Crinoidea И Их Система. Blastozoa

Total Page:16

File Type:pdf, Size:1020Kb

Crinoidea И Их Система. Blastozoa Crinozoa Echinodermata П/т Homalozoa (Camb.-Dev.) • П/т Echinozoa – Ctenocystoidea – Camptostromatoidea (Camb.) – Homostelea – Helicoplacoidea (Camb.) – Stylophora – Edrioasteroidea (Camb.-Carb.) – Homoiostelea – Edrioblastoidea (Ord.) – Cyclocystoidea (Ord.-Dev.) – П/т Blastozoa – Ophiocystoidea (Ord.-Carb.) – Eocrinoidea (Camb.-Sil.) – Echinoidea (Ord.-pr.) – Blastoidea (Camb.-Perm.) – Holothuroidea (Ord.-pr.) – Parablastoidea (Ord.) – Cystoidea (Ord.-Dev.) • Rombifera • П/т Asterozoa (Stelleroidea) • Diploporita • П/т Crinozoa (Pelmatozoa) – Somasteroidea (Ord.) – Paracrinoidea (Ord.-Sil.) – Asteroidea (Ord.-pr.) – Crinoidea (Camb.-pr.) – Ophiuroidea (Ord.-pr.) CRINOID TERMINOLOGY Monocyclic Crinoid Cup -первые чл. Рук - радиалия - базалия Dicyclic Crinoid Cup - первые чл. рук - радиалия - базалия - инфрабазалия Морфология чашечки коматулид Morphology of the calyx in comatulids. A, B: Species lacking a calyx sensu strictu, all ossicles of body and arms lying in the same plane. A: Aboral aspect of Comanthus suavia. Bar=0.3 mm. B: Aboral aspect of the macerated disc of Comanthus mirabilis formed of centrodorsale (ce), radialia (ra), and first brachials (primibrachials, pb). Note the absence of cirrus sockets. Bar=1 mm. C, D: Promachocrinus kerguelensis, a species with a large conical centrodorsale bearing numerous cirri. With their outer face, 10 wedge-shaped radialia (in D) make the arms rise in an inclined angle. With the inner surface they from a bow housing the viscera. Bars in C and D = 2mm. E, F: Tropiometra afra. E: X-ray photograph showing the disc- like centrodorsale (ce) seen from the side, perforated by thin canals (arrowheads) through which extensions of the chambered organ and accompanying nerves reach the cirri at the disc’s periphery. Bar = 3 mm. F: Insight into the partly macerated calyx seen obliquely from an oral point of view; radialia (ra), pimibrachialia (pb), and secundibrachialia (sb) contribute to the formation of the calyx wall. Bar=3 mm (from Heinzeller, Welsch, 1994). Морфология стебелька и цирр Morphology of stalk and cirri. A: Metacrinus interruptus. Bar=1 cm. B: X-ray photograph of the growth zone of the stalk (Cenocrinus asteria). The nodals (bright discs) are formed in short distances at the stalk-calyx border and become more distant from each other by intussusceptionally formed new columnals. Bar=2 mm. C: X-ray photograph (Metacrinus interuptus) of a maximally bowed stalk showing the central canal and, at the left side, the crenulated surface of the columnals. Bar=2 mm. D: X-ray photograph of a nodal (Endoxocrinus parrae). Arrowheads point to cirrus canals. Bar=1 mm. E: Cirri of Colobometra perspinosa. Bar=5 mm. F, G: Cirral articulation (Tropiometra afra); F, distal face; and G, proximal face of the cirrals together forming one joint. Bar=0.5 mm. H: X-ray photograph of a cirrus rising from the stalk of Endoxocrinus parrae showing the cirral articulations from the side. Bar=1 mm (from Heinzeller, Welsch, 1994). Строение рук Строение рук A: X-ray photograph of an arm of Clarkgomanthus littoralis in oral-aboral projection. Note the wedge-like shape of the brachials. Bar=1 mm. C: X-ray photographs. Position of syzygies (stars) in an arm of Comanthus suavia. Bar=2.5 mm. D: External site of a syzygy (arrowhead) in Himerometra robustipinnia, recognizable by the dotted line. Bar=1 mm. E: REM picture of a syzygial face of Tropiometra afra showing the typical crests. Bar=300 mkm. E (6): REM. Brachial ossicle of Tropiometra afra, showing a muscular-ligamentary articulation face with oblique fulcrum and, forming on its shoulder, a synarthrial joint (arrow) with the first pinnular ossicle. Bar=0.5 mm. al, aboral ligament; f, fulcrum; mf, mucsular facet; ol, oral ligament (from Heinzeller, Welsch, 1994). Тегмен, рот и анус, пищесобирающие борозды Ambularcra, mouth and anus. A: Oral aspect of an endocyclic specis (Antedon mediterranea). Ray A points to the left side; the mouth is situated in the disc’s center. Bar=2 mm. B: Food grooves on arm and pinnules of Capillaster multiradiatus. Bar=1 mm. C: Oral aspect of an exocyclis specis (Comatella nigra), ray A to the left. The anal tube occupies the disc’s center. Bar=2 mm. D: REM picture of tentacles lining a food groove (Lamprometera palmata). Bar=50 mkm (from Heinzeller, Welsch, 1994). Амбулакральные ножки иглокожих: a - схема продольного среза через присасывательную ножку Echinus. b - ловчая ножка криноидов (Antedon). Одна из папилл увеличена. c - копательная ножка морских звезд (Phanerozona). d - присасывательная ножка морских звезд (Spinulosa). e - ножка офиур. Показано ампулообразное расширение амбулакрального канала. f-i - амбулакральные ножки морских ежей. Вид со стороны присасывательного диска. Показана эволюция скелетных элементов ножек спатангоидов: f - Echinus, g - Brissopsis, h - Schizaster, I - Echinocardium. j - дыхательная ножка спатангоидов. k - роющая ножка спатангоидов. Показан скребок и слизепродуцирующие папиллы. l - питающая ножка спатангоидов. m - присасывательная ножка голотурий. (Nichols, 1969) Anatomy of Crinoidea (Nichols, 1969) Пищеварительная система Top: reconstruction of the gut as revealed from serial sections; left: endocyclic type (Antedon bifida); right: exocyclic type (Capillaster multradiatus). Bottom: Spiral lines representing gut axis running from mouth (m) to anus (a). Stars mark the points where the outer spiral turns being. A to E represent the direction of the rays (from Heinzeller, Welsch, 1994). Schematic drawing of the crinoid body plan as represented by a vertical section through ray E (left) and interray BC (right), oral side at the top, not to scale. A: Coelomic spaces clear; all other structures including the lumen of the gut stippled. ab, aboral canal; as, axial sinus; ci, cirral coelomic canals; co, chambered organ; cos, septum of the chambered organ; ge, genital coelom; ma, madreporic canals (possible axocoelomic remnant); oec, oral extension of the chamber; or, oral canal; ra, radial canal; ri, ring canal; se, subesophageal coelom; si, subintestinal coelom; ste, subtegminal coelom; sto, stone canal. Arrows indicate direction of coelomic fluid flow. The area marked by the star is subdivided by numerous somatocoelomic clefts (not drawn). B: Hemal spaces (black). al, lacuna in the axial organ; cl, cirral lacuna; gl, genital lacuna; pep, periesophageal plexus; rl, redial lacuna; sel, subesophagela lacuna; sil, subintestinal lacuna; spo, spongy organ; stp, subtegminal plexus. C: Principal skeletal (densely stippled) and neural (black) elements. Ossicles: ba, basale; ce, centrodorsale; ci, cirrale; pbr, primibrachiale; ra, radiale. Nervous system: anm, aboral nerve mass; bn, brachial nerve; ep, esophageal plexus; eri, ectoneural ring; hyr, hyponeural ring (no nerves drawn); ip, intestinal plexus; nr, nerve ring. Representing the neural plexuses, which are to be found in all coelomic epithelia, cp indicates the coelomic plexus in the periesophageal and peri-intestinal coelomic epithelia, gp that in the genital coelomic epithelium (from Heinzeller, Welsch, 1994). Саккулы Sacculi. A-C: Light microscopy. A: Antedon bifida. The sacculus contains numerous transformed cells with granular inclusions, stained according to Tramezzani et al., 1964. Bar=20 mkm. B: Lamprometra palmata. Bar=25 mkm. C: Antedon bifida. A sacculus empties its granule–filled cells (star) into the water. Bar=25 mkm. D: Low power electron micrograph, Antedon bifida. ep, flattened epithelium in the saccular periphery; g, granular inclusions in transformed cells; l, saccular lumen. Bar=2 mkm (from Heinzeller, Welsch, 1994). Location of gonads Location of gonads in adult crinoids. Each diagram shows one arm with its pinnules and an adjacent portion of the central mass. Gonads are solid black, and non-gametogenic parts of the reproductive system (genital strands) are dotted lines (the more distal parts of the latter, not shown here, continue in the arm axis and extend into the distal pinnules). The upper 5 diarams apply to stalkless crinoids: a) most species, b) some species, c) Thaumatocrinus investigatoris only, d) the genus Notocrinus, and e) some, but not all, species in the genera Comanthina and Comanthus. The lower 4 diagrams apply to stalked crinoids: f) the genera Bathycrinus, Rhizocrinus, and Hyocrinus, g) Metacrinus angulatus, g) Holopus rangii and Cyathidium foresti, and i) Endoxocrinus parrae. Abbreviations: CM, central mass; OP, oral pinnules; GP, genital pinnules; DP, distal pinnulis. (Holland, 2002) Development of Crinoidea (Nichols, 1969) The later development of Oxycomanthus japonicus Diagrams a-e are dorsal views of larvae with anterior ends pointed toward the top of the page; diagrams f-j are side views. Mesenchyme cells are indicated by stippling. Abbreviations: AP, adhesive pit; EH, enterohydrocoel; ES, enteric sac; HP, hydropore; L1, axocoel; L2, hydroceol; L3, left somatocoel; R3, Right somatocoel; RD, rectal diverticulum; SC, primary stone canal; VI, vestibular invagination; VS, vestibular sac. a) Relatively early uniformly ciliated larva; the archenteron is separating into an anterior enterohydrocoel and a posterior precursor of the somatocoels. b) Mid uniformly ciliated larva; the left somatocoel is separating from the right somatocoel. c) Late uniformly ciliated larva; the former enterohydrocoel is dividing into the axocoel (L1), hydrocoel (L2), and enteric sac. d) Early doliolaria larva with 5 ciliated bands encircling the body and an apical tuft; the axocoel has established communication with the exterior via the hydropore,
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Evidence for Cospeciation Events in the Host–Symbiont System Involving Crinoids (Echinodermata) and Their Obligate Associates, the Myzostomids (Myzostomida, Annelida)
    Molecular Phylogenetics and Evolution 54 (2010) 357–371 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evidence for cospeciation events in the host–symbiont system involving crinoids (Echinodermata) and their obligate associates, the myzostomids (Myzostomida, Annelida) Déborah Lanterbecq a,*, Grey W. Rouse b, Igor Eeckhaut a a Marine Biology Laboratory, University of Mons, 6 Av. du Champ de Mars, Bât. Sciences de la vie, B-7000 Mons, Belgium b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA article info abstract Article history: Although molecular-based phylogenetic studies of hosts and their associates are increasingly common Received 14 April 2009 in the literature, no study to date has examined the hypothesis of coevolutionary process between Revised 3 August 2009 hosts and commensals in the marine environment. The present work investigates the phylogenetic Accepted 12 August 2009 relationships among 16 species of obligate symbiont marine worms (Myzostomida) and their echino- Available online 15 August 2009 derm hosts (Crinoidea) in order to estimate the phylogenetic congruence existing between the two lin- eages. The combination of a high species diversity in myzostomids, their host specificity, their wide Keywords: variety of lifestyles and body shapes, and millions years of association, raises many questions about Coevolution the underlying mechanisms triggering their diversification. The phylogenetic
    [Show full text]
  • International Geological Correlation Programme. Project 591 "The Early to Middle Paleozoic Revolution"
    International Geological Correlation Programme. Project 591 "The Early to Middle Paleozoic Revolution". Proceedings of the 3rd IGCP 591 Annual Meeting : Lund, Sweden, 9–19 June 2013 Lindskog, Anders; Mehlqvist, Kristina 2013 Link to publication Citation for published version (APA): Lindskog, A., & Mehlqvist, K. (Eds.) (2013). International Geological Correlation Programme. Project 591 "The Early to Middle Paleozoic Revolution". Proceedings of the 3rd IGCP 591 Annual Meeting : Lund, Sweden, 9–19 June 2013. (International Geological Correlation Programme, UNESCO; Vol. 3). Department of Geology, Lund University. Total number of authors: 2 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 ANDERS LINDSKOG | KRISTINA MEHLQVIST Printed by Media-Tryck, Lund 2013 Proceedings of the 3rd IGCP 591 Annual Meeting Proceedings of the 3 Lund, Sweden, 9–19 June 2013 EDITED BY ANDERS LINDSKOG | KRISTINA MEHLQVIST DEPARTMENT OF GEOLOGY | LUND UNIVERSITY The abstracts within this volume were presented at the 3rd IGCP 591 Annual rd Meeting, which was held in Lund, Sweden, in June 2013.
    [Show full text]
  • Smithsonian Miscellaneous Collections [Vol
    NEW GENERA OF RECENT FREE CRINOIDS By AUSTIN HOBART CLARK Assistant, Bureau of Fisheries Since the publication of Dr. P. H. Carpenter's great monograph on the recent unstalked crinoids in 1888, the group has received very- little attention from systematists, probably because of the rarity of most of the species and the difficulty in getting together representative material of even the more common ones. Dr. Carpenter included in the family Comatulidse the genera Thaumatocrinus, Eudiocrinus, Promachocrinus (including the subsequently differentiated Decame- trocrinus), Atelecrinus, Antedon, Comatula (=Actinometra) , and Thiolliericrinus. All of these, with the exception of Antedon and Comatula, are comparatively small, strictly homogeneous genera; with them, however, the case is quite different. The genus Antedon was divided by Dr. Carpenter into four "series," and all but the first series into two or more "groups," the characters used in the differ- entiation of the groups and series being (1) the character of the joint between the costals, (2) the number of arms, (3) the number of the distichals, (4) the character of the lower pinnules, (5) the development or absence of covering plates on the ambulacra, and (6) the rounded or "wall-sided" character of the costals and lower brachials. Of all these characters, the first alone is the only one not common to two or more of his series or groups, as diagnosed by him. Taking No. 2, for instance, five of his groups and also several unassigned species are ten-armed ; all the rest have more than ten arms. A number of single species have both ten and more than ten arms, as a result of purely individual variation.
    [Show full text]
  • El Estudio Equinodermológico De Las Costas Españolas Se Puede Considerar Bastante In- Completo Y La Información Existente Se
    López-Ibor, A,, 1987. Equinodermos de Asturias: Expedición (~Cantábrico83~. Misc. Zool., 11: 201-210. Echinoderms of Asturias: rcantábrico 83a Expedition.- The Echinoderms found during the ex- pedition ~Cantábrico83% on the oceanographic ship CORNIDEDE SAAVEDRAalong the coast of Asturias (North of Spain) have been studied. A total of 21 species have been found between 42 and 728 m of depth: 1 crinoid, 3 holothuroids, 3 ophiuroids, 10 asteroids and 4 echinoids. Some other Echinoderms have been collected in the littoral of Asturias (Punta de San Lorenzo and Ribadesella) between 100 and 300 m of depth: 3 holothuroids, 3 ophiuroids, 4 asteroids and 1 echinoid. Most of the Echinoderms captured by the CORNIDEare first citations for this coast. The zoogeographical distribution and bathymetric range of some of the species is given. The unique existence of an atlantic-mediterranean area is proven, by the origin of the Mediterranean species. Most of the species mentioned are first citations in Asturias and one asteroid (Astropecten platyacanthus) is found for the first time in the Atlantic coast of the Iberian Peninsula. Key words: Echinoderms, Zoogeography, Mediterranean Sea, Iberian Peninsula, Asturias. (Rebut: 16- VI-86) Alicia López-Zbor, Paseo de La Habana 48, 28036 Madrid, Espatia rias. De ahí que los datos faunísticos que po- seemos sean aislados y escasos. El estudio equinodermológico de las costas El Instituto Español de Oceanografía está españolas se puede considerar bastante in- llevando a cabo una serie de campañas en di- completo y la información existente se re- versos puntos de la geografía ibérica, con el monta a las primeras expediciones científicas fin de evaluar principalmente la riqueza pes- europeas realizadas a finales del siglo xrx y a quera de nuestro país.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • A Probable Case of Heterochrony in the Solutan
    A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938 FLEUR NOAILLES, BERTRAND LEFEBVRE & LIBOR KAIÈKA The morphology of the Late Ordovician solutan Dendrocystites is reevaluated based on more than 300 specimens from the Letná and Zahořany formations (Prague Basin, Czech Republic). This genus is reported for the first time from the Bohdalec Formation, and its presence is confirmed in the Vinice Formation. The morphology of all specimens of the stratigraphically older species D. barrandei (Sandbian) is identical to that of small to medium-size individuals of D. sedgwicki (Katian). Distinctive characters of D. sedgwicki occur only in the largest specimens, and are all size-related (more asymmetrical thecal outlines, stronger ornamentation, rosetting pattern of thecal plates, proliferation of platelets in the proxistele). Consequently, the transition from D. barrandei to D. sedgwicki is interpreted as the result of heterochronic processes, with the largest individuals of D. sedgwicki displaying hyperadult morphologies (hyper- morphosis). Dendrocystites is locally abundant in both the Letná and Zahořany formations, but extremely rare in the deeper deposits of the Vinice and Bohdalec formations. This pattern coincides closely with first order fluctuations of the sea-level in the Prague Basin. The life orientation and implied feeding strategy of Dendrocystites and other solutans are both critically discussed. Several independent lines of evidence suggest that solutans were more likely detritus-feeders. Finally, it is proposed that two morphologically distinct patterns of dististele organization were elaborated independently from the polyplated, undifferentiated stalk-like appendage of Coleicarpus (plesiomorphic condition).
    [Show full text]
  • Överklass Crinozoa – Crinozoer KLASS Crinoidea – Liljestjärnor
    2 • nationalnyckeln till sveriges flora och fauna ÖVERKLASS Crinozoa – crinozoer STAM Echinodermata ÖVERKLASS Överklassen Crinozoa omfattar tagghudingar vilkas crinozoer. Liljestjärnor utgör den äldsta av de nu le­ KLASS kropp byggs upp av en bägarlik struktur, calyx, där vande klasserna av tagghudingar och är kända genom ORDNING FAMILJ både mun och analöppning är placerade på översi­ ungefär 545 miljoner år gamla fossil, dvs. från början SLÄKTE dan. Undersidan (aboralsidan) fäster vid ett underlag, av kambrium. antingen direkt med ett antal ”gripklor” (cirrer) på Fossillagren antyder att crinozoer var en domine­ calyx eller med en mer eller mindre lång stjälk. Från rande djurgrupp fram till slutet av karbon (för ca 300 calyx övre del utgår fem eller fler armar, som kan vara miljoner år sedan), då många grupper dog ut. Ytterli­ mer eller mindre rikt förgrenade. gare grupper dog ut i det stora massutdöendet i slutet Förutom den nu levande klassen Crinoidea av perm (för ca 250 miljoner år sedan). (lilje stjärnor) finns åtminstone en utdöd klass av KLASS Crinoidea – liljestjärnor STAM Echinodermata ÖVERKLASS Crinozoa Liljestjärnor är den enda klassen av crinozoer som le­ Bland dessa finns stjälkade (ca 100) och ostjälkade KLASS ver i dag. Gruppens systematik är omdiskuterad, men (ca 550) arter. De ostjälkade arterna kallas hårstjärnor ORDNING FAMILJ man urskiljer när denna nationalnyckelvolym produ­ och de stjälkade benämner vi här sjöliljor (ett namn SLÄKTE ceras (2013) åtta ordningar, som inkluderar fler än som ofta har använts för hela gruppen Crino idea), 6 000 beskrivna fossila arter. I vilka av dessa ordning­ i analogi med engelskans indelning i stjälkade ”sea ar de nu levande ca 650 arterna ska placeras är inte lilies” och ostjälkade ”feather stars”.
    [Show full text]
  • Early Stalked Stages in Ontogeny of the Living Isocrinid Sea Lily Metacrinus Rotundus
    Published for The Royal Swedish Academy of Sciences and The Royal Danish Academy of Sciences and Letters Acta Zoologica (Stockholm) 97: 102–116 (January 2016) doi: 10.1111/azo.12109 Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus Shonan Amemiya,1,2,3 Akihito Omori,4 Toko Tsurugaya,4 Taku Hibino,5 Masaaki Yamaguchi,6 Ritsu Kuraishi,3 Masato Kiyomoto2 and Takuya Minokawa7 Abstract 1Department of Integrated Biosciences, Amemiya,S.,Omori,A.,Tsurugaya,T.,Hibino,T.,Yamaguchi,M.,Kuraishi,R., Graduate School of Frontier Sciences, The Kiyomoto,M.andMinokawa,T.2016.Earlystalkedstagesinontogenyoftheliving University of Tokyo, Kashiwa, Chiba, isocrinid sea lily Metacrinus rotundus. — Acta Zoologica (Stockholm) 97: 102–116. 277-8526, Japan; 2Marine and Coastal Research Center, Ochanomizu University, The early stalked stages of an isocrinid sea lily, Metacrinus rotundus,wereexam- Ko-yatsu, Tateyama, Chiba, 294-0301, ined up to the early pentacrinoid stage. Larvae induced to settle on bivalve shells 3 Japan; Research and Education Center of and cultured in the laboratory developed into late cystideans. Three-dimensional Natural Sciences, Keio University, Yoko- (3D) images reconstructed from very early to middle cystideans indicated that hama, 223-8521, Japan; 4Misaki Marine 15 radial podia composed of five triplets form synchronously from the crescent- Biological Station, Graduate School of Sci- ence, The University of Tokyo, Misaki, shaped hydrocoel. The orientation of the hydrocoel indicated that the settled Kanagawa, 238-0225, Japan; 5Faculty of postlarvae lean posteriorly. In very early cystideans, the orals, radials, basals and Education, Saitama University, 255 Shim- infrabasals, with five plates each in the crown, about five columnals in the stalk, o-Okubo, Sakura-ku, Saitama City, 338- and five terminal stem plates in the attachment disc, had already formed.
    [Show full text]
  • BENTHIC FAUNA of the NORTH AEGEAN SEA II CRINOIDEA and HOLOTHURIOIDEA (ECHINODERMATA) Athanasios S
    BENTHIC FAUNA OF THE NORTH AEGEAN SEA II CRINOIDEA AND HOLOTHURIOIDEA (ECHINODERMATA) Athanasios S. Koukouras, Apostolos I. Sinis To cite this version: Athanasios S. Koukouras, Apostolos I. Sinis. BENTHIC FAUNA OF THE NORTH AEGEAN SEA II CRINOIDEA AND HOLOTHURIOIDEA (ECHINODERMATA). Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 1981, pp.271-281. hal-03010387 HAL Id: hal-03010387 https://hal.sorbonne-universite.fr/hal-03010387 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1981, 31 (3-4): 271-281 FAUNA OF THE NORTH AEGEAN IL CRINOIDEA AND HOLOTHURIOIDEA (ECHINODERMATA) Athanasios S. KOUKOURAS and Apostolos I. SINIS Laboratory of Zoology, University of Thessaloniki, Thessaloniki, Greece BENTHOS RÉSUMÉ. - Deux espèces de Crinoïdes et 22 espèces d'Holothurioidea ont été récoltées CRINOÏDES au Nord de la Mer Égée. 7 espèces, Holothuria (H.) stellati, H. (H.) mammata, Paracucuma- HOLOTHURIDES ria hyndmanni, Havelockia inermis, Phyllophorus granulatus, Leptosynapta makrankyra, MÉDITERRANÉE Labidoplax thomsoni sont nouvelles pour la Méditerranée orientale (20° plus à l'est), 3 MER EGÉE espèces, Holothuria (Thymiosycia) impatiens, H. (Platyperona) sanctori, H. (Panningothuria) forskali sont nouvelles pour la Mer Égée, et 5 espèces, le Crinoïde Leptometra phalangium et les Holothurides Holothuria (H.) helleri, Leptopentacta tergestina, Thyone fusus et T.
    [Show full text]
  • Crinoids, Belonging to the Families Antedonidae and Atelecrinidae
    RECENT UNSTALKED CRINOIDS. 129 NOTE XXV. Descriptions of twenty new recent unstalked Crinoids, belonging to the families Antedonidae and Atelecrinidae, from the Dutch East Indies BY Austin+H. Clark The work of the the steamship »Siboga” among islands of the East Indian Archipelago resulted in the discovery of of unstalked many new species crinoids. In view of the amount of in and large work necessary assembling digest- the data ing accumulated on these, and especially on the species already known, it has seemed advisable to publish in advance preliminary diagnoses of the new forms in order to guard against possible anticipation. In the the present paper new species belonging to the families ANTEDONIDAE and ATELECRINIDAE, including among them the most striking of those collected by the »Siboga”, are considered. All of the new species will be described in greater detail and figured in the final memoir on these animals in the »Siboga” series 1). Family ANTEDONIDAE. Antedon moluccana, sp. nov. The centrodorsal is low hemispherical, the bare dorsal with rounded pole very slightly convex an obscure broadly median tubercle surrounded by obsolete cirrus-sockets, 1.5 mm. in diameter. See for the of the Nos f the various 1) explanation 0 page 156. Notes from the Leyden Museum, "Vol. XXXIV. 9 130 RECENT UNSTALKED CRINOIBS 15—17 the The cirri are about XXX, (usually latter), is the longest about 18 mm. long; the first segment very is and to two short, the second one one half times as median the third is from two and long as the diameter, three the
    [Show full text]
  • Antedon Petasus (Fig
    The genus Antedon (Crinoidea, Echinodermata): an example of evolution through vicariance Hemery Lenaïg 1, Eléaume Marc 1, Chevaldonné Pierre 2, Dettaï Agnès 3, Améziane Nadia 1 1. Muséum national d'Histoire naturelle, Département des Milieux et Peuplements Aquatiques Introduction UMR 5178 - BOME, CP26, 57 rue Cuvier 75005 Paris, France 2. Centre d’Océanologie de Marseille, Station Marine d’Endoume, CNRS-UMR 6540 DIMAR Chemin de la batterie des Lions 13007 Marseille, France 3. Muséum national d'Histoire naturelle, Département Systématique et Evolution The crinoid genus Antedon is polyphyletic and assigned to the polyphyletic family UMR 7138, CP 26, 57 rue Cuvier 75005 Paris, France Antedonidae (Hemery et al., 2009). This genus includes about sixteen species separated into two distinct groups (Clark & Clark, 1967). One group is distributed in the north-eastern Atlantic and the Mediterranean Sea, the other in the western Pacific. Species from the western Pacific group are more closely related to other non-Antedon species (e.g. Dorometra clymene) from their area than to Antedon species from the Atlantic - Mediterranean zone (Hemery et al., 2009). The morphological identification of Antedon species from the Atlantic - Mediterranean zone is based on skeletal characters (Fig. 1) that are known to display an important phenotypic plasticity which may obscure morphological discontinuities and prevent correct identification of species (Eléaume, 2006). Species from this zone show a geographical structuration probably linked to the events that followed the Messinian salinity crisis, ~ 5 Mya (Krijgsman Discussion et al., 1999). To test this hypothesis, a phylogenetic study of the Antedon species from the Atlantic - The molecular analysis and morphological identifications provide divergent Mediterranean group was conducted using a mitochondrial gene.
    [Show full text]