Kostromateuthis Roemeri Gen

Total Page:16

File Type:pdf, Size:1020Kb

Kostromateuthis Roemeri Gen A rare coleoid mollusc from the Upper Jurassic of Central Russia LARISA A. DOGUZHAEVA Doguzhaeva, L.A. 2000. Arare coleoid mollusc from the Upper Jurassic of Central Rus- sia. -Acta Palaeontologica Polonica 45,4,389-406. , The shell of the coleoid cephalopod mollusc Kostromateuthis roemeri gen. et sp. n. from the lower Kirnmeridgian of Central Russia consists of the slowly expanding orthoconic phragmocone and aragonitic sheath with a rugged surface, a weakly developed post- alveolar part and a long, strong, probably dorsal groove. The sheath lacks concentric struc- ture common for belemnoid rostra. It is formedby spherulites consisting of the needle-like crystallites, and is characterized by strong porosity and high content of originally organic matter. Each spherulite has a porous central part, a solid periphery and an organic cover. Tubular structures with a wall formed by the needlelike crystallites are present in the sheath. For comparison the shell ultrastructure in Recent Spirula and Sepia, as well as in the Eocene Belemnosis were studied with SEM. Based on gross morphology and sheath ultrastructure K. memeri is tentatively assigned to Spirulida and a monotypic family Kostromateuthidae nov. is erected for it. The Mesozoic evolution of spirulids is discussed. Key words : Cephalopoda, Coleoidea, Spirulida, shell ultrastructure, Upper Jurassic, Central Russia. krisa A. Doguzhaeva [[email protected]], Paleontological Institute of the Russian Acad- emy of Sciences, Profsoyuznaya 123, 117647 Moscow, Russia. Introduction The mainly soft-bodied coleoids (with the exception of the rostrum-bearing belem- noids) are not well-represented in the fossil record of extinct cephalopods that results in scanty knowledge of the evolutionary history of Recent coleoids and the rudimen- tary understanding of higher-level phylogenetic relationships of them (Bonnaud et al. 1997;Carlini & Graves 1999). Modern corntnonly accepted classification (Sweeney & Roper 1998) splits the coleoids into two superorders, the Decabranchia including the orders Spirulida, Sepiida, Sepiolida and Teuthida, and the Octobranchia including the orders Octopodida and Vampyromorphida. Because of its shell a single extant spirulid Spirula spirula has great potentialities for the evolutionary morphology of cephalopods. Voss (1977) considered this form as a member of the order Sepioidea, but later it was demonstrated with the aid of the mo- Acta Palaeontol. Pol. 45,4,389-406. 390 Jurassic coleoid mollusc: DOGUZHAEVA lecular phylogenetic analysis that Sp. spirula is linked neither to sepioids nor to teuthoids (Bonnaud et al. 1997; Carlini & Graves 1999). The evolution of spimlids is obscure, thus any shell found which might have belonged to this branch of coleoid cephalopods is of exceptional interest. The Jurassic record of spirulids included a single Oxfordian form Plagioteuthis moscoviensis Roemer, 1890 (see Biilow-Trumrner 1920). It is known by a sole ros- trum-llke structure with a deep alveolus and had no indications of conotheca, septa or siphuncle. Because of this the taxonomic assignment of the genus remains doubtful (Doyle et al. 1994). The present paper deals with a better preserved shell belonging to a previously unknown Early Kimmeridgian phragmocone-bearing orthoconic coleoid with a sheath-like structure instead of a real rostrum. It is described herein as Kostro- mateuthis roemeri gen. et sp. n. The sheath ultrastructure of K. roemeri studied with SEM yielded much new information concerning the ultrastructure of the coleoid shell that is useful for the comparison of K. roemeri, spimlids, sepiids, and belemnoids. Materials and methods The description of Kostromateuthis roemeri is based on a shell from the lower Kimmeridgian clay beds in the basin of the River Unzha, on its right bank near village Popovo, Kostroma Region, Central Russia. It was found together with several ammo- nites by a private collector, Mr. A.V. Stupachenko in 1998. V.V. Mitta (personal com- munication) assigned the ammonites to the following species: Amoeboceras (Amoe- bites) ex. gr. kitchini, A. (A.) pulchrum, Prorasenia aff. stephanoides, and Rasenio- ides? sp. juv. The ammonoid assemblage indicates the standard Cymodoce Zone of the lower Kimmeridgian (Hantzpergue et al. 1998). The specimen was studied with the scanning electron microscope (SEM) in the PaleontologicalInstitute, Moscow. The micrographs were taken from the side showing the longitudinal groove and of the conical apical portion of the sheath; the latter being studied in fractured cross surface and from its outer surface. For comparison, the ultrastructure of the sheath of Recent Spirula from Cuba, Sepia from Australia, and Belemnosis from the Eocene of Turkey was studied with the SEM. The shells were etched with 5 per cent hydrochloric acid for 3-5 seconds. The studied material is deposited in the Paleontological Institute of the Russian Academy of Sciences, Moscow, abbreviated as PIN. Description Class Cephalopoda Cuvier, 1794 Subclass Coleoidea Bather, 1888 Superorder Decabranchia Boettger, 1952 ?Order Spirulida Pompeckj, 1912 Family Kostromateuthidae nov. Type genus by monotypy: Kostromateuthis nov. ACTA PALAEONTOLOGICA POLONICA (45) (4) 391 Diagnosis. -Small (approximately 24cm in length) aragonitic orthocones, slowly expanding with bilaterally symmetrical sheath instead of rostrum. Sheath posteriorly conical; postalveolar portion absent or short; surface uneven; consisting of spherulites with much organic matter; thin (presum- ably) ventrally, thickened dorsally with the longitudinal central narrow part, which is thicker than elsewhere, bearing a groove, dorsally. The groove long, deep, bordered by two reinforced ridges with rows of tubercles along their crests and few smaller ridges on its floor. Phragmocone with simple camerae and straight septa; mural parts of septa long (about 113-215 of camera length); sutures non-sinuous. Occurrence. -Upper Jurassic, lower Kimmeridgian; Unzha River, Kostroma Region, Central Russia. Remarks. -The groove on the sheath is an apomorphy of the new family and distinguishes it from the older (Stephanian) family Shimanskyidae Doguzhaeva, Mapes, & Mutvei, 1998 and younger (Cretaceous) families Adygeyidae Doguzhaeva, 1996 and Groenlandibelidae Jeletzky, 1966, which have smooth shells, lacking grooves. The family is tentatively referred to the Order Spirulida on the basis of the following common features: well developed slowly expanding phragrnocone with comparatively short camerae, simple sutures, and septa with long mural parts; presence of a sheath with uneven surface and spherulitic ultrastmcture instead of a real rostrum. The protoconch structure, namely: whether it had a closing membrane as in belemnoids, or a calcified first septum with a septa1 foramen, a caecum and a prosiphon as in spirulids, is so far unknown. But the family can hardly be referred to belemnoids be- cause of the dimpled surface of the sheath which is a resull or ils spherulitic structure. Among belemnoids, the new family resembles diplobelids in having no postalveolar portion of the rostrum. However, diplobelids have breviconic phragmocones, sinuous sutures and crowded septae (Jeletzky 1981: p. 115), unlike the new family. The reconstruction of the shell orientation is based on the fact that in coleoids the ventral side of the shell gradually lost its protective function and was replaced by a muscular mantle wall. For this reason the thickened side that bears the groove is considered as dorsal. Genus Kostromateuthis nov. Type species by monotypy: Kostromateuthis roemen' gen. et sp. n. Derivation of name: From Kostroma, the capital of the region where the specimen was found. Diagnosis. - Miniature orthocones with angle of expansion 18-20 degrees. Sheath conical with rounded apex and irregular rows of bean-shaped depressions apically, and smoother, 'pock-marked' adorally. Groove bordered by two ridges with rows of more than 10 tubercles along their crests; two or three smaller ridges on its floor. Remarks. -In the uneven outer surface the sheath of Kostromateuthis is similar to partitions of the sheath of the Tertiary spirulid Beloptera (Dauphin k985: fig. 3f) and the outer surface of the sheath of Belemnosis. Also the tubercles along the crests flanking the groove show similarity to the humps on the outer surface of a longitudinal partition of the Beloptera sheath (Dauphin 1985: fig. 4a). These were interpreted as unbroken spherulites (Dauphin 1985: p. 330). Spherulites with central depres- sions are known in the sheath of the Paleocene Belopterina (Dauphin 1986: pl. 2a-c). Kostromateuthis roemeri gen. et sp. n. Fig. 1A-D. Holotype: PIN 38711221 - the only specimen known. Type horizon: Upper Jurassic, lower Kimmeridgian. Type locality: Unzha River, right bank near village Popovo, Kostroma Region, Central Russia. Derivation of name: in honour of Ferdinand Roemer, who described the first Jurassic coleoid shell which might have belonged to the Spirulida. Diagnosis. - Same as for genus. 392 Jurassic coleoid mollusc: DOGUZHAEVA ACTA PALAEONTOLOGICA POLONICA (45) (4) 393 Description. - The shell is small (24 mm long, with maximum diameter about 8 mm), orthoconic, slowly expanding (angle of expansion 18-20 degrees), surface uneven, especially in its apical part where it is reticulated. Phragmocone and sheath seem to be of equal length; sheath probably ends near the apertural margin of the phragmocone and does not extend beyond the phragmocone. The sheath bears a strong medial, presumably dorsal, groove bordered by two ridges
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • Paleomagnetism of the Late Cretaceous-Paleocene Adel Mountain Volcanics West-Central Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1989 Paleomagnetism of the late Cretaceous-Paleocene Adel Mountain volcanics west-central Montana Jay A. Gunderson The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Gunderson, Jay A., "Paleomagnetism of the late Cretaceous-Paleocene Adel Mountain volcanics west- central Montana" (1989). Graduate Student Theses, Dissertations, & Professional Papers. 8321. https://scholarworks.umt.edu/etd/8321 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th is is an unpublished m anuscript in which c o p yr ig h t SUBSISTS. Any further r e p r in t in g of it s contents must be APPROVED BY THE AUTHOR. Ma n s f ie l d L ibrary Un iv e r s it y of Montana Date : 1 9 89 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALEOMAGNETISM OF THE LATE CRETACEOUS - PALEOCENE ADEL MOUNTAIN VOLCANICS. WEST-CENTRAL MONTANA by Jay A. Gunderson B.S., University of Minnesota, Duluth, 1984 Presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana 1989 Approved by Chairman, Board of Examiners Dean, Graduate School J / , r j S - i Date • 7 Reproduced with permission of the copyright owner.
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
    GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance.
    [Show full text]
  • Triassic Stratigraphy and Biostratigraphy in Socorro County, New Mexico Justin A
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/60 Triassic stratigraphy and biostratigraphy in Socorro County, New Mexico Justin A. Spielmann and Lucas, 2009, pp. 213-226 in: Geology of the Chupadera Mesa, Lueth, Virgil; Lucas, Spencer G.; Chamberlin, Richard M.; [eds.], New Mexico Geological Society 60th Annual Fall Field Conference Guidebook, 438 p. This is one of many related papers that were included in the 2009 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • The Human Imprint on the Unique Geological Landscape of the Western Caucasus
    Anna V. Mikhailenko et al. Geologos 26, 3 (2020): 233–244 DOI: 10.2478/logos-2020-0022 The human imprint on the unique geological landscape of the Western Caucasus Anna V. Mikhailenko1, Dmitry A. Ruban2,3*, Svetlana O. Zorina4, Konstantin I. Nikashin4, Natalia N. Yashalova5 1Institute of Earth Sciences, Southern Federal University, Zorge Street 40, Rostov-on-Don 344090, Russia 2K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Zemlyanoy Val Street 73, Moscow 109004, Russia 3Department of Hospitality Business, Higher School of Business, Southern Federal University, 23-ja Linija Street 43, Rostov-on-Don 344019, Russia (postal address: P.O. Box 7333, Rostov-on-Don 344056, Russia) 4 Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlyovskaya Street 18, Kazan, Republic of Tatarstan 420008, Russia 5Department of Economics and Management, Business School, Cherepovets State University, Sovetskiy Avenue 10, Cherepovets, Vologda Region 162600, Russia *corresponding author; e-mail: [email protected] Abstract Human intervention in the geological environment is commonly thought to pose a threat to geoheritage. However, new information from the Western Caucasus where unique geological features are concentrated in Mountainous Ady- geya, implies that man-made features in fact add value to geoheritage. Such features include a lengthy artificial niche in the Guama Gorge, accumulations of large artificial clasts along the road leading to the Lagonaki Highland and the Khadzhokh Quarry with the artificial Red Lake. These contribute to the regional uniqueness of geosites and can be classified as geomorphological, sedimentary, economical and hydro(geo)logical geoheritage types. Interestingly, these artificial features have natural analogues in the study area.
    [Show full text]
  • The Pro-Ostracum and Primordial Rostrum at Early Ontogeny of Lower Jurassic Belemnites from North-Western Germany
    Coleoid cephalopods through time (Warnke K., Keupp H., Boletzky S. v., eds) Berliner Paläobiol. Abh. 03 079-089 Berlin 2003 THE PRO-OSTRACUM AND PRIMORDIAL ROSTRUM AT EARLY ONTOGENY OF LOWER JURASSIC BELEMNITES FROM NORTH-WESTERN GERMANY L. A. Doguzhaeva1, H. Mutvei2 & W. Weitschat3 1Palaeontological Institute of the Russian Academy of Sciences 117867 Moscow, Profsoyuznaya St., 123, Russia, [email protected] 2 Swedish Museum of Natural History, Department of Palaeozoology, S-10405 Stockholm, Sweden, [email protected] 3 Geological-Palaeontological Institute and Museum University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany, [email protected] ABSTRACT The structure of pro-ostracum and primordial rostrum is presented at early ontogenic stages in Lower Jurassic belemnites temporarily assigned to ?Passaloteuthis from north-western Germany. For the first time the pro-ostracum was observed in the first camerae of the phragmocone. The presence of a pro-ostracum in early shell ontogeny supports Naef”s opinion (1922) that belemnites had an internal skeleton during their entire ontogeny, starting from the earliest post-hatching stages. This interpretation has been previously questioned by several writers. The outer and inner surfaces of the juvenile pro-ostracum were studied. The gross morphology of these surfaces is similar to that at adult ontogenetic stages. Median sections reveal that the pro-ostracum consists of three thin layers: an inner and an outer prismatic layer separated by a fine lamellar, predominantly organic layer. These layers extend from the dorsal side of the conotheca to the ventral side. The information obtained herein confirms the idea that the pro-ostracum represents a structure not present in the shell of ectocochleate cephalopods (Doguzhaeva, 1999, Doguzhaeva et al.
    [Show full text]
  • Primer Registro De Los Géneros Actinotheca Xiao & Zou, 1984 Y
    PRIMER REGISTRO DE LOS GÉNEROS ACTINOTHECA XIAO Y ZOU, 1984, Y CONOTHECA MISSARZHEVSKY, 1969, EN EL CÁMBRICO INFERIOR DE LA PENÍNSULA IBÉRICA DAVID C. FERNÁNDEZ-REMOLAR1 | CENTRO DE ASTROBIOLOGÍA, TORREJÓN DE ARDOZ RESUMEN En este trabajo se describe el primer registro en la península Ibérica de los géneros Actinotheca Xiao y Zou, 1984, incluido en la familia Cupithecidae Duan, 1984, y Conotheca Missarzhevsky, 1969 (in ROZANOV et al., 1969), perteneciente a la familia Circothecidae Syssoiev, 1962, de la Clase Hyolitha Marek, 1963, que se obtuvieron por el muestreo de los niveles fosfáticos de la Formación Pedroche del Ovetiense Inferior en la Sierra de Córdoba. La correlación de estos niveles con otras regiones con asociaciones de fósiles fosfáticos por medio de la cronoestrati- grafía de arqueociatos indica que los materiales con Actinotheca y Conotheca de Córdoba se corresponderían con el techo de la Zona de Retecoscinus zegebarti o el muro de la Zona de Carinacyathus pinus, que se sitúan desde la parte inferior hasta la media del Atdabaniense de la Plataforma de Siberia. Esta posición es correlacionable con la Asociación III en Yunnan (China) y la parte baja de la Zona de Abadiella huoi de los Flinders Ranges (Australia), las cuales presentan algunos taxones afines a los presentes en la Sierra de Córdoba. Además, la comparación de las asociaciones de fósiles de la Sierra de Córdoba con aquéllas de restos fos- fáticos con la misma edad en otras regiones cámbricas sugiere que la capacidad de dispersión de Conotheca era mucho mayor que la de Actinotheca, el cual apa- rece casi exclusivamente limitado a materiales del Cámbrico Inferior de áreas gondwánicas.
    [Show full text]
  • Palaeoecology and Palaeoenvironments of the Middle Jurassic to Lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-02 Palaeoecology and palaeoenvironments of the Middle Jurassic to lowermost Cretaceous Agardhfjellet Formation (Bathonian–Ryazanian), Spitsbergen, Svalbard Maayke J. Koevoets1, Øyvind Hammer1 & Crispin T.S. Little2 1Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, 0318 Oslo, Norway. 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail corresponding author (Maayke J. Koevoets): [email protected] We describe the invertebrate assemblages in the Middle Jurassic to lowermost Cretaceous of the Agardhfjellet Formation present in the DH2 rock-core material of Central Spitsbergen (Svalbard). Previous studies of the Agardhfjellet Formation do not accurately reflect the distribution of invertebrates throughout the unit as they were limited to sampling discontinuous intervals at outcrop. The rock-core material shows the benthic bivalve fauna to reflect dysoxic, but not anoxic environments for the Oxfordian–Lower Kimmeridgian interval with sporadic monospecific assemblages of epifaunal bivalves, and more favourable conditions in the Volgian, with major increases in abundance and diversity of Hartwellia sp. assemblages. Overall, the new information from cores shows that abundance, diversity and stratigraphic continuity of the fossil record in the Upper Jurassic of Spitsbergen are considerably higher than indicated in outcrop studies. The inferred life positions and feeding habits of the benthic fauna refine our understanding of the depositional environments of the Agardhfjellet Formation. The pattern of occurrence of the bivalve genera is correlated with published studies of Arctic localities in East Greenland and northern Siberia and shows similarities in palaeoecology with the former but not the latter.
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • Training Workshop on the Taxonomy of Marine Molluscs Mauritius, October 2017
    Training workshop on the taxonomy of marine molluscs Mauritius, October 2017 Introduction IOC Biodiversity and MOI organized a regional workshop in Mauritius in October 2017 for 4 days. The main objective of the workshop were (i) to train regional marine biologists to the taxonomy of molluscs, (ii) to build capacities in the description and identification of molluscs, (iii) to assess the mollusc biodiversity and its evolution in tropical marine ecosystems. Figure 1: Le Bouchon sampling site Material and Methods About 20 participants attended the workshop with about half of them from Mauritius and the others from Madagascar, Comoros, Kenya and Tanzania. The workshop was led by an Australian expert. The workshop followed these 3 steps: - Day 1: Formal classroom training about taxonomy, molluscs and shells features. Generals information slide about molluscs were projected. - Day 2: Field sampling in Mauritius at Le Bouchon (South-east coast). The sampling was performed in various biotopes provided at the location: beach, rocky shore, mangrove and lagoon. Lagoon itself provided various environments (live coral, rubbles, sand, grass, silt). Some samplers were on foot and other snorkelling. The only method used was hand picking of shells during one hour. Shells were either dead (empty or crabbed) or alive with limitation of 1 specimen per species. The objective of the sampling was not quantitative but qualitative. The shells have been washed and put to dry in the lab after the field collection. - Day 3-4: Analysis of the samples sorted and numbered by kind and appearance. Participants had to write a description of as many species as they could in group of 2-3.
    [Show full text]
  • Late Jurassic Ammonites from Alaska
    Late Jurassic Ammonites From Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Late Jurassic Ammonites From Alaska By RALPH W. IMLAY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1190 Studies of the Late jurassic ammonites of Alaska enables fairly close age determinations and correlations to be made with Upper Jurassic ammonite and stratigraphic sequences elsewhere in the world UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1981 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress catalog-card No. 81-600164 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ----------------------------------------- 1 Ages and correlations -----------------------------­ 19 19 Introduction -------------------------------------- 2 Early to early middle Oxfordian --------------­ Biologic analysis _________________________________ _ 14 Late middle Oxfordian to early late Kimmeridgian 20 Latest Kimmeridgian and early Tithonian _____ _ 21 Biostratigraphic summary ------------------------- 14 Late Tithonian ______________________________ _ 21 ~ortheastern Alaska -------------------------­ 14 Ammonite faunal setting --------------------------­ 22 Wrangell Mountains -------------------------- 15 Geographic distribution ---------------------------- 23 Talkeetna Mountains -------------------------­ 17 Systematic descriptions ___________________________ _ 28 Tuxedni Bay-Iniskin Bay area ----------------- 17 References
    [Show full text]