Uncorking the Bottle: What Triggered the Paleocene/Eocene Thermal Maximum Methane Release? Miriame

Total Page:16

File Type:pdf, Size:1020Kb

Uncorking the Bottle: What Triggered the Paleocene/Eocene Thermal Maximum Methane Release? Miriame PALEOCEANOGRAPHY, VOL. 16, NO. 6, PAGES 549-562, DECEMBER 2001 Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? MiriamE. Katz,• BenjaminS. Cramer,Gregory S. Mountain,2 Samuel Katz, 3 and KennethG. Miller,1,2 Abstract. The Paleocene/Eocenethermal maximum (PETM) was a time of rapid global warming in both marine and continentalrealms that has been attributed to a massivemethane (CH4) releasefrom marine gas hydrate reservoirs. Previously proposedmechanisms for thismethane release rely on a changein deepwatersource region(s) to increasewater temperatures rapidly enoughto trigger the massivethermal dissociationof gas hydratereservoirs beneath the seafloor.To establish constraintson thermaldissociation, we modelheat flow throughthe sedimentcolumn and showthe effectof the temperature changeon the gashydrate stability zone throughtime. In addition,we provideseismic evidence tied to boreholedata for methanerelease along portions of the U.S. continentalslope; the releasesites are proximalto a buriedMesozoic reef front. Our modelresults, release site locations, published isotopic records, and oceancirculation models neither confirm nor refute thermaldissociation as the triggerfor the PETM methanerelease. In the absenceof definitiveevidence to confirmthermal dissociation,we investigatean altemativehypothesis in which continentalslope failure resulted in a catastrophicmethane release.Seismic and isotopic evidence indicates that Antarctic source deepwater circulation and seafloor erosion caused slope retreatalong the westemmargins of the North Atlanticin the latePaleocene. Continued erosion or seismicactivity along the oversteepenedcontinental margin may have allowed methaneto escapefrom gas reservoirstrapped between the frozen hydrate-bearingsediments and the underlyingburied Mesozoicreef front, precipitatingthe Paleocene/Eoceneboundary methanerelease. An importantimplication of this scenariois thatthe methanerelease caused (rather than resulted from) the transienttemperature increase of the PETM. Neither thermaldissociation nor mechanicaldisruption of sedimentscan be identifiedunequivocally as the triggering mechanism for methanerelease with existingdata. Further documentation with high- resolutionbenthic foraminiferal isotopic records and with seismicprofiles tied to boreholedata is neededto clarify whether erosion,thermal dissociation, or a combinationof thesetwo was the triggeringmechanism for the PETM methanerelease. 1. Introduction al., 2000]; it was followedby an exponentialreturn to preexcursion 1513Cvalues as excess •2C was eventually transferred out of the A catastrophic,transient event at the Paleocene/Eocene(P/E) ocean-atmospherecarbon reservoir, which is consistentwith esti- boundary(,,•55 Ma) led to rapidglobal warming, severe perturba- mates of the modem residencetime of carbon [Dickens, 2000]. tion of the Earth'sexogenic carbon cycle, and dramaticchanges in Methane derivedfrom frozen gas hydrateand underlyingfree and marine and terrestrialecosystems. During the Paleocene/Eocene dissolvedgas reservoirs (mean 15•3C -- ,,•-60%o [see Kvenvolden, thermalmaximum (PETM; formerlyknown as the latestPaleocene 1995]) is a plausiblesource for the large, rapid carbonisotopic thermalmaximum, or LPTM), deep-oceanand high-latitudesur- changerecorded at the P/E boundary[Dickens et al., 1995; Kaiho facewater temperatures rose by ,,•4ø-6øC[e.g., Kennett and Stott, et al., 1996]. The rapid escapeof 1500-2200 gigatons(Gt) of 1991; Zachos et al., 1993; Thomasand Shackleton, 1996; Katz et isotopicallylight CH4 from multiplemarine gas hydrate reservoirs al., 1999] in <5000 years [Katz et al., 1999; Norris and Rdhl, stored within continentalslope sedimentsand the subsequent 1999; R6hl et al., 2000], archaicmammals died out while modem transferof CH4 to the ocean-atmospheresystem [Dickens et al., mammalianancestors appeared in the geologicrecord [Hooker, 1995, 1997a;Kaiho et al., 1996; Dickens,2000, 2001] hasbecome 1996; Clyde and Gingerich, 1998], and many deep-seaspecies known as the "methane hydrate dissociationhypothesis." An became extinct or disappearedtemporarily [e.g., Tjasma and alternativesource that may accountfor some or all of the CIE is Lohmann, 1983; Steineckand Thomas,1996]. a 12C-enrichedbolide [I45'lde and Quinby-Hunt, 1997]. The PETM coincided with a dramatic decrease of ,,•2-4%o in In this paper,we establishconstraints on the proposedPETM 613Cvalues worldwide, called the "carbonisotope excursion" thermal dissociation by modelingheat flow throughthe sediment (CIE) [e.g.,Kennett and Stott, 1991;Koch et al., 1992;Bralower et columnand determiningthe effect of the temperaturechange on al., 1995;Katz et al., 1999]. The CIE occurredin <5 kyr and lasted the gas hydrate stability zone (GHSZ) through time. We also ,,•150-220 kyr [Katz et al., 1999; Norris and R6hl, 1999; R6hl et provideseismic evidence tied to boreholedata for methanerelease alongportions of the U.S. continentalslope. Because our modeling 1Departmentof Geological Sciences, Rutgers University, Piscataway, results and the paleobathymetric distribution of the methanerelease New Jersey,USA. sitesdo not conclusivelyconfirm thermal dissociation as the causal 2Lamont-DohertyEarth Observatory, Columbia University, Palisades, mechanism for the PETM methanerelease, we considererosion of New York, USA. continentalslope sediments as an alternativetrigger for methane 3Departmentof Earthand EnvironmentScience, Rensselaer Poly- release. technicInstitute, Troy, New York, USA. Copyright2001 by the AmericanGeophysical Union. 2. Thermal Dissociation Hypothesis Papernumber 2000PA000615. The PETM and CIE were short-termclimatic perturbations 0883-8305/01/2000PA000615512.00 superimposedon a long-termglobal warmingtrend that beganin 549 550 KATZ ET AL.: WHAT TRIGGERED THE PETM METHANE RELEASE? the late Paleocene at •56.5 Ma and continued for ,-•5 Myr, seafloor culminatingin the early Eoceneat ,-•51.5 Ma [Shackletonet al., 1984;Miller et al., 1987; Zachoset al., 2001]. A gradualwarming of the deepsea duringthis long-termwarming trend would have causeda slow changein the temperature-pressurestability field of 200 frozengas hydrate, resulting in a gradualtransfer of methanefrom gashydrate reservoirs to the oceans.This gradualtransfer could not have producedthe rapid isotopicchanges observed at the CIE, contraryto previousstudies that have proposedincorrectly that 400 long-termwarming passeda critical temperaturethreshold for methanehydrate stability [e.g., Norris, 2001]. Instead,a rapidwater temperatureincrease is requiredto trigger widespreadthermal 6OO dissociation,presumably through a changein deepwatersource region [Dickenset al., 1995]. As proposed[Dickens et al., 1995, 1997a;Kaiho et al., 1996], 8OO the methanehydrate dissociation hypothesis maintains that long- 0 2000 4000 6000 8000 term globalwarming during the late Paleocene[Shackleton et al., time (years) 1984; Miller et al., 1987; Zachoset al., 2001] pushedthe ocean- atmospheresystem past a criticalthreshold [Zachos et al., 1993; Thomas,1998], causingwarm surfacewaters to sink and inter- Figure 1. An instantaneous5øC water temperature increase will mediateto deepocean temperatures to rise. This warmingwould propagatethrough the underlyingsediments as a functionof time. have propagatedinto the sediments,melting once solid CH4 See text for input parameters. hydratesand releasing free gas bubbles into the sediments[Dickens temperatureat the sedimentsurface AT, d, a geothermalgradient et al., 1995, 1997a; Kaiho et al., 1996]. Thermal dissociation •, and a thermaldiffusivity • (adaptedfrom Carslawand Jaeger would have createdan increasein sedimentpore pressureand [1959, equation(13), p. 61] and Turcotteand Schubert[1982, destabilizedthe sedimentcolumn, resulting in slopefailure and the problem4-34]). An analysisof this model givesthe changein release of massive quantitiesof CH4 into the ocean. Methane temperaturedTz as a functionof time t and depthz: releasewould have occurredon continentalslopes between 900 and 2000 m water depthbecause all gas hydrateat thesedepths drz//X ri• : erfc[z/ (2(•t) •/2)] , (1) wouldhave been prone to dissociationin thePaleocene with a 4ø- 6øC rise in bottomwater temperature[Dickens et al., 1995]. The where erfc is the complementaryerror function(erfc = 1 - error gaseousCH4 would have reactedwith dissolved02 (likely via function;values are from standardtables, e.g., Carslawand Jaeger bacterialactivity [Paull et al., 1995; Buffettand Zatsepina,2000]) [1959,p. 485] andTurcotte and Schubert[1982, p. 161]),Tz = T,•+ •2 to produce C-enrichedCO2, adding carbon to all globalexogenic •3z+dTz, • = 3 x 10-7 m2/s(=9.46 m2/yr [Hyndman etal., 1979; carbonreservoirs and significantlyshoaling the depthof carbonate Dickenset al., 1995]), and AT,• = 5øC (approximateobserved dissolution in the ocean [e.g., Dickens et al., 1995, 1997a; deepwaterwarming at the PETM). Thomas,1998; Katz et al., 1999; Dickens,2000]. Higher bottom We simplifyour heat flow modelwith severalassumptions that water temperature,lower dissolved02, changesin surfacewater result in a maximum rate of temperatureanomaly propagation productivity,and/or more corrosivedeep watersprecipitated the (therebyfavoring thermal dissociation); a more realisticanalysis extinctionof many deep-seaspecies [e.g., Thomas,1998]. would lengthenthe time requiredfor the temperatureincreases predictedby this model. We use an instantaneous5øC water temperatureincrease; in reality,the temperatureincrease resulting 2.1. Constraints on Thermal
Recommended publications
  • Mesozoic—Dinos!
    MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr.
    [Show full text]
  • Reduced El Niño–Southern Oscillation During the Last Glacial
    RESEARCH | REPORTS PALEOCEANOGRAPHY vergent results and our newly generated data by considering geographic location, choice of fora- minifera species, and changes in thermocline – depth (see supplementary materials). Reduced El Niño Southern Oscillation ENSO variability is asymmetric (the El Niño warm phase is more extreme than the La Niña during the Last Glacial Maximum cold phase) (14), so temperature variations in the equatorial Pacific are not normally distrib- Heather L. Ford,1,2* A. Christina Ravelo,1 Pratigya J. Polissar2 uted (7, 15), and statistical tests that assume normality (e.g., standard deviation) can lead to El Niño–Southern Oscillation (ENSO) is a major source of global interannual variability, but erroneous conclusions with respect to changes its response to climate change is uncertain. Paleoclimate records from the Last Glacial in variance. Therefore, we use quantile-quantile Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (Q-Q) plots—a simple, yet powerful way to vi- — (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. sualize distribution data to compare the tem- In this work, we reconstruct LGM temperature variability at equatorial Pacific sites perature range and distribution recorded by two using measurements of individual planktonic foraminifera shells. A deep equatorial populations of individual foraminifera shells to thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in interpret possible climate forcing mechanisms. reduced ENSO variability during the LGM compared to the Late Holocene. These results Sensitivity studies using modern hydrographic suggest that ENSO was not tied directly to the east-west temperature gradient, as data show how changes in ENSO and seasonality previously suggested.
    [Show full text]
  • Curriculum Vitae
    TIMOTHY JAMES BRALOWER Department of Geosciences Pennsylvania State University University Park, PA 16802 [email protected] www.globalnannoplankton.com Education: Ph.D. Earth Sciences, Scripps Institution of Oceanography, University of California, San Diego, 1986. M.S. Oceanography, Scripps Institution of Oceanography, University of California, San Diego, 1982. B.A. with Honours in Geology, Oxford University, England, 1980. Professional Experience: Professor, Department of Geosciences, Pennsylvania State University, 2003-. Head, Department of Geosciences, Pennsylvania State University, 2003-2011; 2017-2018. Chair, Department of Geological Sciences, University of North Carolina, Chapel Hill, 1998-2002. Joseph Sloane Professor of Geological and Marine Sciences, University of North Carolina, Chapel Hill, 1998-2002. Associate Professor of Geological and Marine Sciences, University of North Carolina, Chapel Hill, 1993-1998. Assistant Professor, Geological and Marine Sciences, University of North Carolina, Chapel Hill, 1990-1993. Assistant Professor, Florida International University, State University of Florida at Miami, 1987-1990. ODP/IODP: Shipboard biostratigrapher, Leg 122 (Indian Ocean, 1988), Leg 143 (Pacific Ocean, 1993), Leg 165 (Caribbean, 1995), Expedition 364 (Chicxulub, 2016). Co-chief scientist, ODP Leg 198 (Pacific, 2001). Honors: Hettelman Junior Faculty Research Prize, UNC-CH, 1995. Fulbright Senior Scholarship, University of New South Wales, 2011-12. Wilson Service Award, College of Earth and Mineral Sciences, PSU, 2015; G. Montgomery and Marion Mitchell Award for Innovative Teaching, College of Earth and Mineral Sciences, PSU, 2017; George W. Atherton Award for Excellence in Teaching, PSU Systemwide Highest Award 2020. Memberships: AGU, GSA, NAGT Publications: http://scholar.google.com/citations?user=q4WEgGYAAAAJ&hl=en&oi=ao Partial list of Professional Service (past 20 years) .
    [Show full text]
  • Exhibit Specimen List FLORIDA SUBMERGED the Cretaceous, Paleocene, and Eocene (145 to 34 Million Years Ago) PARADISE ISLAND
    Exhibit Specimen List FLORIDA SUBMERGED The Cretaceous, Paleocene, and Eocene (145 to 34 million years ago) FLORIDA FORMATIONS Avon Park Formation, Dolostone from Eocene time; Citrus County, Florida; with echinoid sand dollar fossil (Periarchus lyelli); specimen from Florida Geological Survey Avon Park Formation, Limestone from Eocene time; Citrus County, Florida; with organic layers containing seagrass remains from formation in shallow marine environment; specimen from Florida Geological Survey Ocala Limestone (Upper), Limestone from Eocene time; Jackson County, Florida; with foraminifera; specimen from Florida Geological Survey Ocala Limestone (Lower), Limestone from Eocene time; Citrus County, Florida; specimens from Tanner Collection OTHER Anhydrite, Evaporite from early Cenozoic time; Unknown location, Florida; from subsurface core, showing evaporite sequence, older than Avon Park Formation; specimen from Florida Geological Survey FOSSILS Tethyan Gastropod Fossil, (Velates floridanus); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimen from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Barge Canal spoil island, Levy County, Florida; specimens from Tanner Collection Echinoid Sea Biscuit Fossils, (Eupatagus antillarum); In Ocala Limestone from Eocene time; Mouth of Withlacoochee River, Levy County, Florida; specimens from John Sacha Collection PARADISE ISLAND The Oligocene (34 to 23 million years ago) FLORIDA FORMATIONS Suwannee
    [Show full text]
  • 1 John A. Tarduno
    JOHN A. TARDUNO January, 2016 Professor of Geophysics Tel: 585-275-5713 Department of Earth and Environmental Sciences Fax: 585-244-5689 University of Rochester, Rochester, NY 14627 Email: [email protected] USA http://www.ees.rochester.edu/people/faculty/tarduno_john Academic Career: 2005-present Professor of Physics and Astronomy, University of Rochester, Rochester, NY. 2000-present Professor of Geophysics, University of Rochester, Rochester, NY. 1998-2006 Chair, Department of Earth and Environmental Sciences 1996 Associate Professor of Geophysics, University of Rochester, Rochester, NY. 1993 Assistant Professor of Geophysics, University of Rochester, Rochester, NY. 1990 Assistant Research Geophysicist, Scripps Institution of Oceanography, La Jolla, Ca. 1989 National Science Foundation Postdoctoral Fellow, ETH, Zürich, Switzerland 1988 JOI/USSAC Ocean Drilling Fellow, Stanford University, Stanford, Ca. 1987 Ph.D. (Geophysics), Stanford University, Stanford, Ca. 1987 M.S. (Geophysics) Stanford University, Stanford Ca. 1983 B.S. (Geophysics) Lehigh University, Bethlehem Pa. Honors and Awards: Phi Beta Kappa (1983) Fellow, Geological Society of America (1998) JOI/USSAC Distinguished Lecturer (2000-2001) Goergen Award for Distinguished Achievement and Artistry in Undergraduate Teaching (2001) Fellow, American Association for the Advancement of Science (2003) American Geophysical Union/Geomagnetism and Paleomagnetism Section Bullard Lecturer (2004) Fellow, John Simon Guggenheim Foundation (2006-2007) Edward Peck Curtis Award for
    [Show full text]
  • Paleogene and Neogene Time Scale of GTS 2012 Paleogene Neogene N
    Paleogene and Neogene Time Scale of GTS 2012 Paleogene Neogene N. Vandenberghe 1, F.J. Hilgen 2 and R.P. Speijer 3 F.J. Hilgen 1, L.J. Lourens 2 and J.A. Van Dam 3 1. Department of Earth and Environmental Sciences, K. U. Leuven, Celestijnenlaan 200E, B - 3001 Leuven, Belgium, [email protected] 1. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands, [email protected] 2. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands, [email protected] 2. Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3508 TA Utrecht, The Netherlands, [email protected] 3. Department of Earth and Environmental Sciences, K. U. Leuven, Celestijnenlaal 200E, B - 3001 Leuven, Belgium, [email protected] 3. Institut Català de Paleontologia Miquel Crusafont (ICP), Campus de la UAB, Mòdul ICP, E-08193 cerdanyola del Vallès, Spain, [email protected] Of the 9 Paleogene stages, only 3 remain to be formally defined: the Bartonian and Priabonian stages of upper Paleogene Time Scale Eocene and the Chattian (base of upper Oligocene). Larger 18 13 AGE Epoch/Age Polarity Mega- Dinoflagellate Cysts North American O C AGE -1.0 -0.5 -0.5 Of the 8 Neogene stages, only 2 remain to be formally defined: the Burdigalian and Langhian stages of lower and middle Mio- (Ma) Chron Cycles Planktonic Foraminifera Benthic Calcareous Nannofossils Radiolarians NALMA MP European Mammals ALMA SALMA 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 Age (Stage) (Ma) During the Paleogene, the global climate, being warm (Stage) Northwestern Europe Mammals other zones Foraminifera ELMA R T low latitude southern high latitude until the late Eocene, shows a significant cooling trend cene.
    [Show full text]
  • PALEOGENE FOSSILS and the RADIATION of MODERN BIRDS HQ F
    The Auk 122(4):1049–1054, 2005 © The American Ornithologists’ Union, 2005. Printed in USA. OVERVIEW PALEOGENE FOSSILS AND THE RADIATION OF MODERN BIRDS Hq F. Jrx1 Division of Birds, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, USA M birds arose mainly in 1989, Mayr and Manegold 2004), and others. the Neogene Period (1.8–23.8 mya), and mod- Paleogene fossils also document diverse extinct ern species mainly in the Plio-Pleistocene branches of the neornithine tree, ranging from (0.08–5.3 mya). Neogene fossil birds generally large pseudotoothed seabirds to giant fl ightless resemble modern taxa, and those that cannot land birds to small zygodactyl perching birds be a ributed to a modern genus or species (Ballmann 1969, Harrison and Walker 1976, can usually be placed in a modern family with Andors 1992). a fair degree of confi dence (e.g. Becker 1987, Before the Paleogene, fossils of putative neor- Olson and Rasmussen 2001). Fossil birds from nithine birds are sparse and fragmentary (Hope earlier in the Cenozoic can be more challeng- 2002), and their phylogenetic placement is all ing to classify. The fossil birds of the Paleogene the more equivocal. The Paleogene is thus a cru- (23.8–65.5 mya) are clearly a ributable to the cial time period for understanding the history of Neornithes (modern birds), and the earliest diversifi cation of birds, particularly with respect well-established records of most traditional to the deeper branches of the neornithine tree. orders and families of modern birds occur then.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Recent Advances in Studies on Mesozoic and Paleogene Mammals in China
    Vol.24 No.2 2010 Paleomammalogy Recent Advances in Studies on Mesozoic and Paleogene Mammals in China WANG Yuanqing* and NI Xijun Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 10004, China ike in other fields of paleontology, research in from the articular of the lower jaw and the quadrate of the paleomammalogy mainly falls into two aspects. cranium following the process of reduction and detachment LOne is related to the biological nature of fossil from the reptilian mandible, are new elements of the bony mammals, such as their systematics, origin, evolution, chain in the mammalian middle ear. The appearance of phylogenetic relationships, transformation of key features mammalian middle ear allows mammals to hear the sound and paleobiogeography, and the other is related to the of higher frequencies than reptiles do. Generally speaking, geological context, involving biostratigraphy, biochronology, a widely accepted hypothesis is that mammals originated faunal turnover and its relations to the global and regional from a certain extinct reptilian group. The formation and environmental changes. In the last decade, a number of development of the definitive mammalian middle ear well-preserved mammalian specimens were collected from (DMME) has thus become one of the key issues in the study different localities around the country. Such discoveries have of mammalian evolution and has drawn the attention from provided significant information for understanding the early many researchers for many years. evolution of mammals and reconstructing the phylogeny of Developmental biological studies have proven the early mammals. function of the Meckel’s cartilage and its relationship to Studies of Chinese Mesozoic mammals achieved the ear ossicles during the development of mammalian remarkable progress in the past several years.
    [Show full text]
  • Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives
    minerals Review Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives Fabio Tateo Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche (IGG-CNR) Padova, c/o Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131 Padova, Italy; [email protected] Received: 20 October 2020; Accepted: 26 November 2020; Published: 30 November 2020 Abstract: The Paleocene–Eocene Thermal Maximum (PETM) was an “extreme” episode of environmental stress that affected the Earth in the past, and it has numerous affinities concerning the rapid increase in the greenhouse effect. It has left several biological, compositional, and sedimentary facies footprints in sedimentary records. Clay minerals are frequently used to decipher environmental effects because they represent their source areas, essentially in terms of climatic conditions and of transport mechanisms (a more or less fast travel, from the bedrocks to the final site of recovery). Clay mineral variations at the PETM have been studied by several authors in terms of climatic and provenance indicators, but also as tracers of more complicated interplay among different factors requiring integrated interpretation (facies sorting, marine circulation, wind transport, early diagenesis, etc.). Clay minerals were also believed to play a role in the recovery of pre-episode climatic conditions after the PETM exordium, by becoming a sink of atmospheric CO2 that is considered a necessary step to switch off the greenhouse hyperthermal effect. This review aims to consider the use of clay minerals made by different authors to study the effects of the PETM and their possible role as effective (simple) proxy tools for environmental reconstructions.
    [Show full text]
  • Paleogene-Early Neogene Palynomorphs from the Eastern Equatorial Atlantic and Southeastern Florida, USA: Biostratigraphy and Paleoenvironmental Implications
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2018 Paleogene-Early Neogene palynomorphs from the Eastern Equatorial Atlantic and Southeastern Florida, USA: Biostratigraphy and paleoenvironmental implications Walaa K. Awad Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Geology Commons, and the Geophysics and Seismology Commons Department: Geosciences and Geological and Petroleum Engineering Recommended Citation Awad, Walaa K., "Paleogene-Early Neogene palynomorphs from the Eastern Equatorial Atlantic and Southeastern Florida, USA: Biostratigraphy and paleoenvironmental implications" (2018). Doctoral Dissertations. 2665. https://scholarsmine.mst.edu/doctoral_dissertations/2665 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. i PALEOGENE-EARLY NEOGENE PALYNOMORPHS FROM THE EASTERN EQUATORIAL ATLANTIC AND SOUTHEASTERN FLORIDA, USA: BIOSTRATIGRAPHY AND PALEOENVIRONMENTAL IMPLICATIONS by WALAA KAMALELDEEN AWAD A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in GEOLOGY and GEOPHYSICS 2018 Approved by Francisca Oboh-Ikuenobe, Advisor John Hogan David Wronkiewicz Wan Yang Lucy Edwards ii © 2018 Walaa Kamaleldeen Awad All Rights Reserved iii To my daughters, Hala and Sara iv PUBLICATION DISSERTATION OPTION This dissertation consists of the following five articles which have been submitted for publication, or will be submitted for publication as follows: Paper I, pages 3-71 have been accepted by JOURNAL OF AFRICAN EARTH SCIENCES.
    [Show full text]
  • Ocean Drilling Program Initial Reports Volume
    Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 143 30. SEDIMENT FACIES AND ENVIRONMENTS OF DEPOSITION ON CRETACEOUS PACIFIC CARBONATE PLATFORMS: AN OVERVIEW OF DREDGED ROCKS FROM WESTERN PACIFIC GUYOTS1 Robert J. van Waasbergen2 ABSTRACT Many years of dredging of Cretaceous guyots in the western Pacific Ocean have shown the widespread occurrence of drowned carbonate platforms that were active in the Early to middle Cretaceous. Through petrographic analysis of available dredged limestone samples from these guyots, eight limestone lithofacies are distinguished, of which the first three are found in great abundance or in dredges from more than one guyot. The eight lithofacies are used to form a composite image of the depositional environments on the Cretaceous Pacific carbonate platforms. The most abundant facies (Facies 1) is a coarse bioclastic grainstone found in the forereef environment. Facies 2 comprises mudstone in which small bioclasts are rare to abundant. This facies is typical of the platform-interior ("lagoon") environment. Facies 3 comprises packstones and wackestones of peloids and coated grains, and is attributed to deposition in environments of moderate energy dominated by tidal currents. A number of lithofacies were recognized in only a few samples, or only in samples from a single guyot, and are therefor termed "minor" facie;. Facies 4 comprises muddy sponge-algal bafflestone deposits probably associated with shallow, platform-interior bioherms. Facies 5 comprises oolite grainstones and is attributed to high-energy platform-margin environments. Facies 6 is a mixed carbonate/siliciclastic deposit and may be associated with an episode of renewed volcanic activity on one of the guyots (Allison) in the Mid-Pacific Mountains.
    [Show full text]