B. Sc Hons Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
Toxicological Profile for Beryllium
BERYLLIUM 19 3. HEALTH EFFECTS 3.1 INTRODUCTION The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other interested individuals and groups with an overall perspective on the toxicology of beryllium. It contains descriptions and evaluations of toxicological studies and epidemiological investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 3.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE To help public health professionals and others address the needs of persons living or working near hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, developmental, genotoxic, and carcinogenic effects). These data are discussed in terms of three exposure periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). Levels of significant exposure for each route and duration are presented in tables and illustrated in figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELS have been classified into "less serious" or "serious" effects. "Serious" effects are those that evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). "Less serious" effects are those that are not expected to cause significant dysfunction or death, or those whose significance to the organism is not entirely clear. -
"Beryllium Oxide Digestion Optimization at the Savannah River Site"
"Beryllium Oxide Digestion Optimization at the Savannah River Site" by Davin Jagnandan November, 2002 ==' ¥---- ; A paper submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Public Health in the School of Public Health Abstract Chronic beryllium disease (CBD) is a debilitating lung disorder affecting an estimated 4.6% of past nuclear weapons and beryllium manufacturing workers. The Chronic Beryllium Disease Prevention Program, as set up by the U.S. Department of Energy (DOE), establishes guidelines for maintaining acceptable exposure levels in all beryllium manufacturing facilities. These exposure levels are based on the measuring of total beryllium which includes beryllium metal, beryllium salts, beryllium alloys and beryllium oxide. The most sensitive detection instruments used in industrial hygiene sampling measure beryllium in a solubilized form . Beryllium oxide, in particular, has been shown to resist solubilization unless it is performed in the presence of strong acid(s). This poses a problem for industrial hygienists because beryllium oxide has been shown to have a high level oftoxicity due to its small size and moderate solubility. The current Ip digestion method (EPA 3050B) for all metals at the Savannah River Site 1 involves the use of nitric and hydrochloric acids. It was hypothesized that 1 this method was inadequate for the complete digestion of beryllium oxide. This study examines this issue by comparing method 3050B with two other acid digestion methods. Once the most effective of the three methods was determined, optimization factors such as settling time, heating/reflux time, and hydrogen peroxide addition were examined. -
WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK). -
Beryllium and Beryllium Compounds
BERYLLIUM AND BERYLLIUM COMPOUNDS Beryllium and beryllium compounds were considered by previous IARC Working Groups in 1971, 1979, 1987, and 1993 (IARC, 1972, 1980, 1987, 1993). Since that time, new data have become available, these have been incorporated in the Monograph, and taken into consid- eration in the present evaluation. 1. Exposure Data a very high strength-to-weight ratio. Beryllium is lighter than aluminium but is greater than 40% 1.1 Identification of the agents more rigid than steel. It has excellent electrical and thermal conductivities. Its only markedly Synonyms and molecular formulae for beryl- adverse feature is relatively pronounced brittle- lium, beryllium–aluminium and beryllium– ness, which restricts the use of metallic beryl- copper alloys, and certain beryllium compounds lium to specialized applications (WHO, 1990). are presented in Table 1.1. The list is not exhaus- Because of its low atomic number, beryllium tive, nor does it comprise necessarily the most is very permeable to X-rays. Neutron emission commercially important beryllium-containing after bombardment with α or γ rays is the most substances; rather, it indicates the range of beryl- important of its nuclear physical properties, lium compounds available. and beryllium can be used as a neutron source. Moreover, its low neutron absorptiveness and high-scattering cross-section make it a suitable 1.2 Chemical and physical properties moderator and reflector in structural materials of the agents in nuclear facilities; where most other metals absorb neutrons emitted during the fission Beryllium (atomic number, 4; relative atomic of nuclear fuel, beryllium atoms only reduce mass, 9.01) is a metal, which belongs to Group the energy of such neutrons, and reflect them IIA of the Periodic Table. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
2020 Emergency Response Guidebook
2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2. -
Peroxysalts of the Alkali Metals and Related Species
PEROXYSALTS OF THE ALKALI METALS AND RELATED SPECIES. A Thesis Submitted for the Degree of DOCTOR OF PHILOSOPHY of the University of London BY DAVID PHILIP JONES, B.SC., A,R,C.S, Department of Chemistry, Imperial College of Science and Technology, London, SW7 2AY August, 1979. 2 ABSTRACT Peroxysalts of the Alkali Metals and Related Species. David Philip Jones The work described in this thesis is concerned mainly with the preparation, characterisation and physicochemical properties of a series of different inorganic peroxysalts, in particular the alkali metal percarbonates. Extensive use has been made of vibrational spectroscopy as a tool for obtaining structural information, with both 2H and 13C isotopic substitutions helping in the assignments of vibrational modes. All of the peroxysalts studied fall into either of two categories. The first are perhydrates, which contain hydrogen peroxide of crystallisation, such as sodium oxalate monoperhydrate, Na2C204.H202 and " sodium percarbonate", Na2CO3.11H2O2. The second group contain peroxo moieties bound to atoms other than hydrogen, e.g., boron in " sodium perborate" , Na2B2(02)2(OH)4.6H20 or carbon in potassium peroxydicarbonate, K2C206, these types of compounds being referred to as " true" peroxysalts. The structures of both of the commonly used bleaching agents " sodium percarbonate" and " sodium perborate" are described, full X-ray structural determinations having been carried out in the Chemical Crystallography Laboratories during the course of this work. 3 Due to particular interest in percarbonates, one of the very few known transition metal peroxycarbonato complexes, bistriphenyl- phosphine peroxycarbonato platinum(II) has been prepared and its structure also determined by X-ray crystallography. -
ICP-MS Multi-Element Standard Solution VI
Safety data sheet according to Regulation (EC) No. 1907/2006 (REACH) ICP-MS Multi-Element Standard Solution VI 30 Elemente in 2 %iger Salpetersäure article number: 1L4K date of compilation: 08.07.2021 Version: 1.0 en SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance ICP-MS Multi-Element Standard Solution VI 30 Elemente in 2 %iger Salpetersäure Article number 1L4K Registration number (REACH) not relevant (mixture) 1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses: Laboratory chemical Laboratory and analytical use Uses advised against: Do not use for products which come into contact with foodstuffs. Do not use for private purposes (household). 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone:+49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data :Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 (CLP) Section Hazard class Cat- Hazard class and Hazard egory category statement 2.16 Substance or mixture corrosive to metals 1 Met. Corr. 1 H290 3.2 Skin corrosion/irritation 2 Skin Irrit. 2 H315 3.3 Serious eye damage/eye irritation 2 Eye Irrit. 2 H319 3.6 Carcinogenicity 1B Carc. -
(12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur Et Al
USOO924.948OB2 (12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur et al. (45) Date of Patent: Feb. 2, 2016 (54) METHOD FOR PRODUCING ALKALIAND (58) Field of Classification Search ALKALINE EARTH ALLOYS AND USE OF CPC ................................. C22C 24/00; B01J 23/04 THE ALKALIAND ALKALINE EARTH USPC ....................................................... 427/376.1 ALLOYS See application file for complete search history. (75) Inventors: Stefan Sepeur, Wadgassen (DE); (56) References Cited Gerald Frenzer, Saarbruecken (DE); U.S. PATENT DOCUMENTS Stefan Huefner, Saarbruecken (DE); Frank Mueller, Saarbruecken (DE) 2,171.439 A 8/1939 von Zeppelin 3,469,729 A * 9/1969 Grekila et al. ............. 220/2.3 R (73) Assignees: NANO-X GmbH, Saarbruecken (DE); Elringklinger AG, Dettingen an der (Continued) Erms (DE), part interest FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CH 216 205 8, 1941 patent is extended or adjusted under 35 CH 219713 2, 1942 U.S.C. 154(b) by 81 days. (Continued) (21) Appl. No.: 13/138,373 OTHER PUBLICATIONS (22) PCT Filed: Feb. 9, 2010 International Search Report of PCT/DE2010/0750 13, Aug. 11, 2010. (86). PCT No.: PCT/DE2010/075O13 (Continued) S371 (c)(1), Primary Examiner —Nathan Empie (2), (4) Date: Sep. 13, 2011 (74) Attorney, Agent, or Firm — Collard & Roe, P.C. (57) ABSTRACT (87) PCT Pub. No.: WO2010/088902 A method for producing alkali and alkaline earth alloys. It PCT Pub. Date: Aug. 12, 2010 also relates to the use of the alkali and alkaline earth compo sitions. In order to create a novel method for producing alkali (65) Prior Publication Data and alkaline earth alloys, it is proposed within the context of US 2012/O156379 A1 Jun. -
Solution Chemistry of Some Dicarboxylate Salts Of
SOLUTION CHEMISTRY OF SOME DICARBOXYLATE SALTS OF RELEVANCE TO THE BAYER PROCESS Andrew John Tromans B.Sc. Hons (Edith Cowan University) This thesis is presented for the degree of Doctor of Philosophy of Murdoch University Western Australia November 2003 i I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Andrew John Tromans ii Abstract This thesis deals with certain aspects of the solution chemistry of the simple dicarboxylate anions: oxalate, malonate and succinate, up to high concentrations. These ions are either significant impurities in the concentrated alkaline aluminate solutions used in the Bayer process for the purification of alumina, or are useful models for degraded organic matter in industrial Bayer liquors. Such impurities are known to have important effects on the operation of the Bayer process. To develop a better understanding of the speciation of oxalate (the major organic impurity in Bayer liquors) in concentrated electrolyte solutions, the formation constant (Logβ) of the extremely weak ion pair formed between sodium (Na+) and oxalate (Ox2−) ions was determined at 25 oC as a function if ionic strength in TMACl media by titration using a Na+ ion selective electrode. Attempts to measure this constant in CsCl media were unsuccessful probably because of competition for Ox2− by Cs+. Aqueous solutions of sodium malonate (Na2Mal) and sodium succinate (Na2Suc) were studied up to high (saturation) concentrations at 25 oC by dielectric relaxation spectroscopy (DRS) over the approximate frequency range 0.1 ≤ ν/GHz ≤ 89. -
ROHS Annex II Dossier for Beryllium and Its Compounds. Restriction Proposal for Substances in Electrical and Electronic Equipment Under Rohs
www.oeko.de ROHS Annex II Dossier for Beryllium and its compounds. Restriction proposal for substances in electrical and electronic equipment under RoHS Report No. 5 Version 3 Substance Name: Beryllium and its compounds 25/03/2020 EC Numbers: Beryllium metal: 231-150-7 Beryllium oxide (BeO): 215-133-1 and other Beryllium compounds CAS Numbers: Beryllium metal: 7440-41-7 Beryllium oxide (BeO): 1304-56-9 and other beryllium compounds Head Office Freiburg P.O. Box 17 71 79017 Freiburg Street address Merzhauser Strasse 173 79100 Freiburg Tel. +49 761 45295-0 Office Berlin Schicklerstrasse 5-7 10179 Berlin Tel. +49 30 405085-0 Office Darmstadt Rheinstrasse 95 64295 Darmstadt Tel. +49 6151 8191-0 [email protected] www.oeko.de RoHS Annex II Dossier, Version 3 Beryllium and its compounds Table of Contents List of Figures 5 List of Tables 5 1 IDENTIFICATION, CLASSIFICATION AND LABELLING, LEGAL STATUS AND USE RESTRICTIONS 8 1.1 Identification 8 1.1.1 Name, other identifiers, and composition of the substance 9 1.1.2 Physico-chemical properties 10 1.2 Classification and labelling status 12 1.3 Legal status and use restrictions 14 1.3.1 Regulation of the substance under REACH 14 1.3.2 Occupational Exposure Limits (OEL) 14 1.3.3 Other legislative measures 15 1.3.4 Non-governmental and non-regulatory initiatives 15 2 USE IN ELECTRICAL AND ELECTRONIC EQUIPMENT 17 2.1 Function of the substance 17 2.2 Types of applications / types of materials 19 2.3 Quantities of the substance used 25 3 HUMAN HEALTH HAZARD PROFILE 29 3.1 Critical endpoint 29 3.2 Existing Guidance