Zoogeography of Tropical Western Atlantic Crinoidea (Echinodermata) David L

Total Page:16

File Type:pdf, Size:1020Kb

Zoogeography of Tropical Western Atlantic Crinoidea (Echinodermata) David L Nova Southeastern University NSUWorks Oceanography Faculty Articles Department of Marine and Environmental Sciences 7-1-1978 Zoogeography of Tropical Western Atlantic Crinoidea (Echinodermata) David L. Meyer University of Cincinnati - Main Campus Charles G. Messing University of Miami, [email protected] Donald B. Macurda Jr. University of Michigan - Ann Arbor Find out more information about Nova Southeastern University and the Oceanographic Center. Follow this and additional works at: http://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Meyer, David L., Charles G. Messing, and Donald B. Macurda Jr. "Biological results of the University of Miami deep-sea expeditions. 129. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata)." Bulletin of Marine Science 28, no. 3 (1978): 412-441. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Oceanography Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. BULLETIN OF MARINE SCIENCE, 28(3): 412-441, 1978 BIOLOGICAL RESULTS OF THE UNIVERSITY OF MTAMI DEEP-SEA EXPEDITIONS. 129. ZOOGEOGRAPHY OF TROPICAL WESTERN ATLANTIC CRINOIDEA (ECHINODERMATA) David L. Meyer, Charles G. Messing, and Donald B. Macurda, Jr. ABSTRACT Recent collcctions of crinoids from the intertidal zone to ],650 m in the tropical western Atlantic have provided significant range extensions for more than half of the 44 comatulid and stalked species known from the region. Of the 34 comatulid species, over 60% are endemic to the region; of the 10 stalked species, 90% are endemic. At the familial level, this fauna has its strongest affinities with the tropical Indo-Pacific region. Comatulids are most abundant above 300 ill, while stalked species occur primarily between 100 and 700 ill. Species that occur primarily above 600 ill (the deepest penetration of the 10°C isotherm in the region) have depth ranges generally narrower than 200 m. Species that are found below 1,000 m generally have much broader depth ranges. During the 1950's and 1960's, extensive of this region in both diversity and abundance collections of marine life were made in the of crinoids, and is also the most intensively tropical western Atlantic Ocean by M/V studied part to date. The Blake Plateau and OREGON,operated by the U.S. Fish and Wild- the coast of the United States from south- life Service, and R/V ]OHNELLIOTTPILLS- eastern Florida to Cape Lookout, North BURY and R/V GERDA,in connection with Carolina, appear to represent a warm temper- the University of Miami's Deep-Sea Biology ate transitional zone. At least regarding Program. These collections have generously crinoids, this zone is more closely related to broadened our knowledge of the marine bio- the tropics than to more northerly waters. geography of the region, a knowledge based With the exception of the more tropical previously on the expeditions of the 19th and Flower Garden Banks, south of Port Arthur, early 20th centuries. The recent widespread Texas, the northern Gulf of Mexico also use of SCUBA in marine research has opened falls into this zone. For the crinoid fauna, up previously inaccessible environments and however, the precise tropical-temperate has thus added to the picture. boundaries in the Gulf are unknown. The This paper summarizes zoogeographical difficulties encountered in erecting marine and bathymetric data on the Crinoidea zoogeographic boundaries are compounded (Echinodermata) collected by these vessels by species, including many crinoids, that are and by SCUBA and presents revised distribu- limited to warm water latitudes but that live tions for many of the 44 species, both comat- in deeper, colder waters. The parameters ulid and stalked, currently known from the governing the distribution of these deep tropical western Atlantic. In this paper, the water, tropical species remain largely un- tropical western Atlantic region extends from defined. southeastern Florida southward along the The tropical western Atlantic crinoids first Antillean Arc to Trinidad, and along the became widely known during the period of Brazilian coast as far south as Rio de Janeiro, intensive oceanographic exploration of the and includes the Caribbean Sea, southern late 1800's. The U.S. Coast Survey pio- Gulf of Mexico, and the Bahama Islands. neered the work in this region during the The Caribbean, including the Antillean Arc late 1860's (Pourtales, 1867, 1869), fol- and the Bahamas, constitutes the richest part lowed by the extensive work of BLAKE 412 MEYER ET AL.: CRINOID ZOOGEOGRAPHY 413 (1877-80) and the U.S. Fish Commission Florida using the collections made from RjV vessel ALBATROSS (1884-85). CHALLEN- GERDAin the 1960's. GER visited the Caribbean in 1873. The BLAKE and ALBATROSScollections provided MATERIALSANDMETHODS the bulk of the material on which studies of Crinoids were taken at approximately 25% tropical western Atlantic crinoids have been of the successful bottom stations made by based until recently (Pourtales, 1878; Car- PILLSBURY and GERDA. We have included penter, 1881, 1884, 1888; Hartlaub, 1895, several RjV COLUMBUS ISELIN (University 1912; A. H. Clark, 1915, 1921a, b, 1923a, of Miami) stations, as well as OREGON ma- b, 1931,1947,1950; A. H. Clark and A. M. terial in the University of Miami collections. Clark, 1967). In particular, A. H. Clark's These specimens were divided among the "Monograph of the existing crinoids" repre- three authors in such a way that each investi- sents a comprehensive systematic treatment gator examined some representatives of most of the comatulid crinoids which summarized of the species. Macurda took primary re- all previous information on the group. Car- sponsibility for the stalked crinoids and n~n- penter (1884, p. 374-385) summarized all comasterid comatulids; Messing has studied previous records of stalked crinoids in the all comatulids from the Straits of Florida tropical western Atlantic and elsewhere. (Messing, unpublished thesis and 1978); and A. H. Clark (1923a) listed all comatulid Meyer took primary responsibility for the and stalked crinoids known from the Atlantic comasterid comatulids. Identifications were and provided keys. made following A. H. Clark's monograph for Collection of additional crinoid matenal In the comatulids, and Carpenter (1884), Clark the Caribbean and adjacent areas during the (1923b), and Gislen (1938) for the stalk~d late 19th and early 20th centuries was due crinoids. The distributional and bathymetnc mainly to the University of Iowa's Bahamas summaries presented for each species com- Expedition of 1893 (H. L. Clark, 1918) and bine all previous records with the new ma- Barbados-Antigua Expedition of 1918 (A. H. terial, and range extensions are indicated. Clark, 1921b) and Woods Hole Oceano- Appendix 1 lists the stations at which each graphic Institution's RjV ATLANTIS, operat- species was collected. GERDAoperated in the ing off Cuba in 1938-39 (R. L. Clark, 1941). Straits of Florida and Yucatan Channel; More recently, Tommasi (1965, 1969, PILLSBURYcollected chiefly in the Caribbean 1971a) reported on Brazilian crinoids, a proper. species from the Gulf of Mexico (1966) and The bathymetric distribution of each spe- a series of collections made by MjV OREGON cies is presented as both a confirmed depth from Florida to Brazil (l971b). Zoppi de range and possible depth range because of ~he Roa (1967) listed crinoids from the Vene- uncertainties inherent in deep-sea collectmg zuelan coast. Diving investigations of the methods. The actual depth at which trawling Caribbean crinoids above 60 m were initiated or dredging gear is operating can almost by Meyer in the 1960's and have been con- never be determined with certainty. Depths tinued by Meyer and Macurda (Meyer, 1972, measured by a Precision Depth Recorder do 1973a, b; Macurda, 1973, 1975; Meyer and not necessarily coincide with actual gear Macurda, 1976). Crinoids from the West depth. Furthermore, one cannot always be Flower Garden Bank, Gulf of Mexico, have certain the gear is actually on the bottom for been listed by Burke (1974). The first direct the duration of the trawL A range of depth observations of stalked crinoids were made is usually given for each station, since depth from the submersible NEKTON GAMMA in changes are recorded during the entire period 1972 (Macurda and Meyer, 1974). Messing of trawling. Specimens can be taken from (unpublished thesis) studied the systematics any part of that depth range, which is often and distribution of crinoids in the Straits of considerable. 414 BULLETIN OF MARINE SCIENCE, VOL. 28, NO.3, 1978 In the following text, the possible depth Neocomatella alata: A. H. Clark, 1931: 142- range of a species extends from the shallow- 150. est point of the shallowest station to the Material examined.-289 specimens; 38 stations. deepest point of the deepest station at which Distribution.-Southeastern Gulf of Mexico the species was collected. The confirmed (Campeche Bank and Florida continental range extends from the deepest point of the shelf) ; Bahama and Turks and Caicos shallowest station to the shallowest point of Islands; Antillean Arc from the north coast the deepest station. While a species may of Cuba to Grenada and Barbados; Arrow- occur throughout the former range, it must smith Bank in the YucaUin Channel; San occur within the latter. BIas Islands off Panama; off Venezuela; S1. Additional sources of error occur in the Paul's Rocks; off Guanabara, Brazil. A collecting and recording process. Occasion- questionable record exists from off Cape Ca- ally, specimens caught in the netting are naveral, Florida. washed into the cod end during the next The GERDAmaterial extends the known haul and are included with the catch from range northward along the Bahamian side of the subsequent station. This can result in a the Straits of Florida, north of the Little species being recorded far out of its normal Bahama Bank and into the Northwest Provi- depth range.
Recommended publications
  • Evidence for Cospeciation Events in the Host–Symbiont System Involving Crinoids (Echinodermata) and Their Obligate Associates, the Myzostomids (Myzostomida, Annelida)
    Molecular Phylogenetics and Evolution 54 (2010) 357–371 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evidence for cospeciation events in the host–symbiont system involving crinoids (Echinodermata) and their obligate associates, the myzostomids (Myzostomida, Annelida) Déborah Lanterbecq a,*, Grey W. Rouse b, Igor Eeckhaut a a Marine Biology Laboratory, University of Mons, 6 Av. du Champ de Mars, Bât. Sciences de la vie, B-7000 Mons, Belgium b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA article info abstract Article history: Although molecular-based phylogenetic studies of hosts and their associates are increasingly common Received 14 April 2009 in the literature, no study to date has examined the hypothesis of coevolutionary process between Revised 3 August 2009 hosts and commensals in the marine environment. The present work investigates the phylogenetic Accepted 12 August 2009 relationships among 16 species of obligate symbiont marine worms (Myzostomida) and their echino- Available online 15 August 2009 derm hosts (Crinoidea) in order to estimate the phylogenetic congruence existing between the two lin- eages. The combination of a high species diversity in myzostomids, their host specificity, their wide Keywords: variety of lifestyles and body shapes, and millions years of association, raises many questions about Coevolution the underlying mechanisms triggering their diversification. The phylogenetic
    [Show full text]
  • Smithsonian Miscellaneous Collections [Vol
    NEW GENERA OF RECENT FREE CRINOIDS By AUSTIN HOBART CLARK Assistant, Bureau of Fisheries Since the publication of Dr. P. H. Carpenter's great monograph on the recent unstalked crinoids in 1888, the group has received very- little attention from systematists, probably because of the rarity of most of the species and the difficulty in getting together representative material of even the more common ones. Dr. Carpenter included in the family Comatulidse the genera Thaumatocrinus, Eudiocrinus, Promachocrinus (including the subsequently differentiated Decame- trocrinus), Atelecrinus, Antedon, Comatula (=Actinometra) , and Thiolliericrinus. All of these, with the exception of Antedon and Comatula, are comparatively small, strictly homogeneous genera; with them, however, the case is quite different. The genus Antedon was divided by Dr. Carpenter into four "series," and all but the first series into two or more "groups," the characters used in the differ- entiation of the groups and series being (1) the character of the joint between the costals, (2) the number of arms, (3) the number of the distichals, (4) the character of the lower pinnules, (5) the development or absence of covering plates on the ambulacra, and (6) the rounded or "wall-sided" character of the costals and lower brachials. Of all these characters, the first alone is the only one not common to two or more of his series or groups, as diagnosed by him. Taking No. 2, for instance, five of his groups and also several unassigned species are ten-armed ; all the rest have more than ten arms. A number of single species have both ten and more than ten arms, as a result of purely individual variation.
    [Show full text]
  • The Crinoids of Madagascar
    Bull. Mus. nain. Hist, nat., Paris, 4e sér., 3, 1981, section A, n° 2 : 379-413. The Crinoids of Madagascar by Janet I. MARSHALL and F. W. E. ROWE * Abstract. — A collection of crinoids from the vicinity of the Malagasy Republic, held in the Muséum national d'Histoire naturelle, in Paris, is identified. Three new species are described in the genera Chondrometra, Iridometra and Pentametrocrinus. The nominal species Comissia hartmeyeri A. H. Clark is considered to be conspecific with C. ignota A. H. Clark, and Dichro- metra afra A. H. Clark with D. flagellata (J. Müller). Comments are included on several syste- matic problems which have arisen during the study of this collection. Résumé. — Détermination d'une collection de Crinoïdes de Madagascar, déposée au Muséum national d'Histoire naturelle de Paris. Trois nouvelles espèces sont décrites pour les genres Chon- drometra, Iridometra et Pentametrocrinus. L'espèce Comissia hartmeyeri A. H. Clark est considérée comme synonyme de C. ignota A. H. Clark, et Dichrometra afra A. H. Clark comme synonyme de D. flagellata (J. Müller). Quelques problèmes systématiques sont discutés. INTRODUCTION The echinoderm fauna of South Africa and some parts of the Indian Ocean have been well documented, but that of Madagascar and of the African coast north of Mozambique is less well known. The island of Madagascar (the Malagasy Republic) stretches from approximately 12° S to 26° S through tropical to warm-temperate waters. The echino- derms found along the Malagasy coast are for the most part distinctly different from that of southern Africa as delimited by the Tropic of Capricorn (23°3(V S) (see A.
    [Show full text]
  • El Estudio Equinodermológico De Las Costas Españolas Se Puede Considerar Bastante In- Completo Y La Información Existente Se
    López-Ibor, A,, 1987. Equinodermos de Asturias: Expedición (~Cantábrico83~. Misc. Zool., 11: 201-210. Echinoderms of Asturias: rcantábrico 83a Expedition.- The Echinoderms found during the ex- pedition ~Cantábrico83% on the oceanographic ship CORNIDEDE SAAVEDRAalong the coast of Asturias (North of Spain) have been studied. A total of 21 species have been found between 42 and 728 m of depth: 1 crinoid, 3 holothuroids, 3 ophiuroids, 10 asteroids and 4 echinoids. Some other Echinoderms have been collected in the littoral of Asturias (Punta de San Lorenzo and Ribadesella) between 100 and 300 m of depth: 3 holothuroids, 3 ophiuroids, 4 asteroids and 1 echinoid. Most of the Echinoderms captured by the CORNIDEare first citations for this coast. The zoogeographical distribution and bathymetric range of some of the species is given. The unique existence of an atlantic-mediterranean area is proven, by the origin of the Mediterranean species. Most of the species mentioned are first citations in Asturias and one asteroid (Astropecten platyacanthus) is found for the first time in the Atlantic coast of the Iberian Peninsula. Key words: Echinoderms, Zoogeography, Mediterranean Sea, Iberian Peninsula, Asturias. (Rebut: 16- VI-86) Alicia López-Zbor, Paseo de La Habana 48, 28036 Madrid, Espatia rias. De ahí que los datos faunísticos que po- seemos sean aislados y escasos. El estudio equinodermológico de las costas El Instituto Español de Oceanografía está españolas se puede considerar bastante in- llevando a cabo una serie de campañas en di- completo y la información existente se re- versos puntos de la geografía ibérica, con el monta a las primeras expediciones científicas fin de evaluar principalmente la riqueza pes- europeas realizadas a finales del siglo xrx y a quera de nuestro país.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • First Molecular Report and Phylogenetic Analysis of Crinoidea from Rameswaram Island, South East Coast of India
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Annals of Biological Research, 2014, 5 (8):1-7 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-1233 CODEN (USA): ABRNBW First Molecular Report and Phylogenetic Analysis of Crinoidea from Rameswaram Island, South East Coast of India Nina Tabitha S and Gunalan B CAS in Marine Biology, Annamalai University, Parangipettai, Tamilnadu, India. _____________________________________________________________________________________________ ABSTRACT Crinoidea is a class of echinoderms that degenerate very easily due to the presence of very temperature sensitive proteins, hence the samples obtained could not be identified easily, resulting in the identification of the samples at a molecular level by sequencing the 650 –bp region from the 5’ end of the mitochondrial CO1 region. The sequenced genes were identified as three different species of Crinoids; Cenometra sp, Tropiometra sp and Comatella sp submitted to the National center of bioinformatics (NCBI) which provided the three finds with accession numbers. The sequences were compared with other closely related sequences and analyzed using the CLUSTAL X software to attain a multiple sequence alignment and Mega (Molecular Evolutionary Genetic Analysis) to construct a Phylogenic tree through which the evolutionary relationships of the three samples analyzed could be observed in the study. Key words: Crinoidea, Echinoderm, Phylogeny, Cenometra sp , Tropiometra sp, Comatella sp, Molecular taxonomy. _____________________________________________________________________________________________ INTRODUCTION Sustainable conservation of species requires, among other things, appropriate knowledge about the diversity of life at different hierarchical levels, including physiological, ecological, biogeographical, and systematic information [1,2], taxonomists [3,4,5], accurate species identification remains an imperative condition to investigate on biodiversity and conservation.
    [Show full text]
  • A Framework for the Development of a Global Standardised Marine Taxon
    bioRxiv preprint doi: https://doi.org/10.1101/670786; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 A framework for the development of a global standardised marine taxon 2 reference image database (SMarTaR-ID) to support image-based analyses 3 Short title: Global marine taxon reference image database 4 Kerry L. Howell1*, Jaime S. Davies1, A. Louise Allcock2, Andreia Braga-Henriques3,4, 5 Pål Buhl-Mortensen5, Marina Carreiro-Silva6,7, Carlos Dominguez-Carrió6,7, Jennifer 6 M. Durden8, Nicola L. Foster1, Chloe A. Game9, Becky Hitchin10, Tammy Horton8, 7 Brett Hosking8, Daniel O. B. Jones8, Christopher Mah11, Claire Laguionie Marchais2, 8 Lenaick Menot12, Telmo Morato6,7, Tabitha R. R. Pearman8, Nils Piechaud1, Rebecca 9 E. Ross1,5, Henry A. Ruhl8,13, Hanieh Saeedi14,15,16, Paris V. Stefanoudis17,18, Gerald 10 H. Taranto6,7, Michael B, Thompson19, James R. Taylor20, Paul Tyler21, Johanne 11 Vad22, Lissette Victorero23,24,25, Rui P. Vieira20,26, Lucy C. Woodall16,17, Joana R. 12 Xavier27,28, Daniel Wagner29 13 * Corresponding author: [email protected] 14 1 School of Biological and Marine Science, Plymouth University, Drake Circus, 15 Plymouth, PL4 8AA. UK. 16 2 Zoology, School of Natural Sciences, and Ryan Institute, National University of 17 Ireland, Galway, University Road, Galway, Ireland. 18 3 MARE-Marine and Environmental Sciences Centre, Estação de Biologia Marinha 19 do Funchal, Cais do Carvão, 9900-783 Funchal, Madeira Island, Portugal.
    [Show full text]
  • SNH Commissioned Report
    Scottish Natural Heritage Commissioned Report No. 574 Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches COMMISSIONED REPORT Commissioned Report No. 574 Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches For further information on this report please contact: Laura Steel Scottish Natural Heritage Great Glen House INVERNESS IV3 8NW Telephone: 01463 725236 E-mail: [email protected] This report should be quoted as: Moore, C. G. 2013. Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches. Scottish Natural Heritage Commissioned Report No. 574. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2013. COMMISSIONED REPORT Summary Biological analyses of underwater video from research cruises in Lochs Kishorn and Sunart, off the Mull of Kintyre and islands of Rum, Tiree and Islay, and in the Firth of Lorn and Sound of Mull approaches Commissioned Report No.: 574 Project no: 13879 Contractor: Dr Colin Moore Year of publication: 2013 Background To help target marine nature conservation in Scotland, SNH and JNCC have generated a focused list of habitats and species of importance in Scottish waters - the Priority Marine Features (PMFs).
    [Show full text]
  • Redalyc.Echinodermata from São Sebastião Channel
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Netto, L.F.; Hadel, V.F.; Tiago, C.G. Echinodermata from São Sebastião Channel (São Paulo, Brazil) Revista de Biología Tropical, vol. 53, núm. 3, -diciembre, 2005, pp. 207-218 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Disponible en: http://www.redalyc.org/articulo.oa?id=44919815012 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Echinodermata from São Sebastião Channel (São Paulo, Brazil) L.F. Netto1,2, V.F. Hadel2 & C.G. Tiago2* 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo; [email protected] 2 Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hipólito do Rego, km 131,5, São Sebastião, SP, Brasil, 11600-000. Fax: + 55 12 3862-6646; [email protected]; [email protected] * Corresponding author: [email protected] Received 14-VI-2004. Corrected 09-XII-2004. Accepted 17-V-2005. Abstract: Faunal inventories are extremely important, especially when focused on neglected groups, such as echinoderms, and concentrated on areas under intense anthropic activity such as the São Sebastião Channel in Brazil (23°41’ - 23°54’ S and 45°19’ - 45°30’ W). Intertidal and upper sublittoral zone collections were per- formed at five sites of the Channel’s continental margin from May to August 2001.
    [Show full text]
  • BENTHIC FAUNA of the NORTH AEGEAN SEA II CRINOIDEA and HOLOTHURIOIDEA (ECHINODERMATA) Athanasios S
    BENTHIC FAUNA OF THE NORTH AEGEAN SEA II CRINOIDEA AND HOLOTHURIOIDEA (ECHINODERMATA) Athanasios S. Koukouras, Apostolos I. Sinis To cite this version: Athanasios S. Koukouras, Apostolos I. Sinis. BENTHIC FAUNA OF THE NORTH AEGEAN SEA II CRINOIDEA AND HOLOTHURIOIDEA (ECHINODERMATA). Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 1981, pp.271-281. hal-03010387 HAL Id: hal-03010387 https://hal.sorbonne-universite.fr/hal-03010387 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1981, 31 (3-4): 271-281 FAUNA OF THE NORTH AEGEAN IL CRINOIDEA AND HOLOTHURIOIDEA (ECHINODERMATA) Athanasios S. KOUKOURAS and Apostolos I. SINIS Laboratory of Zoology, University of Thessaloniki, Thessaloniki, Greece BENTHOS RÉSUMÉ. - Deux espèces de Crinoïdes et 22 espèces d'Holothurioidea ont été récoltées CRINOÏDES au Nord de la Mer Égée. 7 espèces, Holothuria (H.) stellati, H. (H.) mammata, Paracucuma- HOLOTHURIDES ria hyndmanni, Havelockia inermis, Phyllophorus granulatus, Leptosynapta makrankyra, MÉDITERRANÉE Labidoplax thomsoni sont nouvelles pour la Méditerranée orientale (20° plus à l'est), 3 MER EGÉE espèces, Holothuria (Thymiosycia) impatiens, H. (Platyperona) sanctori, H. (Panningothuria) forskali sont nouvelles pour la Mer Égée, et 5 espèces, le Crinoïde Leptometra phalangium et les Holothurides Holothuria (H.) helleri, Leptopentacta tergestina, Thyone fusus et T.
    [Show full text]
  • Isocrinid Crinoids from the Late Cenozoic of Jamaica
    A tlantic G eology 195 Isocrinid crinoids from the late Cenozoic of Jamaica Stephen K. Donovan Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica Date Received April 8, 1994 Date A ccepted A ugust 26, 1994 Eight species of isocrinines have been documented from the Lower Cretaceous to Pleistocene of Jamaica. New finds include a second specimen of a Miocene species from central north Jamaica, previously regarded as Diplocrinus sp. but reclassified as Teliocrinus? sp. herein. Extant Teliocrinus is limited to the Indian Ocean, although Miocene specimens have been recorded from Japan, indicating a wider distribution during the Neogene. One locality in the early Pleistocene Manchioneal Formation of eastern Jamaica has yielded three species of isocrinine, Cenocrirtus asterius (Linne), Diplocrinus maclearanus (Thomson) and Neocrinus decorus Thomson. These occur in association with the bourgueticrinine Democrinus sp. or Monachocrinus sp. These taxa are all extant and suggest a minimum depositional depth for the Manchioneal Formation at this locality of about 180 m. This early Pleistocene fauna represents the most diverse assemblage of fossil crinoids docu­ mented from the Antillean region. Huit especes d’isocrinines de la periode du Cretace inferieur au Pleistocene de la Jamai'que ont ete documentees. Les nouvelles decouvertes comprennent un deuxieme specimen d’une espece du Miocene du nord central de la Jamai'que, auparavant consideree comme l’espece Diplocrinus, mais reclassifiee en tant que Teliocrinus? aux presentes. Le Teliocrinus existant est limite a l’ocean Indien, meme si on a releve des specimens du Miocene au Japon, ce qui est revelateur d’une distribution plus repandue au cours du Neogene.
    [Show full text]
  • Crinoids, Belonging to the Families Antedonidae and Atelecrinidae
    RECENT UNSTALKED CRINOIDS. 129 NOTE XXV. Descriptions of twenty new recent unstalked Crinoids, belonging to the families Antedonidae and Atelecrinidae, from the Dutch East Indies BY Austin+H. Clark The work of the the steamship »Siboga” among islands of the East Indian Archipelago resulted in the discovery of of unstalked many new species crinoids. In view of the amount of in and large work necessary assembling digest- the data ing accumulated on these, and especially on the species already known, it has seemed advisable to publish in advance preliminary diagnoses of the new forms in order to guard against possible anticipation. In the the present paper new species belonging to the families ANTEDONIDAE and ATELECRINIDAE, including among them the most striking of those collected by the »Siboga”, are considered. All of the new species will be described in greater detail and figured in the final memoir on these animals in the »Siboga” series 1). Family ANTEDONIDAE. Antedon moluccana, sp. nov. The centrodorsal is low hemispherical, the bare dorsal with rounded pole very slightly convex an obscure broadly median tubercle surrounded by obsolete cirrus-sockets, 1.5 mm. in diameter. See for the of the Nos f the various 1) explanation 0 page 156. Notes from the Leyden Museum, "Vol. XXXIV. 9 130 RECENT UNSTALKED CRINOIBS 15—17 the The cirri are about XXX, (usually latter), is the longest about 18 mm. long; the first segment very is and to two short, the second one one half times as median the third is from two and long as the diameter, three the
    [Show full text]