Modern and Ancient Hiatuses in the Pelagic Caps of Pacific Guyots and Seamounts and Internal Tides GEOSPHERE; V

Total Page:16

File Type:pdf, Size:1020Kb

Modern and Ancient Hiatuses in the Pelagic Caps of Pacific Guyots and Seamounts and Internal Tides GEOSPHERE; V Research Paper GEOSPHERE Modern and ancient hiatuses in the pelagic caps of Pacific guyots and seamounts and internal tides GEOSPHERE; v. 11, no. 5 Neil C. Mitchell1, Harper L. Simmons2, and Caroline H. Lear3 1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK doi:10.1130/GES00999.1 2School of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, 905 N. Koyukuk Drive, 129 O’Neill Building, Fairbanks, Alaska 99775, USA 3School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK 10 figures CORRESPONDENCE: neil .mitchell@ manchester ABSTRACT landmasses were different. Furthermore, the maximum current is commonly .ac .uk more important locally than the mean current for resuspension and transport Incidences of nondeposition or erosion at the modern seabed and hiatuses of particles and thus for influencing the sedimentary record. The amplitudes CITATION: Mitchell, N.C., Simmons, H.L., and Lear, C.H., 2015, Modern and ancient hiatuses in the within the pelagic caps of guyots and seamounts are evaluated along with of current oscillations should therefore be of interest to paleoceanography, al- pelagic caps of Pacific guyots and seamounts and paleotemperature and physiographic information to speculate on the charac- though they are not well known for the geological past. internal tides: Geosphere, v. 11, no. 5, p. 1590–1606, ter of late Cenozoic internal tidal waves in the upper Pacific Ocean. Drill-core Hiatuses in pelagic sediments of the deep abyssal ocean floor have been doi:10.1130/GES00999.1. and seismic reflection data are used to classify sediment at the drill sites as interpreted from sediment cores (Barron and Keller, 1982; Keller and Barron, having been accumulating or eroding or not being deposited in the recent 1983; Moore et al., 1978). Hiatuses are formed by either physical removal of Received 11 November 2013 Revision received 2 May 2015 geological past. When those classified sites are compared against predictions material by currents or dissolution of soluble components of the sediment. Accepted 23 June 2015 of a numerical model of the modern internal tidal wave field (Simmons, 2008), They can be difficult to recognize, being complicated by incomplete recovery Published online 13 August 2015 the sites accumulating particles over the past few million years are found to of stratigraphy by coring and requiring missing biostratigraphic zones to be be away from beams of the modeled internal tide, while those that have not identified (Moore et al., 1978). For pragmatic reasons we use low accumula- been accumulating are in internal tide beams. Given the correspondence to tion rates (condensed sections) as signs of breaks in sedimentation, which are the modern internal wave field, we examine whether internal tides can ex- loosely referred to as hiatuses, although they may not strictly speaking be hia- plain ancient hiatuses at the drill sites. For example, late Cenozoic pelagic tuses in the sense originally intended. Individual hiatuses have been attributed caps on guyots among the Marshall Islands contain two hiatuses of broadly to changes in deep-ocean circulation originating from tectonic changes of similar age, but the dates of the first pelagic sediments deposited following gateways and changes in production of deep water at high latitudes (Barron each hiatus do not correlate between guyots, suggesting that they originate and Keller, 1982; Keller and Barron, 1983). The presence of microfossils out of not from ocean chemical changes, but from physical processes, such as ero- stratigraphic sequence is evidence that hiatuses can be at least partly caused sion by internal tidal waves. We investigate how changing conditions such as by physical movements (Thiede, 1981). Barron and Keller (1982) noted that Mio- ocean temperature and basin physiography may have affected internal tides cene hiatuses correlate with sea-level lowering, greater 18O in benthic forami- through the Cenozoic. Allowing for subsequent rotation or uplift by plate tec- nifera, and cool faunal assemblages, consistent with intensified deep-water tonics, ancient submarine ridges among the Solomon, Bonin, and Mariana production and circulation. However, Moore (2013) argued that the general island chains may have been responsible for some sediment hiatuses at these circulation was likely too sluggish to explain reworked radiolaria around the distant guyot sites. Eocene-Oligocene boundary in deep-water samples, suggesting that higher frequency motions such as from internal waves may have been involved. The sediments deposited in the summits of guyots and seamounts poten- INTRODUCTION tially record changing physical conditions within the upper ocean. Watkins et al. (1995) noticed that pelagic cap thicknesses on guyots decline going north Within the subject of paleoceanography, much effort has been expended from the equator, diminishing to zero at ~25°N, a trend also found in seis- investigating the ocean structure of large-scale currents from paleontolog- mic data (van Waasbergen and Winterer, 1993). Watkins et al. (1995) identified ical, isotopic, and geochemical evidence. Much less is known about water erosion as the cause of the thinning, although the origin of the erosion was movements of shorter periods, such as those associated with eddies, baro- unknown at that time. Pearson (1995) developed a higher resolution biostratig- tropic tides, internal waves, and surface waves, although these movements raphy of samples from three drill sites on guyots among the Marshall Islands; For permission to copy, contact Copyright may have been significantly different in the geological past, for example, be- he identified hiatuses and noted that they terminated at different times, hinting Permissions, GSA, or [email protected]. cause wind and temperature regimes and physiography of the oceans and that they had a physical rather than chemical origin. Pearson (1995) suggested © 2015 Geological Society of America GEOSPHERE | Volume 11 | Number 5 Mitchell et al. | Internal tidal beams and sediment hiatuses on guyots Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/11/5/1590/3337169/1590.pdf 1590 by guest on 24 September 2021 Research Paper that pelagic cap development proceeds from an early barren stage to first ac- cumulation under the influence of currents, allowing sediments to accumulate only in the center of the platform, followed by progressive expansion of that 883,1203,1204 deposit to the platform edges under more quiescent conditions. Detroit Increasing sophistication of physical oceanographic models, combined Emperor Seamount with more accurate estimates of basin shape (Smith and Sandwell, 1997) and 433 Suiko 0123 ocean density structure, have allowed increasingly more accurate estimates 431 Depth (km) to be made of physical conditions at the modern seabed. In addition, the Geo- 432,1205 40˚ MapApp software tool (www .geomapapp .org) has provided easy access to a 430 Ojin revised consistent stratigraphy of the drill cores recovered by the Deep Sea s 308,1206 879 Drilling Project (DSDP) and Ocean Drilling Program (ODP) (Fig. 1). This combi- nation now allows an exploration of the spatial correspondence between inter- nal tidal wave propagation across the Pacific predicted by numerical modeling 878 MIT D (Simmons, 2008) (Fig. 2) with modern seabed hiatuses. Although the model C A and the geologic data represent markedly different time scales, we suggest 866 Resolution B reasons why the internal wave field may not have changed greatly over the 20˚ 865 Allison Hawai’i 44 Horizon past few million years. Furthermore, assessing the presence or absence of hia- 171 Mid-Pacific Mountains tuses using seismic and drill-core data together effectively provides estimates 200 Ita Mai Tai 202 873 Wodejebato over large spatial and temporal scales, which can be preferable to overcome 0 872 Lo-En 2 D local variability likely to affect individual shallow cores. Given the modern cor- 4 0 871 Limalok 2 C respondence, we speculate on earlier conditions in the late Cenozoic upper Marshall 0 4 ) Islands ) 2 ocean. Although it is not possible to infer the ancient pattern of the internal 4 C 0˚ 0 2 B wave field from the limited sedimentary information, we highlight some tec- 0 4 2 * B tonic movements that might have affected the wave field and might explain Depth (km 4 0 Depth (km 2 some hiatuses. 0 2 4 A * A This issue is complex, so we devote the following section to describing the 4 0 0220000 404000600600800 nature of internal waves (how they are generated and propagate) and other Distance (km (km) ) flow phenomena over seamounts and guyots that may also affect sediment 140˚ 160˚ 180˚ -160˚ deposits. We then introduce the data sets and provide an interpretation of them, bearing in mind the physical oceanographic results. In the discussion, Figure 1. Bathymetry of the central-west Pacific Ocean, highlighting 0–3 km depths relevant to the origins of the earlier hiatuses are considered speculatively in terms of evi- internal wave generation. Black areas represent depths >3 km and land areas (islands outlined in white). Numbers are scientific drilling sites; those with large white circles are guyot or sea- dence for changing water temperatures and changing basin physiography, mount sites with superior seismic and sample data for assessing internal wave effects. Large which affected the conversion of barotropic tides into internal waves. circles are some
Recommended publications
  • 25. PELAGIC Sedimentsi
    ^ 25. PELAGIC SEDIMENTSi G. Arrhenius 1. Concept of Pelagic Sedimentation The term pelagic sediment is often rather loosely defined. It is generally applied to marine sediments in which the fraction derived from the continents indicates deposition from a dilute mineral suspension distributed throughout deep-ocean water. It appears logical to base a precise definition of pelagic sediments on some limiting property of this suspension, such as concentration or rate of removal. Further, the property chosen should, if possible, be reflected in the ensuing deposit, so that the criterion in question can be applied to ancient sediments. Extensive measurements of the concentration of particulate matter in sea- water have been carried out by Jerlov (1953); however, these measurements reflect the sum of both the terrigenous mineral sol and particles of organic (biotic) origin. Aluminosilicates form a major part of the inorganic mineral suspension; aluminum is useful as an indicator of these, since this element forms 7 to 9% of the total inorganic component, 2 and can be quantitatively determined at concentration levels down to 3 x lO^i^ (Sackett and Arrhenius, 1962). Measurements of the amount of particulate aluminum in North Pacific deep water indicate an average concentration of 23 [xg/1. of mineral suspensoid, or 10 mg in a vertical sea-water column with a 1 cm^ cross-section at oceanic depth. The mass of mineral particles larger than 0.5 [x constitutes 60%, or less, of the total. From the concentration of the suspensoid and the rate of fallout of terrigenous minerals on the ocean floor, an average passage time (Barth, 1952) of less than 100 years is obtained for the fraction of particles larger than 0.5 [i.
    [Show full text]
  • 9. Small-Scale Shallow-Water Carbonate Sequences of Resolution Guyot (Sites 866, 867, and 868)1
    Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 143 9. SMALL-SCALE SHALLOW-WATER CARBONATE SEQUENCES OF RESOLUTION GUYOT (SITES 866, 867, AND 868)1 Andre Strasser,2 Hubert Arnaud,3 François Baudin,4 and Ursula Röhl5 ABSTRACT The Hauteri vian to upper Albian carbonate sediments drilled on Resolution Guyot are all of shallow-water origin. The volcanic basement is covered by dolomitized oolitic and oncolitic grainstones of an inner-ramp setting. At 1400 m below seafloor (mbsf), they pass into peritidal facies punctuated by small coral and mdist bioherms and by beach sediments. Oolites dominate between 790 and 680 mbsf. The upper part of the guyot (from 680 mbsf up to the phosphate-iron-manganese crust capping the Cretaceous platform) is composed of lagoonal carbonates exhibiting some calcrete horizons. The material collected from Holes 867B and 868A implies that the platform was rimmed by barrier islands and storm beaches, and that reefs (rudists and sponges) were of minor importance. This is in contrast to modern atolls, where reefs are the major rim builders. In the late Albian, the platform was subaerially exposed and karstified, then drowned. Although average recovery was low (15.4% for Hole 866A, 29.2% for 867B, 46.3% for 868A), the cored material clearly shows that the sedimentary record is composed of small, meter-scale sequences. They are especially well developed in platform- interior, lagoonal-peritidal settings, where facies evolution indicates cyclic deepening and shallowing of the depositional environ- ment.
    [Show full text]
  • Curriculum Vitae
    TIMOTHY JAMES BRALOWER Department of Geosciences Pennsylvania State University University Park, PA 16802 [email protected] www.globalnannoplankton.com Education: Ph.D. Earth Sciences, Scripps Institution of Oceanography, University of California, San Diego, 1986. M.S. Oceanography, Scripps Institution of Oceanography, University of California, San Diego, 1982. B.A. with Honours in Geology, Oxford University, England, 1980. Professional Experience: Professor, Department of Geosciences, Pennsylvania State University, 2003-. Head, Department of Geosciences, Pennsylvania State University, 2003-2011; 2017-2018. Chair, Department of Geological Sciences, University of North Carolina, Chapel Hill, 1998-2002. Joseph Sloane Professor of Geological and Marine Sciences, University of North Carolina, Chapel Hill, 1998-2002. Associate Professor of Geological and Marine Sciences, University of North Carolina, Chapel Hill, 1993-1998. Assistant Professor, Geological and Marine Sciences, University of North Carolina, Chapel Hill, 1990-1993. Assistant Professor, Florida International University, State University of Florida at Miami, 1987-1990. ODP/IODP: Shipboard biostratigrapher, Leg 122 (Indian Ocean, 1988), Leg 143 (Pacific Ocean, 1993), Leg 165 (Caribbean, 1995), Expedition 364 (Chicxulub, 2016). Co-chief scientist, ODP Leg 198 (Pacific, 2001). Honors: Hettelman Junior Faculty Research Prize, UNC-CH, 1995. Fulbright Senior Scholarship, University of New South Wales, 2011-12. Wilson Service Award, College of Earth and Mineral Sciences, PSU, 2015; G. Montgomery and Marion Mitchell Award for Innovative Teaching, College of Earth and Mineral Sciences, PSU, 2017; George W. Atherton Award for Excellence in Teaching, PSU Systemwide Highest Award 2020. Memberships: AGU, GSA, NAGT Publications: http://scholar.google.com/citations?user=q4WEgGYAAAAJ&hl=en&oi=ao Partial list of Professional Service (past 20 years) .
    [Show full text]
  • Appendix 2. the Mystery of Guyot Formation and Sinking
    Appendix 2 The Mystery of Guyot Formation and Sinking Origin of Guyots Unknown In 1946, geologist Harry Hess was the first geologist to describe guyots (flat-topped seamount).1 Since then, the number of guyots has become numerous. Resolution Guyot in the Mid-Pacific Mountains that was studied in the 1990s by the Deep Sea Drilling Project2 is a typical guyot. Figure A2.1 shows the silhouette. Ever since Hess’s time, the cause of the flat top has eluded explanation.3 Winterer and Met- Figure A2.1. Silhouette of Resolution Guyot zler maintain: “Since Hess first recognized them in the Mid-Pacific Mountains (drawn by Mrs. Melanie Richard). in 1946, the origin of flat-topped seamounts, or guyots, has remained one of the most persistent problems in marine geology.”4 Since guyots are believed to have been truncated near sea level, there are two suggested subsid- ence mechanisms used to explain why they are now found well below sea level. But some guyots must have become flat well below sea level. Not All Guyots Eroded At Sea Level Many scientists have simply assumed that the flat top of a guyot was eroded at or near sea level.5,6 ‘This has been challenged by a few marine geologists.’7,8 For instance, a number of guyots near the East Pacific Rise have been attributed to the infilling of calderas by small lava flows well below sea level.9,10,11,12 “But, these guyots are small 1 Hess, H.H., 1946. Drowned ancient islands of the Pacific Basin. American Journal of Science 244:772–791.
    [Show full text]
  • 1 John A. Tarduno
    JOHN A. TARDUNO January, 2016 Professor of Geophysics Tel: 585-275-5713 Department of Earth and Environmental Sciences Fax: 585-244-5689 University of Rochester, Rochester, NY 14627 Email: [email protected] USA http://www.ees.rochester.edu/people/faculty/tarduno_john Academic Career: 2005-present Professor of Physics and Astronomy, University of Rochester, Rochester, NY. 2000-present Professor of Geophysics, University of Rochester, Rochester, NY. 1998-2006 Chair, Department of Earth and Environmental Sciences 1996 Associate Professor of Geophysics, University of Rochester, Rochester, NY. 1993 Assistant Professor of Geophysics, University of Rochester, Rochester, NY. 1990 Assistant Research Geophysicist, Scripps Institution of Oceanography, La Jolla, Ca. 1989 National Science Foundation Postdoctoral Fellow, ETH, Zürich, Switzerland 1988 JOI/USSAC Ocean Drilling Fellow, Stanford University, Stanford, Ca. 1987 Ph.D. (Geophysics), Stanford University, Stanford, Ca. 1987 M.S. (Geophysics) Stanford University, Stanford Ca. 1983 B.S. (Geophysics) Lehigh University, Bethlehem Pa. Honors and Awards: Phi Beta Kappa (1983) Fellow, Geological Society of America (1998) JOI/USSAC Distinguished Lecturer (2000-2001) Goergen Award for Distinguished Achievement and Artistry in Undergraduate Teaching (2001) Fellow, American Association for the Advancement of Science (2003) American Geophysical Union/Geomagnetism and Paleomagnetism Section Bullard Lecturer (2004) Fellow, John Simon Guggenheim Foundation (2006-2007) Edward Peck Curtis Award for
    [Show full text]
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • Constraining Basin Parameters Using a Known Subsidence History
    geosciences Article Constraining Basin Parameters Using a Known Subsidence History Mohit Tunwal 1,2,* , Kieran F. Mulchrone 2 and Patrick A. Meere 1 1 School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland; [email protected] 2 School of Mathematical Sciences, University College Cork, Western Gateway Building, Western Road, T12 XF62 Cork, Ireland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +353-21-490-4580 Received: 5 June 2020; Accepted: 6 July 2020; Published: 9 July 2020 Abstract: Temperature history is one of the most important factors driving subsidence and the overall tectono-stratigraphic evolution of a sedimentary basin. The McKenzie model has been widely applied for subsidence modelling and stretching factor estimation for sedimentary basins formed in an extensional tectonic environment. Subsidence modelling requires values of physical parameters (e.g., crustal thickness, lithospheric thickness, stretching factor) that may not always be available. With a given subsidence history of a basin estimated using a stratigraphic backstripping method, these parameters can be estimated by quantitatively comparing the known subsidence curve with modelled subsidence curves. In this contribution, a method to compare known and modelled subsidence curves is presented, aiming to constrain valid combinations of the stretching factor, crustal thickness, and lithospheric thickness of a basin. Furthermore, a numerical model is presented that takes into account the effect of sedimentary cover on thermal history and subsidence modelling of a basin. The parameter fitting method presented here is first applied to synthetically generated subsidence curves. Next, a case study using a known subsidence curve from the Campos Basin, offshore Brazil, is considered.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    Haggerty, J.A., Premoli Suva, L, Rack, R, and McNutt, M.K. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 144 2. PLANKTONIC FORAMINIFER BIOSTRATIGRAPHY AND THE DEVELOPMENT OF PELAGIC CAPS ON GUYOTS IN THE MARSHALL ISLANDS GROUP1 Paul N. Pearson2 ABSTRACT Five guyots were drilled on Ocean Drilling Program Leg 144, three of which possess thick caps of pelagic sediment. These guyots (Limalok, Site 871; Lo-En, Site 872; and Wodejebato, Site 873) belong to the Marshall Islands group of seamounts. Pelagic sediments of late Oligocene to Holocene age were recovered from them. In each case, the sediment was found to be unconsolidated on recovery and contain very abundant planktonic foraminifers, particularly in the >150-µm size range. Preservation of tests is generally good, with most showing only minor signs of dissolution or recrystallization, although many samples have a high proportion of fragmented material in the fine fraction. Planktonic foraminifer faunas are diverse and consist predominantly of warm-water species. A typically western Pacific fauna occurs throughout the Miocene. Biostratigraphic assignment was generally straightforward except for the bottommost interval of the pelagic caps where severe reworking (sediment mixing) is a common feature. A significant hiatus was found at each site between drowning of the carbonate platform and the onset of pelagic sediment accumulation. Thus, the platforms were apparently swept clean of sediments, with the exception of isolated ponds, until subsidence took the guyots sufficiently deep for sediment to accumulate in large quantities. Backtracking of subsidence paths for each guyot suggests that pelagic cap formation began at depths of between 700 and 1000 mbsl.
    [Show full text]
  • Influence of Sediment Transport on Short-Term Recolonization by Seamount Infauna
    MARINE ECO'R'OGY PROGRESS SERIES Vol. 123: 163-175,1995 Mu Published July 20 Ecol Prog Ser / Influence of sediment transport on short-term recolonization by seamount infauna Lisa A. Levin, Claudio DiBacco Marine Life Research Group, Scripps Instituliar of Oceanography, La Jolla, California 92093-0218, USA ABSTRACT: Rates and mechanisms of mEa'nnal recolonization in contrasting sediment transport regimes were examined by deploying hydrodynamically unbiased colonization trays at 2 sites -2 km apart on the flat summit plain of Fieberhg Cplyot in the eastern Pacific Ocean. Both study sites expe- rienced strong bottom currents and high shear velocity (U. exceeding 1.0 cm S-' daily). Macrofaunal recolonization of defaunated sediments on Werling Guyot was slow relative to observations in shal- low-water sediments, but rapid compared l&other unennched deep-sea treatments. Microbial colo- nization was slower but macrofaunal colon~isnwas faster at White Sand Swale (WSS, 585 m),where rippled foraminiferal sands migrate daily, than at Sea Pen Rim (SPR, 635 m), where the basaltic sands move infrequently. Total densities of macroiannal colonizers at WSS were 31 and 75% of ambient after 7 wk and 6.4 mo, respectively; at SPR they were 6 and 49% of ambient, respectively. Over % of the colonists were polychaetes (predominantly ksionids and dorvilleids) and aplacophoran molluscs. Species richness of colonizers was comparab.lle at SPR and WSS and did not differ substantially from ambient. Most of the species (91%) and indmduals (95%) recovered in colonization trays were taxa present in background cores. However, only 25% of the taxa colonizing tray sediments occurred in trays at both WSS and SPR.
    [Show full text]
  • 32. Radiometric Ages of Basement Lavas Recovered at Loen, Wodejebato, Mit, and Takuyo-Daisan Guyots, Northwestern Pacific Ocean1
    Haggerty, J.A., Premoli Silva, I., Rack, F., and McNutt, M.K. (Eds.), 1995 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 144 32. RADIOMETRIC AGES OF BASEMENT LAVAS RECOVERED AT LOEN, WODEJEBATO, MIT, AND TAKUYO-DAISAN GUYOTS, NORTHWESTERN PACIFIC OCEAN1 Malcolm S. Pringle2 and Robert A. Duncan3 ABSTRACT The best estimate for the age of the oldest volcanism recovered from the summits of Loen, Wodejebato, MIT, and Takuyo- Daisan guyots, northwestern Pacific Ocean, is 113, 83, 123, and 118 Ma, respectively. All of these sites originated in the central and western regions of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The 113-Ma age for Loen Guyot is signifi- cantly different from the 76-Ma age of volcanism under the carbonate platform of its neighbor, the living Anewetak Atoll, and suggests that drowned guyot/living atoll seamount pairs may have no genetically significant relationship other than geographic proximity. Although all of the basalts recovered from the top of Wodejebato Guyot were erupted during polarity Chron 33R (ca. 79-85 Ma), both the occurrence of reworked Cenomanian calcareous nannofossils in one of the summit cores and the existence of a thick Cenomanian volcaniclastic sequence, including 94-Ma basaltic clasts, in the archipelagic apron indicate that there must have been a Cenomanian or older edifice beneath the drilled summit volcanics. AT MIT Guyot, two late-stage periods of volcanism can be recognized: late Aptian (ca. 115 Ma) phreatomagmatic eruptions through the existing volcanic and carbonate platform, and 120-Ma hawaiites seen both as exotic clasts in the 115-Ma tuffs and as lava flows at the top of the basement sequence.
    [Show full text]
  • Coupled Onshore Erosion and Offshore Sediment Loading As Causes of Lower Crust Flow on the Margins of South China Sea Peter D
    Clift Geosci. Lett. (2015) 2:13 DOI 10.1186/s40562-015-0029-9 REVIEW Open Access Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea Peter D. Clift1,2* Abstract Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these “load-flow basins”. This further suggests that reorganiza- tion of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.
    [Show full text]
  • Sedimentary Rocks
    OCN 201 Coastal Sediments Lab Sediment Particle Size Distribution and Turbidity Flows Although this laboratory will pertain to oceanic sediments, similar processes can also be observed on land and in other aquatic systems (i.e., lakes, wetlands). This reading should supplement your understanding of the processes that affect particle size distribution across a marine system (i.e., barrier reef). Next week’s laboratory exercises will focus on demonstrating some of these principles, and give you experience in quantifying particle size distributions across a barrier reef. Sediments Sediment, by definition, is any loose or fragmented material. Hence, loose sand, shells and their fragments, dead leaves, and mud can all be categorized as sediment. All sediments have a source from which they originate. Pelagic sediments are those found in the open ocean, and whose origin cannot be traced to a specific landmass. They include red clay, radiolarian ooze, diatom ooze, and calcareous (nanofossil or foraminefera) ooze (see images of selected biogenic tests – see page 8 of Laboratory#5). Terrigenous sediments are those whose origin is traceable to a specific land (terra) area. They include a series of variously colored muds, volcanic debris, coral muds, and turbidity flow deposits. Lithogenous sediments are derived from weathering of rock (lithos) material, but their source cannot be readily identified. Red clay in the abyssal ocean is lithogenous. Much of the sediment on the sea floor of the open ocean is lithogenous clay that was transported thousands of miles from its origin. Calcareous sediments are found over oceanic rises and platforms, whereas red clays are typically distributed in the deep ocean basins.
    [Show full text]