nearly collapsed with a reduc- over, which has been compared globally. Unlike the former Tethys tion in deposition of CaCO3. Extensive volcanism in the Central region, Early Jurassic scleractinian corals surviving the end- Atlantic Magmatic Province and release of gas hydrates and other Triassic mass extinction are not well-represented in the Americas. greenhouse gases escalated CO2 and led to ocean acidification of Here we illustrate corals of Early Sinemurian age from Nevada the end-Triassic (Hautmann et al., 2008).
    [Show full text]
  • Barremian Ammonoids from Serre De Bleyton (Drôme, SE France)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2010 Band/Volume: 112A Autor(en)/Author(s): Lukeneder Alexander Artikel/Article: Barremian ammonoids from Serre de Bleyton (Drôme, SE France). 613- 626 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien, Serie A 112 613-626 Wien, Juni 2010 Barremian ammonoids from Serre de Bleyton (Drôme, SE France) By Alexander LUKENEDER (With 4 figures) Manuscript submitted on September 18th 2009, the revised manuscript on December 7th 2009 Abstract Barremian ammonoids were collected at the Serre de Bleyton locality in the Department Drôme, SE France. The cephalopod fauna from the “coulées boueuses”, correlated with other macrofossil groups (belemnitoids, brachiopods, crinoids, echinoids etc.) and microfossil data (foraminifera) from the turbiditic unit, indicates Barremian age. The deposition of the allodapic limestones and marls in this interval occurred during depositionally unstable conditions which led to the forma- tion of turbiditic layers. The ammonoid fauna comprises 8 different genera, each apparently represented by a single spe- cies. The assemblage at the Serre de Bleyton section is dominated by ammonoids of the Melchior- ites-type. Ammonitina are the most frequent component (Melchiorites 52%; Holcodiscus 8%), followed by the Phylloceratina (Phyllopachyceras 3% and Hypophylloceras 2%), the Lytoceratina (Protetragonites 15%), and the Ancyloceratina (Anahamulina 10%, Karsteniceras 8% and Mac- roscaphites 2%). The ammonoid fauna consists solely of Mediterranean elements. Keywords: Cephalopoda, Ammonoidea, Barremian, Serre de Bleyton, SE France. Zusammenfassung Ammoniten aus dem Barremium wurden an der Lokalität Serre de Bleyton im Distrikt Drôme, Südost-Frankreich, aufgesammelt.
    [Show full text]
  • ' Or ''Long'' Rhaetian? Astronomical Calibration of Austrian Key Sections
    ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, Annachiara Bartolini, Martin Maslo To cite this version: Bruno Galbrun, Slah Boulila, Leopold Krystyn, Sylvain Richoz, Silvia Gardin, et al.. ”Short” or ”long” Rhaetian ? Astronomical calibration of Austrian key sections. Global and Planetary Change, Elsevier, 2020, 192, pp.103253. 10.1016/j.gloplacha.2020.103253. hal-02884087 HAL Id: hal-02884087 https://hal.archives-ouvertes.fr/hal-02884087 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Galbrun B., Boulila S., Krystyn L., Richoz S., Gardin S., Bartolini A., Maslo M. (2020). « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections. Global Planetary Change. Vol. 192C. https://doi.org/10.1016/j.gloplacha.2020.103253 « Short » or « long » Rhaetian ? Astronomical calibration of Austrian key sections Bruno Galbruna,*, Slah Boulilaa, Leopold Krystynb, Sylvain Richozc,d, Silvia Gardine, Annachiara
    [Show full text]
  • DOE/ET /27010-2 MC Coy AREA, NEVADA Geothermal Reservoir
    t -- DOE/ET /27010-2 MC COy AREA, NEVADA Geothermal Reservo ir Assessment Case History Northern Basin and Range ANNUAL REPORT January 1980 - 31 December 1980 H. D. PILKINGTON August 1981 WORK PERFORMED UNDER CONTRACT DE AC 08-79 ET 27010 At-1AX EXPLORATION, INC. 7100 West 44th Ave. Wheat Rid~~t CO 80033 r TABLE OF CONTENTS Page ABSTRACT INTRODUCTION 2 EXPLORATION HISTORY 4 Geological Studies 4 Geochemical Studies . 6 Geophys i ca 1 Studies. 10 Exploration Drilling 13 \. TAB LE OF ILLUSTRATIONS Page Figure 1. Location map for the McCoy geothermal prospect 3 Figure 2. Geologic map of the McCoy geothermal prospect, Nevada (after Adams, Moore and Struhsacker, 1980) 5 Figure 3 Geologic cross-sections through well 14-7 (top) and well 66-8 (bottom) after Pilkington, 1980. 7 Figure 4 Location map of drill holes used on geochemical study of drill cuttings. 9 Figure 5 Contour map of mercury in drill cuttings from 120-160 foot interval at McCoy (Pilkington, 1980) . 11 Figure 6 Gravity profile with automatic interpretation for density (top) compared wi th geologic cross-section (bottom) 12 Figure 7 Resistivity at 5km depth from 10 magnetotelluric inve·rsion (Te mode) and location of survey lines 14 and stations Figure 8 MT section (Te mode, 10 inversion) along line C-C' compared with geologic section (after Lange, 1980) . 15 Figure 9 Survey location map of the McCoy prospect, after Wilt etal, 1980 . 16 Figure 10 MT section (Te mode 10 inversion) along line A-A" compared with EM data, after Lange, 1980 17 Page Table I Chemical analyses of McCoy Mine well and Well 66-8 waters 8 ABSTRACT The McCoy geothermal prospect is located at the junction of the Augusta Mountains, Clan Alpine Mountains and the New Pass Range.
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles.
    [Show full text]
  • Geology and Paleontology of the Southwest Quarter of the Big Bend Quadrangle Shasta County, California
    GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By ALBERT F. SANBORN Geologist, Standard Oil Company of California Salt Lake City, Utah Special Report 63 CALIFORNIA DIVISION OF MINES FERRY BUILDING, SAN FRANCISCO, 1960 STATE OF CALIFORNIA EDMUND G. BROWN, Governor DEPARTMENT OF NATURAL RESOURCES eWITT NELSON, Director DIVISION OF MINES IAN CAMPBELL, Chief Special Report 63 Price 75$ , GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By Albert F. Sandorn * OUTLINE OF REPORT ABSTRACT Abstract 3 The area covered by this report is the southwest quarter of the Big Bend quadrangle in the vicinity of lntroductu.il 3 the town of Big Bendj Shasta County) California. General stratigraphy 5 This region, which has been geologically unknown, contains sedimentary volcanic strata of Triassic system _ 5 and Mesozoic an( Pit formation (Middle and Upper Triassic) 5 * Cenozoic ages. Hosselkus limestone (Upper Triassic) 7 The Mesozoic deposits are composed of pyroclastic Brock shale (Upper Triassic) 7 rocks, lava flows, tuffaceous sandstone, argillite, and Modin formation (Upper Triassic) 8 limestone. The Mesozoic formations, from the oldest Hawkins Creek member T0 the youngest, are the Pit formation of Middle and I Devils Canyon member 10 jate Triassic age ; the Hosselkus limestone, the Brock Kosk member ll shale, and the Modin formation of Late Triassic age; . the Arvison formation of Early Jurassic age ; and the s sy em -—- -- - --- Bagley andesite and Potem formation of Early and Arvison formation (Lower Jurassic) 11 „•,,, T . ,-.., ., e ,. , ' „ , . .. .. __ . , T 1( Middle Jurassic age. Or the seven formations mapped,rr Nature of the contact of the Triassic and Jurassic svstems 14 ,.
    [Show full text]
  • Quantifying Morphological Variability Through the Latest Ontogeny Of
    QUANTIFYING MORPHOLOGICAL VARIABILITY THROUGH THE LATEST ONTOGENY OF HOPLOSCAPHITES (JELETZKYTES) FROM THE LATE CRETACEOUS WESTERN INTERIOR USING GEOGRAPHIC INFORMATION SYSTEMS AS A MORPHOMETRIC TOOL Mathew J. Knauss A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2013 Committee: Margaret M. Yacobucci, Advisor Enrique Gomezdelcampo Sheila Roberts © 2013 Mathew J. Knauss All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor Ammonoids are known for their intraspecific and interspecific morphological variation through ontogeny, particularly in shell shape and ornamentation. Many shell features covary and individual shell elements (e.g., tubercles, ribs, etc.) are difficult to homologize, which make qualitative descriptions and widely-used morphometric tools inappropriate for quantifying these complex morphologies. However, spatial analyses such as those applied in geographic information systems (GIS) allow for quantification and visualization of global shell form. Here, I present a GIS-based methodology in which the variability of complex shell features is assessed in order to evaluate evolutionary patterns in a Cretaceous ammonoid clade. I applied GIS-based techniques to sister species from the Late Cretaceous Western Interior Seaway: the ancestral and more variable Hoploscaphites spedeni, and descendant and less variable H. nebrascensis. I created digital models exhibiting the shells’ lateral surfaces using photogrammetric software and imported the reconstructions into a GIS environment. I used the number of discrete aspect patches and the 3D to 2D area ratios of the lateral surface as terrain roughness indices. These 3D analyses exposed the overlapping morphological ranges of H. spedeni and H.
    [Show full text]