Platinum and the Greenwich System of Time-Signals in Britain the WORK of GEORGE BIDDELL AIRY and CHARLES VINCENT WALKER from 1849 to 1870 by John A

Total Page:16

File Type:pdf, Size:1020Kb

Platinum and the Greenwich System of Time-Signals in Britain the WORK of GEORGE BIDDELL AIRY and CHARLES VINCENT WALKER from 1849 to 1870 by John A Platinum and the Greenwich System of Time-Signals in Britain THE WORK OF GEORGE BIDDELL AIRY AND CHARLES VINCENT WALKER FROM 1849 TO 1870 By John A. Chaldecott The Science Museum, London The establishment of regular time-signals and their distribution throughout Britain by means of galvanic telegraphy was largely the out- come of collaboration between G. B. Airy and C. V. Walker, with some assistance from the brothers E. and L. Clark. The early history of this development, and the role which platinum occupied in its successful operation, is traced largely from records preserved in the archives of the Royal Greenwich Observatory at Herstmonceux Castle. A broad historical survey of Greenwich time preference was given almost entirely to bat- is to be found in a recent book by Howse (I), teries having metallic platinum present in one and for anyone having a particular interest in form or another. the introduction and development of the Green- The service whereby time-signals were made wich time-signal service from a horological available throughout the country by way of the standpoint there are excellent accounts sup- electric telegraph came about mainly through plied more than a century ago by Ellis (2), who the efforts of two men: George Biddell Airy was then employed as an Assistant at the Royal who in 1835 was appointed Astronomer Royal Observatory, Greenwich, and had day-to-day (9,and Charles Vincent Walker who ten years responsibility for overseeing the time-signal later became Telegraph Superintendent to the service. South Eastern Railway Company (6). The service only became feasible following Ary had no practical experience in galvanic the extensive development of the electric telegraphy (7) but he recognised that possible telegraph, the current for which came from advantages might accrue from the introduction numbers of galvanic cells connected together in of galvanic systems in the Royal Observatory. series to form batteries. In one respect Ellis’s As a starting point he wondered whether with account was not explicit about the type of bat- the assistance of a galvanic battery it would be tery used at Greenwich, for he referred only to possible to make the going of two or more a battery consisting of cells in which the two clocks at the Observatory depend on that of the poles were of copper and zinc, and we know transit-clock. With this in mind he consulted an that several types of copper-zinc cells existed at eminent London chronometer maker, Edward that period, some of which were certainly John Dent, mentioning that ideally the galvanic employed for telegraphic purposes (3). battery should not require frequent renewal but A recent study of documents preserved in the be competent to operate for at least a week and archives of the Royal Greenwich Observatory if possible a month (8). Dent replied that there (4) has served to clarify the position however, would be no difficulty in putting Airy’s pro- and it can now be said that from the start of the position into effect, but mentioned that in trials service a variety of galvanic batteries were in made at an earlier date he had encountered dif- use at Greenwich, though within a few years ficulty from oxidation of the metallic surfaces Platinum Metals Rev., 1986, 30, (l), 29-37 29 George Biddell Airy 180 1 - 1892 A distinguished mathematician, author and ad- ministrator, Airy was often called upon by Government for advice on scientific matters dur- ing the forty-six years that he was Astronomer Royal. One of many honours bestowed on him was the Honorary Freedom of the City of London in recognition of his eminent services which had “so materially benefited the cause of commerce and civilisation” allowed to transmit his time-signals along the railway’s telegraph lines to London Bridge Sta- tion. From there the time-signals might be distributed to stations already on the SER’s telegraph system, and also perhaps to the English Telegraph Company (ETC) whose cen- where the electrical circuit was made and tral telegraph station was situated at Founder’s broken. His own experience had revealed that Court, Lothbury, in the City of London. That by using a battery of Smee cells and having being so, distribution throughout the country platinum and pure gold as the metals where could then be made over the telegraph network electrical contact was made and broken, such a operated commercially by the ETC, to serve battery would last for months (9). other railway companies, and any public in- stitutions or private firms who might wish to Airy’s Plan display Greenwich time. Having received that assurance as regards the An approach was made to Walker in 1849 in- existence of a suitable galvanic battery, Airy forming him of Airy’s wish to have a telegraph realised that it should be possible to send elec- line laid down from the Observatory to trical impulses every second to control the Lewisham Station (I I). Walker responded at movement of “sympathetic” (or slave) clocks once, promising his cordial co-operation; and situated outside the Observatory; and if he after consulting with the Directors of the SER could have a telegraph line connected from the he was able to inform Airy that in giving their Observatory to one of the existing telegraph assent to his plan they regretted that it would systems, he could also make his galvanic time- not be possible for them to bear the cost of in- signals available at designated hours stalling the proposed telegraph line (12). throughout a large area of the country (10). Financial constraints probably precluded His opportunity came when he heard that the Airy from taking any immediate action to im- South Eastern Railway Company proposed to plement his plan and it was not until the year install a telegraph line that would pass within 1851 that he felt able to proceed. His first act nine furlongs (approx. 1.8 km) of the Obser- was to go with Walker to look at some examples vatory. He realised that if he could get permis- of sympathetic clock systems already operating sion for a telegraph connection to be made from in London, all of which were the work of the Observatory to one of the stations on the Charles Shepherd, a well-known London South Eastern Railway (SER), he might be clockmaker. He also went to see the clock Platinum Metals Rev., 1986, 30, (1) 30 Charles Vincent Walker 1812-1882 Inventor, author, editor, and translator of works on electricity and its applications, Walker took an active part in the newly formed London Elec- trical Society. He has been described as the “father” of the profession of electrical engineers, and for thirty-seven years he served as Engineer and Telegraph Superintendent to the South Eastern Railway, in which capacity he assisted Airy greatly in the establishment of the Greenwich system of time-signals system which had been installed by Shepherd at the Great Exhibition building in Hyde Park, being accompanied on that occasion by Shepherd’s son (13). Airy then consulted Shepherd and asked him to provide an estimate of the cost of a sympathetic clock system for the Observatory, including some arrangement for operate continuously. The Smee cell was in- operating the Greenwich Time-Ball electrically, troduced in 1840 by Alfred Smee and im- and also whatever batteries would be required mediately became available commercially (I7). to operate the entire system (14). It was of the single-fluid type, the electrolyte The SER was informed that Au-y now wished being sulphuric acid diluted in the proportion to have six or more telegraph lines installed of one part acid to seven parts water. A sheet of from the Observatory to Lewisham Station, pure rolled zinc, well amalgamated, formed the some to go through to London and others to negative plate, and the positive plate could be provide a means of communication between the platinum, palladium, or pure silver. Before use Royal Observatory and the principal European the positive plate had to undergo special treat- Observatories, once the submarine line from ment, the surface being first roughened all over England to France was completed (I 5). A draft and then platinised by electrolysis for a short agreement was submitted to Ary by the SER, time to acquire a thin coating of platinum and he then wrote to the Board of Admiralty black. Sandpaper was used to roughen plates of setting out his reasons for wishing to proceed platinum or palladium, but in the case of silver (16). The Board’s approval was given shortly the surface was etched with strong nitric acid afterwards and Airy immediately instructed and then washed clean with water (18). The Shepherd to start work on the clock system, function of this platinising treatment was to and Walker was requested to have the installa- promote the easy disengagement of hydrogen tion of the telegraph lines put in hand. bubbles which Smee had observed always tend- ed to adhere more readily to a smooth surface Clock and Telegraph Batteries than they did to one that was irregular; it had The Smee battery, in the form of one or more the desired effect of considerably reducing cells, was the one generally favoured for polarisation when the cell was in operation, and operating electric clocks, as it required little thereby increased its efficiency. The e.m.f. of maintenance and was capable of producing a the cell was about I. I volts (IS), and its internal strong current provided it was not required to resistance around one ohm. Platinum Metals Rev., 1986, 30, (1) 31 usually referred to as “sand-batteries”.
Recommended publications
  • Autobiography of Sir George Biddell Airy by George Biddell Airy 1
    Autobiography of Sir George Biddell Airy by George Biddell Airy 1 CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. CHAPTER I. CHAPTER II. CHAPTER III. CHAPTER IV. CHAPTER V. CHAPTER VI. CHAPTER VII. CHAPTER VIII. CHAPTER IX. CHAPTER X. Autobiography of Sir George Biddell Airy by George Biddell Airy The Project Gutenberg EBook of Autobiography of Sir George Biddell Airy by George Biddell Airy This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg Autobiography of Sir George Biddell Airy by George Biddell Airy 2 License included with this eBook or online at www.gutenberg.net Title: Autobiography of Sir George Biddell Airy Author: George Biddell Airy Release Date: January 9, 2004 [EBook #10655] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK SIR GEORGE AIRY *** Produced by Joseph Myers and PG Distributed Proofreaders AUTOBIOGRAPHY OF SIR GEORGE BIDDELL AIRY, K.C.B., M.A., LL.D., D.C.L., F.R.S., F.R.A.S., HONORARY FELLOW OF TRINITY COLLEGE, CAMBRIDGE, ASTRONOMER ROYAL FROM 1836 TO 1881. EDITED BY WILFRID AIRY, B.A., M.Inst.C.E. 1896 PREFACE. The life of Airy was essentially that of a hard-working, business man, and differed from that of other hard-working people only in the quality and variety of his work. It was not an exciting life, but it was full of interest, and his work brought him into close relations with many scientific men, and with many men high in the State.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Martian Subsurface Properties and Crater Formation Processes Inferred from Fresh Impact Crater Geometries
    Martian Subsurface Properties and Crater Formation Processes Inferred From Fresh Impact Crater Geometries The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stewart, Sarah T., and Gregory J. Valiant. 2006. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteoritics and Planetary Sciences 41: 1509-1537. Published Version http://meteoritics.org/ Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4727301 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Meteoritics & Planetary Science 41, Nr 10, 1509–1537 (2006) Abstract available online at http://meteoritics.org Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries Sarah T. STEWART* and Gregory J. VALIANT Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail: [email protected] (Received 22 October 2005; revision accepted 30 June 2006) Abstract–The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements.
    [Show full text]
  • Kew Observatory and the Evolution of Victorian Science, 1840–1910
    introduction Kew Observatory, Victorian Science, and the “Observatory Sciences” One more recent instance of the operations of this Society in this respect I may mention, in addition to those I have slightly enumerated. I mean the important accession to the means of this Society of a fixed position, a place for deposit, regula- tion, and comparison of instruments, and for many more purposes than I could name, perhaps even more than are yet contemplated, in the Observatory at Kew. Address by Lord Francis Egerton to British Association for the Advancement of Science, June 1842 When in 1842 Lord Egerton, president of the British Association for the Advancement of Science (BAAS), announced the association’s acquisition of Kew Observatory (figure I.1), he heralded the inaugura- tion of what would become one of the major institutions of nineteenth- century British—indeed international—science. Originally built as a pri- vate observatory for King George III and long in a moribund state, after 1842 the Kew building would, as Egerton predicted, become a multi- functional observatory, put to more purposes than were even imagined in 1842. It became distinguished in several sciences: geomagnetism, me- teorology, solar astronomy, and standardization—the latter term being used in this book to refer to testing scientific instruments and develop- ing prototypes of instruments to be used elsewhere, as well as establish- ing and refining constants and standards of measurement. Many of the major figures in the physical sciences of the nineteenth century were in some way involved with Kew Observatory. For the first twenty months of the twentieth century, Kew was the site of the National Physical Labora- 3 © 2018 University of Pittsburgh Press.
    [Show full text]
  • Multi-Page.Pdf
    Public Disclosure Authorized _______ ;- _____ ____ - -. '-ujuLuzmmw---- Public Disclosure Authorized __________~~~ It lif't5.> fL Elf-iWEtfWIi5I------ S -~ __~_, ~ S,, _ 3111£'' ! - !'_= Public Disclosure Authorized al~~~~~~~~~~~~~~~~~~~~~~sl .' _1EIf l i . i.5I!... ..IillWM .,,= aN N B 1. , l h~~~~~~~~~~~~~~~~~~~~~~~~ Public Disclosure Authorized = r =s s s ~~~~~~~~~~~~~~~~~~~~foss XIe l l=4 1lill'%WYldii.Ul~~~~~~~~~~~~~~~~~~ itA=iII1 l~w 6t*t Estimating Woody Biomass in Sub-Saharan Africa Estimating Woody Biomass in Sub-Saharan Africa Andrew C. Miflington Richard W. Critdhley Terry D. Douglas Paul Ryan With contributions by Roger Bevan John Kirkby Phil O'Keefe Ian Ryle The World Bank Washington, D.C. @1994 The International Bank for Reconstruction and Development/The World Bank 1818 H Street, N.W., Washington, D.C. 20433, US.A. All rights reserved Manufactured in the United States of America First printing March 1994 The findings, interpretations, and conclusiornsexpressed in this publication are those of the authors and do not necessarily represent the views and policies of the World Bank or its Board of Executive Directors or the countries they represent Some sources cited in this paper may be informal documents that are not readily available. The manLerialin this publication is copyrighted. Requests for permission to reproduce portions of it should be sent to the Office of the Publisher at the address shown in the copyright notice above. The World Bank encourages dissemination of its work and will normally give permission promptly and, when the reproduction is for noncommnercial purposes, without asking a fee. Permission to copy portions for classroom use is granted through the CopyrightClearance Center, Inc-, Suite 910,222 Rosewood Drive, Danvers, Massachusetts 01923, US.A.
    [Show full text]
  • Workshop on Mars Telescopic Observations
    WORKSHCPON MARS TELESCOPIC OBSERVATIONS 90' 180'-;~~~~~~------------------..~~------------~~----..~o~,· 270' LPI Technical Report Number 95-04 Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPIITR--95-04 WORKSHOP ON MARS TELESCOPIC OBSERVATIONS Edited by J. F. Bell III and J. E. Moersch Held at Cornell University, Ithaca, New York August 14-15, 1995 Sponsored by Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 95-04 LPIITR--95-04 Compiled in 1995 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may be cited as Bell J. F.III and Moersch J. E., eds. (1995) Workshop on Mars Telescopic Observations. LPI Tech. Rpt. 95-04, Lunar and Planetary Institute, Houston. 33 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Mail order requestors will be invoiced for the cost ofshipping and handling. Cover: Orbits of Mars (outer ellipse) and Earth (inner ellipse) showing oppositions of the planet from 1954to 1999. From C. Aammarion (1954) The Flammarion Book ofAstronomy, Simon and Schuster, New York. LPl Technical Report 95-04 iii Introduction The Mars Telescopic Observations Workshop, held August 14-15, 1995, at Cornell University in Ithaca, New York, was organized and planned with two primary goals in mind: The first goal was to facilitate discussions among and between amateur and professional observers and to create a workshop environment fostering collaborations and comparisons within the Mars ob­ serving community.
    [Show full text]
  • Bulletin of the British Museum (Natural History) Entomology
    Bulletin of the British Museum (Natural History) A review of the Solenopsis genus-group and revision of Afrotropical Monomorium Mayr (Hymenoptera: Formicidae) Barry Bolton Entomology series Vol 54 No 3 25 June 1987 The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series. Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff of the Museum and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. Parts are published at irregular intervals as they become ready, each is complete in itself, available separately, and individually priced. Volumes contain about 300 pages and several volumes may appear within a calendar year. Subscriptions may be placed for one or more of the series on either an Annual or Per Volume basis. Prices vary according to the contents of the individual parts. Orders and enquiries should be sent to: Publications Sales, British Museum (Natural History), Cromwell Road, London SW7 5BD, England. World List abbreviation: Bull. Br. Mus. nat. Hist. (Ent.) ©British Museum (Natural History), 1987 The Entomology series is produced under the general editorship of the Keeper of Entomology: Laurence A. Mound Assistant Editor: W. Gerald Tremewan ISBN 565 06026 ISSN 0524-6431 Entomology
    [Show full text]
  • The Charles Knight-Joseph Hooker Correspondence
    A man tenax propositi: transcriptions of letters from Charles Knight to William Jackson Hooker and Joseph Dalton Hooker between 1852 and 1883 David J. Galloway Hon. Research Associate Landcare Research, and Te Papa Tongarewa [email protected] Geoscience Society of New Zealand miscellaneous publication 133J December 2013 Published by the Geoscience Society of New Zealand Inc, 2013 Information on the Society and its publications is given at www.gsnz.org.nz © Copyright David J. Galloway, 2013 Geoscience Society of New Zealand miscellaneous publication 133J ISBN 978-1-877480-36-2 ISSN 2230-4495 (Online) ISSN 2230-4487 (Print) This document is available as a PDF file that can be downloaded from the Geoscience Society website at: http://www.gsnz.org.nz/information/misc-series-i-49.html Bibliographic Reference Galloway D.J. 2013: A man tenax propositi: transcriptions of letters from Charles Knight to William Jackson Hooker and Joseph Dalton Hooker between 1852 and 1883 Geoscience Society of New Zealand miscellaneous publication 133J. 88 pages. A man tenax propositi: transcriptions of letters from Charles Knight to William Jackson Hooker and Joseph Dalton Hooker between 1852 and 1883 Contents Introduction 3 Charles Knight correspondence at Kew 5 Acknowledgements 6 Summaries of the letters 7 Transcriptions of the letters from Charles Knight 15 Footnotes 70 References 77 Figure 1: Dr Charles Knight FLS, FRCS 2 Figure 2: Group photograph including Charles Knight 2 Figure 3: Page of letter from Knight to Hooker 14 Table 1: Comparative chronology of Charles Knight, W.J. Hooker and J.D. Hooker 86 1 Figure 1: Dr Charles Knight FLS, FRCS Alexander Turnbull Library,Wellington, New Zealand ¼-015414 Figure 2: Group taken in Walter Mantell‟s garden about 1865 showing Charles Knight (left), John Buchanan and James Hector (right) and Walter Mantell and his young son, Walter Godfrey Mantell (seated on grass).
    [Show full text]
  • A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars
    minerals Review A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars Joanna Clark 1,* , Brad Sutter 2, P. Douglas Archer Jr. 2, Douglas Ming 3, Elizabeth Rampe 3, Amy McAdam 4, Rafael Navarro-González 5,† , Jennifer Eigenbrode 4 , Daniel Glavin 4 , Maria-Paz Zorzano 6,7 , Javier Martin-Torres 7,8, Richard Morris 3, Valerie Tu 2, S. J. Ralston 2 and Paul Mahaffy 4 1 GeoControls Systems Inc—Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA 2 Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (B.S.); [email protected] (P.D.A.J.); [email protected] (V.T.); [email protected] (S.J.R.) 3 NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (D.M.); [email protected] (E.R.); [email protected] (R.M.) 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] (A.M.); [email protected] (J.E.); [email protected] (D.G.); [email protected] (P.M.) 5 Institito de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; [email protected] 6 Centro de Astrobiología (INTA-CSIC), Torrejon de Ardoz, 28850 Madrid, Spain; [email protected] 7 Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK; [email protected] 8 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, 18100 Granada, Spain Citation: Clark, J.; Sutter, B.; Archer, * Correspondence: [email protected] P.D., Jr.; Ming, D.; Rampe, E.; † Deceased 28 January 2021.
    [Show full text]
  • Astbury (Arthur Kenelm)
    ASTBURY (ARTHUR KENELM). The black fens. 8 0 Cambridge, 1958. .91(4259) Ast. ASTBURY (JOHN). Diss. ... inaug. de morbis cutaneis. 8 0 Edin. , 1781. Att. 77.7.7/16. --- Another copy. Att. 77.7.8/16. ASTBURY (NORMAN FREDERICK). Introduction to electrical applied physics. 80 Lond. , 1956. Engin. Lib. ASTBURY (WILLIAM THOMAS). Fundamentals of fibre structure. With an introd. by Sir W. Bragg. 80 Lond.. 1933. C. M. L. --- Textile fibres under the X-rays. 80 Birmingham pr., n. d. 5397:. 6335 Ast. [ASTELL (MARY). ] An essay in defence of the female sex. In which are inserted the characters of a pedant, a squire, a beau, a vertuoso, a poetaster, a city-critick, &c. In a letter to a lady. Written by a lady. 2nd ed. 120 Lond. , 1696. GGE . a—.4. E-B. 39e Asf ADDITIONS 1 AST B URY (RAYMOND) . --- ed. Libraries and the book trade; papers delivered at a symposium held at Liverpool School of Librarian- ship, May 1967 ... Lond. , 1968. .6555:.02 Ast. --- ed. The writer in the market place. See WRITER (The) in the market place. ASTELL (MARY) continued]. --- A fair way with the Dissenters and their patrons. Not writ by M. L ----- y, or any other furious Jacobite . but by a very moderate person and dutiful subject to the Queen [i.e. M.A.]. Lond., 1704. *A.7.15 4- --- An impartial enquiry into the causes of rebellion and civil war in this kingdom in an examination of Dr. Kennett's sermon, Jan. 31, 1703/4, and indication of the royal martyr. LAnon.1 Lond., 1704.
    [Show full text]
  • The Stratigraphy and Evolution of Lower Mount Sharp from Spectral
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The stratigraphy and evolution of lower Mount Sharp 10.1002/2016JE005095 from spectral, morphological, and thermophysical Key Points: orbital data sets • We have developed a stratigraphy for lower Mount Sharp using analyses of A. A. Fraeman1, B. L. Ehlmann1,2, R. E. Arvidson3, C. S. Edwards4,5, J. P. Grotzinger2, R. E. Milliken6, new spectral, thermophysical, and 2 7 morphologic orbital data products D. P. Quinn , and M. S. Rice • Siccar Point group records a period of 1 2 deposition and exhumation that Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, Division of Geological and followed the deposition and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 3Department of Earth and Planetary exhumation of the Mount Sharp Sciences, Washington University in St. Louis, St. Louis, Missouri, USA, 4United States Geological Survey, Flagstaff, Arizona, group USA, 5Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona, USA, 6Department of Earth, • Late state silica enrichment and redox 7 interfaces within lower Mount Sharp Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA, Geology Department, Physics were pervasive and widespread in and Astronomy Department, Western Washington University, Bellingham, Washington, USA space and/or in time Abstract We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Correspondence to: A. A. Fraeman, Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and [email protected] thermophysical properties.
    [Show full text]