The Human Imprint on the Unique Geological Landscape of the Western Caucasus

Total Page:16

File Type:pdf, Size:1020Kb

The Human Imprint on the Unique Geological Landscape of the Western Caucasus Anna V. Mikhailenko et al. Geologos 26, 3 (2020): 233–244 DOI: 10.2478/logos-2020-0022 The human imprint on the unique geological landscape of the Western Caucasus Anna V. Mikhailenko1, Dmitry A. Ruban2,3*, Svetlana O. Zorina4, Konstantin I. Nikashin4, Natalia N. Yashalova5 1Institute of Earth Sciences, Southern Federal University, Zorge Street 40, Rostov-on-Don 344090, Russia 2K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Zemlyanoy Val Street 73, Moscow 109004, Russia 3Department of Hospitality Business, Higher School of Business, Southern Federal University, 23-ja Linija Street 43, Rostov-on-Don 344019, Russia (postal address: P.O. Box 7333, Rostov-on-Don 344056, Russia) 4 Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlyovskaya Street 18, Kazan, Republic of Tatarstan 420008, Russia 5Department of Economics and Management, Business School, Cherepovets State University, Sovetskiy Avenue 10, Cherepovets, Vologda Region 162600, Russia *corresponding author; e-mail: [email protected] Abstract Human intervention in the geological environment is commonly thought to pose a threat to geoheritage. However, new information from the Western Caucasus where unique geological features are concentrated in Mountainous Ady- geya, implies that man-made features in fact add value to geoheritage. Such features include a lengthy artificial niche in the Guama Gorge, accumulations of large artificial clasts along the road leading to the Lagonaki Highland and the Khadzhokh Quarry with the artificial Red Lake. These contribute to the regional uniqueness of geosites and can be classified as geomorphological, sedimentary, economical and hydro(geo)logical geoheritage types. Interestingly, these artificial features have natural analogues in the study area. Such integrity of local geological landscapes urgently re- quire special interpretations for guided excursions and explanatory panels for correct comprehension of the origin of these unique features on the part of unprepared tourists. Generally, the human imprint on geological landscapes of Mountainous Adygeya is significant and occasionally positive, which makes the entire geodiversity hotspot of special, international interest and an object for further investigations. Key words: artificial landform, geotourism, megaclast, quarry lake, southwest Russia 1. Introduction ed officially by the international stratigraphical re- search community, is referred to as the Anthropo- In view of its global scale, the activity of humans cene (Crutzen & Stoermer, 2000; Zalasiewicz et al., is a geological force (Hooke, 2000; Wilkinson, 2005; 2008; Subramanian, 2019). Deep intervention of hu- Zalasiewicz et al., 2014; Cooper et al., 2018). The mans into the geological environment leads to both current geological epoch, although not yet accept- exposure of unique objects of natural origin and 234 Anna V. Mikhailenko et al. creation of new unique objects of artificial origin. tourists. Generally, natural resources of this area Being a geological force, human activity does not can sustain both recreation and industrial develop- only alter, but also co-creates geological landscape ment (Varshanina & Matusov, 2006; Kiseleva et al., in conjunction with natural forces. Such artificial 2017). objects include man-made landforms, sedimentary Our field investigations in the Western Cauca- strata, etc. A significant number of types and forms sus have permitted to find several geosites with a of geoheritage are linked to human activity (Ruban, significant human imprint on the geological land- 2020). With regard to these considerations, the geo- scape, i.e., a natural landscape dominated by geo- logical activity of humans should not be considered logical elements (Fig. 1). At these geosites, anthro- only as a threat, but also as a complex mechanism pogenic pressure has resulted in the creation of of geoheritage transformation. Although these ide- new elements of geoheritage. Moreover, man-made as appear easy to comprehend, they do need to modifications of local geological landscapes have be shaped and strengthened through the study of already attracted tourists to these geosites. representative examples. An important research question addresses the change of geoheritage val- ues thath uman alteration of geological landscapes 2. Geological setting entails. The present study is the first attempt to char- The study area is situated in the southwestern part acterise anthropogenic (i.e., artificially created) of Russia where the Caucasian Mountains stretch geoheritage from Mountainous Adygeya in the between the Black Sea and the Caspian Sea (Fig. Western Caucasus – a geodiversity hotspot in south- 1). Geographically, the area belongs to the West- western Russia that is famous for its concentration ern Caucasus, which is the western domain of the of unique palaeogeographical (Late Jurassic reefs), Greater Caucasus. This area comprises the moun- geomorphological (peculiar canyons and gorges, as tainous (southern) part of the Republic of Adygeya well as world-famous karst formations), palaeon- (a region of the Russian Federation) and adjacent tological (ammonite and trace fossil localities) and parts of the Krasnodar Region. It corresponds to other features (Ruban, 2010a). Here, human modifi- the basin of the River Belaya, which is a large left cations of the geological environment have been on- tributary of the River Kuban, which flows into the going since prehistory, and a significant increase of Azov Sea. agricultural and mining activities took place in the The Greater Caucasus (including its western do- second half of the twentieth century. Presently, this main) is the late Cenozoic (Alpine) orogen formed area is one of the most important destinations for as a result of complex interactions between the Ara- Russian tourists, and the growth of touristic activi- bian Plate in the south, the Eurasian Plate in the ties since the beginning of the twenty-first century north and several smaller blocks in between (Ada- has triggered significant changes linked to devel- mia et al., 2011b; Koulakov et al., 2012; Forte et al., opment of transport and recreation infrastructure, 2014; Sharkov et al., 2015; Kaban et al., 2018; Van building and maintenance of tourist attractions. Hinsbergen et al., 2020; Ismail-Zadeh et al., 2020; Importantly, the natural and, particularly, geolog- Vasey et al., 2020). Its ‘core’ is the former Gondwa- ical and geomorphological peculiarities (karst phe- na-derived terrane represented by Precambrian and nomena, waterfalls, unusual landforms, etc.) attract Palaeozoic rocks (Ruban, 2013). The regional geolo- Fig. 1. Geographical location of the study area The human imprint on the unique geological landscape of the Western Caucasus 235 gy is dominated by Mesozoic–lower Cenozoic sed- morphological) elements. A geodiversity hotspot is imentary complexes that formed in back-arc basins a large area that hosts geosites of diverse nature; its (Adamia et al., 2011a). The study area is located on geological landscape is dominated by unique geo- the northern slope of the Greater Caucasus. The lo- logical and geomorphological features. Human im- cal geology was reviewed, particularly, by Lozovoj print on geoheritage can appear in different forms (1984), Rostovtsev et al. (1992) and Ruban (2010b). (Ruban, 2020). For instance, a distinction should be The oldest rocks are Precambrian metamorphic made between change (often damage) of geological complexes and Palaeozoic serpentinites and grani- objects or its natural/artificial exposure and crea- toids that are exposed in small erosional ‘windows’. tion of essentially artificial objects (e.g., man-made The most widely distributed strata are Permian, landform or man-made sediment accumulation). red-colored molassic deposits (total thickness up Nonetheless, such differences may be vague and/ to 10 km), Lower–Middle Jurassic shales and sand- or highly complex. Geoheritage types and forms stones (total thickness also up to 10 km), Upper are here understood sensu Habibi et al. (2018). Geo- Jurassic carbonates and evaporites (total thickness heritage types refer to unique phenomena – e.g., about 3 km) and Cretaceous mixed (siliciclastic–car- the sedimentary geoheritage type corresponds to bonate) packages (total thickness exceeding 1 km). unique sedimentary rocks or structures. Geoherit- From south to north, these sedimentary complexes age forms refer to places where unique features are occur in successive ‘belts’. The most notable geolog- represented – e.g., natural outcrops, road cuttings, ical phenomenon of the study area is the ‘classical’ quarries, etc. In rare cases, geoheritage forms are karst development in the Lagonaki Highland where unique themselves (e.g., due to their larger size that both epikarst (karren and karst depressions) and reflects human activity as a geological force); in the endokarst (caves and shafts) have been document- majority of cases, such unique forms should be at- ed (Lozovoj, 1984; Veress et al., 2019). tributed to the geomorphological type of geoherit- Geodiversity hotspots are of primary impor- age, to be described as geomorphosites. tance in geoheritage studies despite certain dif- Field investigations in Mountainous Adygeya ferences in their definition (Gray, 2008; Ruban, and, particularly, our ongoing inventory of local 2010a; Stepišnik & Repe, 2015; Bétard et al., 2018; geoheritage have enabled us to find three geosites Stepišnik & Trenchovska, 2018; Bétard
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • In the Umanities "Alma Mater"
    SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI” BULGARIAN ACADEMY OF SCIENCES SUSTAINABLE MOUNTAIN REGIONS: MAKE THEM WORK INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS 14-16 May 2015, Borovets, Bulgaria NIGGG The event is organized and sponsored by the “National, European, and Civilization Dimensions of the Culture – Language – Me- dia Dialogue” Program of the “Alma Mater” University Complex for the Humanities at Sofia University “Saint Kliment Ohridski “, funded by the Bulgarian Ministry of Education, Youth, and Science Scientific Research Fund. EDITORS: BOIAN KOULOV, URS WAGENSEIL, MARIANA NIKOLOVA, HENRIK HALKIER, ASSEN ASSENOV, MONICA DIMITRASCU, VASIL MARINOV, MEHMET SOMUNCHU, ELKA DOGRAMADJIEVA, SNEZANA STETIC, ELENA MATEI, MATIJA ZORN, BILIANA BORISOVA, ROBERT WILUŚ, MARIANA ASSENOVA, IVICA MILEVSKI, STOYAN NEDKOV Publisher: Fakel 2015 ISBN 978-954-411-220-2 The content of each report in the book is the sole responsibility of the respective author(s). 9 789544 112202 2 CONTENT I. RISKS AND THEIR MITIGATION IN MOUNTAIN REGIONS: REGIONAL AND TRANS-BORDER POLICIES FOR SUSTAINABILITY..................................................................................................................6 NEW CONTRIBUTIONS TO THE KNOWLEDGE OF RISK MANAGEMENT OF SNOW AVALANCHE IN ROMANIAN CARPATHIANS. CASE STUDY: FAGARAS MASSIF-SOUTHERN CARPATHIANS...........................7 Mircea VOICULESCU SUSTAINABLE PRACTICES IN AGRICULTURE AND TOURISM ACTIVITIES IN MOUNTAIN REGIONS ...........19 Venelin TERZIEV, Ekaterina ARABSKA, Zlatka GRIGOROVA
    [Show full text]
  • Paeonia Caucasica (Schipcz.) Schipcz
    Ecologica Montenegrina 37: 43-50 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.37.6 Paeonia caucasica (Schipcz.) Schipcz. in phytocenoses of the Republic of Adygea EMILIA A. SIROTYUK, AMINET E. SHADGE & GALINA N. GUNINA Maykop State Technological University, Maykop, Russia. E-mail: [email protected] Received 2 October 2020 │ Accepted by V. Pešić: 5 November 2020 │ Published online 17 November 2020. Abstract Populations of Paeonia caucasica (Schipcz.) Schipcz., 1937 growing in various forest phytocenoses were discovered and studied during the monitoring of protected plant species in the Republic of Adygea. The allocation of the species to a certain range of altitudes above sea level and types of communities were defined. The ontogenetic structure and states of plants were identified, and the state of P. caucasica populations was assessed. Key words: distribution, ecological features, reproduction, populations, numbers, ontogenetic structure, limiting factors. Introduction The Republic of Adygea is located in the Northwest Caucasus, in one of the most complex natural regions of the Caucasus with a diverse flora (Fig. 1). The geographical position of the Republic has resulted in the presence of several geographical zones and vertical vegetation belts, significant landscape, phytocenotic and floristic diversity, as well as a high level of endemism and relict flora on its territory (Shadge et al. 2019, Sirotyuk 2019). According to M.D. Altukhov (Altukhov 1985) there are about 350 endemic Caucasian species in the Northwest Caucasus, which form the "face" of the flora and reflect its long-term evolution. The specially protected natural territories occupy about 30% of the territory of the Republic of Adygea and 14% of its lands are classified as a UNESCO World Natural Heritage Site "Western Caucasus" (Zhane 1999).
    [Show full text]
  • The State Hermitage Museum Annual Report 2012
    THE STATE HERMITAGE MUSEUM ANNUAL REPORT n 2012 CONTENTS General Editor 4 Year of Village and Garden Mikhail Piotrovsky, General Director of the State Hermitage Museum, 6 State Hermitage Museum. General Information Corresponding Member of the Russian Academy of Sciences, 16 Awards Full Member of the Russian Academy of Arts, Professor of St. Petersburg State University, 20 Composition of the Hermitage Collection as of 1 January 2013 Doctor of History 40 Exhibitions 86 Restoration and Conservation 121 Publications EDITORIAL BOARD: 135 Electronic Editions and Video Films Mikhail Piotrovsky, 136 Conferences General Director of the State Hermitage Museum 141 Dissertations Georgy Vilinbakhov, 142 Archaeological Expeditions Deputy Director for Research 158 Major Construction and Restoration of the Buildings Svetlana Adaksina, Deputy Director, Chief Curator 170 Structure of Visits to the State Hermitage in 2012 Marina Antipova, 171 Educational Events Deputy Director for Finance and Planning 180 Special Development Programmes Alexey Bogdanov, Deputy Director for Maintenance 188 International Advisory Board of the State Hermitage Museum Vladimir Matveyev, 190 Guests of the Hermitage Deputy Director for Exhibitions and Development 194 Hermitage Friends Organisations Mikhail Novikov, 204 Hermitage Friends’ Club Deputy Director for Construction 206 Financial Statements of the State Hermitage Museum Mariam Dandamayeva, Academic Secretary 208 Principal Patrons and Sponsors of the State Hermitage Museum in 2012 Yelena Zvyagintseva, 210 Staff Members of
    [Show full text]
  • Kostromateuthis Roemeri Gen
    A rare coleoid mollusc from the Upper Jurassic of Central Russia LARISA A. DOGUZHAEVA Doguzhaeva, L.A. 2000. Arare coleoid mollusc from the Upper Jurassic of Central Rus- sia. -Acta Palaeontologica Polonica 45,4,389-406. , The shell of the coleoid cephalopod mollusc Kostromateuthis roemeri gen. et sp. n. from the lower Kirnmeridgian of Central Russia consists of the slowly expanding orthoconic phragmocone and aragonitic sheath with a rugged surface, a weakly developed post- alveolar part and a long, strong, probably dorsal groove. The sheath lacks concentric struc- ture common for belemnoid rostra. It is formedby spherulites consisting of the needle-like crystallites, and is characterized by strong porosity and high content of originally organic matter. Each spherulite has a porous central part, a solid periphery and an organic cover. Tubular structures with a wall formed by the needlelike crystallites are present in the sheath. For comparison the shell ultrastructure in Recent Spirula and Sepia, as well as in the Eocene Belemnosis were studied with SEM. Based on gross morphology and sheath ultrastructure K. memeri is tentatively assigned to Spirulida and a monotypic family Kostromateuthidae nov. is erected for it. The Mesozoic evolution of spirulids is discussed. Key words : Cephalopoda, Coleoidea, Spirulida, shell ultrastructure, Upper Jurassic, Central Russia. krisa A. Doguzhaeva [[email protected]], Paleontological Institute of the Russian Acad- emy of Sciences, Profsoyuznaya 123, 117647 Moscow, Russia. Introduction The mainly soft-bodied coleoids (with the exception of the rostrum-bearing belem- noids) are not well-represented in the fossil record of extinct cephalopods that results in scanty knowledge of the evolutionary history of Recent coleoids and the rudimen- tary understanding of higher-level phylogenetic relationships of them (Bonnaud et al.
    [Show full text]
  • World Bank Document
    Krasnodar GRES Project Public Disclosure Authorized Volume III Environmental Assessment March 1996 Prepared by: Burns and Roe Environmental Services, Inc. Kuban State Agricultural University Public Disclosure Authorized Russian Oil Initiatives, Ltd. Submitted by: Burns and Roe Enterprises, Inc. Project Manager Submitted to: Krasnodar Project Ownership Group RAO EES Rossii AO Kubanenergo Public Disclosure Authorized RAO Gasprom AO Energo Machine Building Corp. Unified Electric Energy Complex Corp. Amoco Eurasia Petroleum Company U.S. Agency for International Development The World Bank Contract No.: CCN-0002-Q-00-3154-00 Public Disclosure Authorized Energy Efficiency and Market Reform Project Delivery Order No. 1, Krasnodar * Krasnodar GRES Project Volume III Environmental Assessment March 1996 Prepared by: Burns and Roe Environmental Services, Inc. Kuban State Agricultural University Russian Oil Initiatives, Ltd. Submitted by: Burns and Roe Enterprises, Inc. * Project Manager Submitted to: Krasnodar Project Ownership Group RAO EES Rossii AO Kubanenergo RAO Gasprom AO Energo Machine Building Corp. Unified Electric Energy Complex Corp. Amoco Eurasia Petroleum Company U.S. Agency for International Development The World Bank Contract No.-: CCN-0002-Q-00-3154-00 Energy Efficiency and Market Reform Project x0 Delivery Order No. 1, Krasnodar TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY .................. 1-1 1.1 Introduction ........................... 1-1 1.2 Project Description .......................... 1-1 1.2.1 Site Description ......................... 1-2 1.2.2 Infrastructure .......................... 1-2 1.3 Potential Environmental Impacts ......................... 1-3 1.4 Environmental Management Plan ........ ................. 1-4 1.4.1 Water Management. 1-5 1.4.2 Emissions Monitoring .1-5 1.4.3 Training. 1-5 1.4.4 Emergency Response .1-5 1.4.5 Mitigation Measures.
    [Show full text]
  • An Eocene Orthocone from Antarctica Shows Convergent Evolution of Internally Shelled Cephalopods
    RESEARCH ARTICLE An Eocene orthocone from Antarctica shows convergent evolution of internally shelled cephalopods Larisa A. Doguzhaeva1*, Stefan Bengtson1, Marcelo A. Reguero2, Thomas MoÈrs1 1 Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden, 2 Division Paleontologia de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Background The Subclass Coleoidea (Class Cephalopoda) accommodates the diverse present-day OPEN ACCESS internally shelled cephalopod mollusks (Spirula, Sepia and octopuses, squids, Vampyro- teuthis) and also extinct internally shelled cephalopods. Recent Spirula represents a unique Citation: Doguzhaeva LA, Bengtson S, Reguero MA, MoÈrs T (2017) An Eocene orthocone from coleoid retaining shell structures, a narrow marginal siphuncle and globular protoconch that Antarctica shows convergent evolution of internally signify the ancestry of the subclass Coleoidea from the Paleozoic subclass Bactritoidea. shelled cephalopods. PLoS ONE 12(3): e0172169. This hypothesis has been recently supported by newly recorded diverse bactritoid-like doi:10.1371/journal.pone.0172169 coleoids from the Carboniferous of the USA, but prior to this study no fossil cephalopod Editor: Geerat J. Vermeij, University of California, indicative of an endochochleate branch with an origin independent from subclass Bactritoi- UNITED STATES dea has been reported. Received: October 10, 2016 Accepted: January 31, 2017 Methodology/Principal findings Published: March 1, 2017 Two orthoconic conchs were recovered from the Early Eocene of Seymour Island at the tip Copyright: © 2017 Doguzhaeva et al. This is an of the Antarctic Peninsula, Antarctica. They have loosely mineralized organic-rich chitin- open access article distributed under the terms of compatible microlaminated shell walls and broadly expanded central siphuncles.
    [Show full text]
  • The Mammals of the Caucasus
    planifrons Falc. and Equus stenonis Cocchi have been identified. The breccia is underlain by a layer of doleritic lava and is covered by lacustrine sands and clays. The lake sediments are overlain by a layer of dolorite (Zaridze and Tatrishvili, 1948). Thus, in that area, the mammals lived and died during a period when the volcanos in the Lesser Caucasus were dornnant. The next transgression in the Caspian ->- N Basin, a somewhat smaller one, is known ^.AA.>.>J>-Jn,*^f^^v-»L*.-.->4-W-vn-Wtv^ as the Apsheron sea. ;'<,•.•''' OS The Kura bay of the Apsheron sea OB reached the longitude of Kirovabad. The :o:.\-:e:.--i Terek bay was temporarily connected with the Euxinic basin by a strait in the Manych area. The sea reached the latitude of Sarepta and [Lake] Inder in the north. •'•p.;-. .- •«.•.. e". ;..•.*• o*. •.•.; ''•',' 45 o'. • o". ' '•'o'.'- o." ; •.b..'i^-'.'-o'".^•.•<>.• The climate and landforms of the 4>- b-fi.: Caucasus in Apsheron time probably remained the same as in the Akchagyl, and the volcanic activity was of about the same c?o intensity. Torrential mudflows, caused by heavy rains, carried volumes of gravel and boulders from the mountains (Kudryavtsev, 1933); these boulders can 68 'S::^^^^ now be seen on the Kakhetia Plain. d - 5 The land vegetation known from the Apsheron deposits in the Shiraki Steppe consisted of spruce (Picea orientalis) and a number of Recent forms: beech, oak, aspen, apple, willow, filbert, Turkish filbert, walnut (Juglans regia), zelkova, honeysuckle; and Hyrcanian forms: f < oak (Quercus castanei folia), alder (Alnus subcordata), maple (Acer ibericum) (Palibin, 1936).
    [Show full text]
  • Research Article
    Ecologica Montenegrina 14: 136-142 (2017) This journal is available online at: www.biotaxa.org/em Atmospheric Disturbances in the Airflow around Mountains and the Problem of Flight Safety in the Mountains of the Republic of Adygeya MURAT K. BEDANOKOV, ROZA B. BERZEGOVA, SAIDA K. KUIZHEVA Maykop State Technological University, Russia Received 29 August 2017 │ Accepted 5 October 2017 │ Published online 30 October 2017. Abstract This article considers airflow around mountain systems as a meso-scale atmospheric phenomenon. It presents a non- linear stationary dimensional theoretical model of the airflow of the North-West Caucasus Mountains, taking into account characteristics of a real mountain terrain. The article further discusses the results of the calculations of the speed field of the airflow and general regularities of the origin and the scale of the rotary-wave deformation of the airflow over the mountains. The calculation results have shown that for the model scenario I at wind speed U=15 m/s the disturbances are the most intense over the ridge crests, where they are characterized by the zone with rotors. The total length of the rotor zone downwind is more than the length of its nucleus and is close enough in value to the extent of the lee part of the terrain (downwind from the main top). The area of maximum amplitudes is located in the windward side of the rotor zone. These amplitudes are several times higher than the maximum height of the mountains. For the model scenario II (U=19 m/s) wave disturbances slightly increased in length downwind, but minimally changed in amplitude.
    [Show full text]
  • Siphonal Tube Structure of the Late
    Swiss Journal of Palaeontology (2019) 138:37–47 https://doi.org/10.1007/s13358-019-00188-2 (0123456789().,-volV)(0123456789().,- volV) REGULAR RESEARCH ARTICLE Siphonal tube structure of the Late Devonian orthocerid Dolorthoceras from the Polar Urals (NW Russia) preserving nacre and organic fibres as well as its persistence in cephalopod evolution Larisa A. Doguzhaeva1 Received: 3 September 2018 / Accepted: 16 February 2019 / Published online: 15 March 2019 Ó The Author(s) 2019 Abstract A juvenile orthocerid Dolorthoceras sp. from the Frasnian (Late Devonian) of the Polar Urals in NW Russia is the first recorded ectocochleate cephalopod showing fibrous structures and the first Devonian cephalopod preserving nacreous structures within its conch. Like Nautilus, Dolorthoceras sp. has columnar nacre in its shell wall and septa, which are composed of differentiated nacreous tablets that are c. 3 lm and 10 lm in diameter. The central, small, cylindrical, hollow siphonal tube—studied in median section using scanning electron microscope—comprises short columnar-nacreous sub- orthochoanitic septal necks and thin, apparently primarily chitinous, connecting rings; swollen, lens-shaped in median section, two-part fibrous non-biomineralized structures—here named clutches—envelope the posterior parts of the septal necks. Together with the adjacent connecting ring, the outer part of the clutch may extend onto adapical septal surfaces; their inner part and adjoining from inside next connecting ring line the septal neck. The clutches are comparable, to some degree, to the auxiliary deposits and cuffs of the siphonal tubes found in ammonoids; these are interpreted as being protective structures of the conjunctions between the connecting rings and septal necks reinforcing it against hydrostatic pressure, which was probably also the case in Dolorthoceras.
    [Show full text]
  • Rchb. in the Republic of Adygea
    Ecologica Montenegrina 23: 20-26 (2019) This journal is available online at: www.biotaxa.org/em Modern Distribution and Ecological-phytocenotic Features of Platanthera chlorantha (Cust.) Rchb. in the Republic of Adygea AMINET E. SHADGE*, EMILIA A. SIROTYUK, GALINA N. GUNINA & VLADIMIR V. KHIRYANOV Maykop State Technological University, 385000, Maykop, Russia *Corresponding author: E-mail: [email protected] Received 15 June 2019 │ Accepted by V. Pešić: 20 September 2019 │ Published online 16 October 2019 Abstract During the monitoring of rare plant species in the Maykop region of the Republic of Adygea, known and discovered new locations of P. chlorantha were confirmed, for which the height above sea level and geographical coordinates were determined. The identification of the species to a certain range of altitudes above sea level and types of phytocenoses was revealed. Ongenetic states, ontogenetic structure and intraspecific variability of P. chlorantha were studied in populations. Key words: locations, populations, ontogenetic states, ontogenetic structure, intraspecific variability. Introduction In connection with the growing negative impact of human activity on the environment, the problem of preserving the biodiversity of the planet becomes especially acute. One of the most vulnerable components of plant communities are species of the Orchidaceae Juss. Family, which is associated primarily with their bioecological features: highly specialized entomophilia; undifferentiated embryo; the lack of spare substances in the seed, which contributes to the long-term formation of the protocorm and makes it dependent on mycorrhizal fungi; low competitiveness; narrow ecological amplitude and high sensitivity to anthropogenic influences. The listed features of orchids cause their rarity in natural habitats. The most rare and endangered species in the territory of Adygea are listed in the Red Book of the Republic of Adygea (2012).
    [Show full text]
  • Circassian Toponymy of the Krasnodar Territory Vitaliy Shtybin
    Circassian toponymy of the Krasnodar Territory Vitaliy Shtybin Circassian toponymy is widely represented in the Krasnodar Territory. Basically, it has been preserved in medium and small geographical objects and is easy to translate. From the perspective of studying the history and culture of any nation, as well as preserving its memory associated with the geography of its ethnogenesis, local toponymy, preserved in the names of residential settlements, hydronyms, names of mountains, hills and tracts, is of great importance. Some toponyms are controversial today and cause distorted versions of the history of the region excluding the role of the indigenous population. As a rule, the local population mostly does not know about the Circassian origin of local toponymy. However, the Circassian (Adyghe) toponymy bears traces of the region’s ancient history right up to the Bronze Age and this is confirmed by archaeological material and its connection with local place names. In this article I consider the most famous examples of the Circassian toponymy of the region and their features. Main questions Circassian (Adyghe) toponymy is widely represented in the Krasnodar Territory to the south of the Kuban River. This is the historical area of residence of Circassians (Adyghe) and related Abkhazians (including their neighbours – Abaza). The majority of the Circassian (Adyghe) toponymic terms are well preserved in the names of small and medium-sized geographic objects and can be deciphered with varying degrees of confidence. The exceptions are the large toponymic objects such as the Laba and the Kuban rivers. It might be difficult to exclude Circassian origin or some relation to a very ancient period in the history of the Adyghe-Abkhazian language.
    [Show full text]