(12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur Et Al USOO924.948OB2 (12) United States Patent (10) Patent No.: US 9.249,480 B2 Sepeur et al. (45) Date of Patent: Feb. 2, 2016 (54) METHOD FOR PRODUCING ALKALIAND (58) Field of Classification Search ALKALINE EARTH ALLOYS AND USE OF CPC ................................. C22C 24/00; B01J 23/04 THE ALKALIAND ALKALINE EARTH USPC ....................................................... 427/376.1 ALLOYS See application file for complete search history. (75) Inventors: Stefan Sepeur, Wadgassen (DE); (56) References Cited Gerald Frenzer, Saarbruecken (DE); U.S. PATENT DOCUMENTS Stefan Huefner, Saarbruecken (DE); Frank Mueller, Saarbruecken (DE) 2,171.439 A 8/1939 von Zeppelin 3,469,729 A * 9/1969 Grekila et al. ............. 220/2.3 R (73) Assignees: NANO-X GmbH, Saarbruecken (DE); Elringklinger AG, Dettingen an der (Continued) Erms (DE), part interest FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CH 216 205 8, 1941 patent is extended or adjusted under 35 CH 219713 2, 1942 U.S.C. 154(b) by 81 days. (Continued) (21) Appl. No.: 13/138,373 OTHER PUBLICATIONS (22) PCT Filed: Feb. 9, 2010 International Search Report of PCT/DE2010/0750 13, Aug. 11, 2010. (86). PCT No.: PCT/DE2010/075O13 (Continued) S371 (c)(1), Primary Examiner —Nathan Empie (2), (4) Date: Sep. 13, 2011 (74) Attorney, Agent, or Firm — Collard & Roe, P.C. (57) ABSTRACT (87) PCT Pub. No.: WO2010/088902 A method for producing alkali and alkaline earth alloys. It PCT Pub. Date: Aug. 12, 2010 also relates to the use of the alkali and alkaline earth compo sitions. In order to create a novel method for producing alkali (65) Prior Publication Data and alkaline earth alloys, it is proposed within the context of US 2012/O156379 A1 Jun. 21, 2012 the invention that salts, hydroxides, alkoxides or oxides of alkali or alkaline earth compounds be mixed with salts, (30) Foreign Application Priority Data hydroxides, alkoxides or oxides of semi-metals, nonmetals or metals and then heated to at least 100° C., the salts, hydrox Feb. 9, 2009 (DE) ......................... 10 2009 OO8144 ides, alkoxides or oxides of alkali or alkaline earth metals (51) Int. Cl. being present in a molar ratio of 1:1 or in excess thereof in B05D3/02 (2006.01) relation to the salts, hydroxide, alkoxides or oxides of the C22C I/00 (2006.01) semi-metals, nonmetals or metal. Surprisingly, it was found within the context of the invention that by mixing salts, (Continued) hydroxides, alkoxides or oxides of alkali or alkaline earth (52) U.S. Cl. compounds with salts, hydroxides, alkoxides or oxides of CPC ................. C22C I/00 (2013.01); B01J 21/063 semi-metals or metals from the 3rd or 4th main group and (2013.01); B01J 23/02 (2013.01); B01J 23/04 Subsequent heating, alkali or alkaline earth alloys can be (2013.01); produced. (Continued) 9 Claims, 1 Drawing Sheet Surface (>0.1mm) Surface (-0.1 nm) b c E15 sists 3X as 28 as 23 23 St SS S3 s as as 28 as Binding energy (eV) Binding energy (ew) sia M2 Surface (>0.1 mrin) Surface (-0.1 nm) 12 1 0 3 & 78 8 & 23 0 13s 9x 80 0 88 88 Binding energy (ew) Binding energy (ew) Photoelectron spectroscopy for a catalytically active coaling. US 9.249.480 B2 Page 2 (51) Int. Cl. FOREIGN PATENT DOCUMENTS BOI 2/06 (2006.01) DE 10 2005 O21 658 1, 2006 BOI. 23/02 (2006.01) DE 10 2005 O27 789 12/2006 BOI. 23/04 (2006.01) DE 10 2007 O16 946 10, 2008 WO WO 89,04716 6, 1989 BOI 35/00 (2006.01) WO WOO2,5O191 6, 2002 BOI. 37/02 (2006.01) WO WO 2006/036697 4/2006 WO WO 2007/095276 8, 2007 C22C 24/00 (2006.01) WO WO 2008/031101 3, 2008 (52) U.S. Cl. WO WO 2008/122266 10, 2008 WO WO 2008/131270 10, 2008 CPC ............ B01J 35/002 (2013.01); B01J 37/0215 OTHER PUBLICATIONS (2013.01); C22C 24/00 (2013.01); B01D 2255/202 (2013.01); B01D 2255/204 (2013.01); English translation of the International Preliminary Report on Pat BOID 2255/2027 (2013.01); B01D 2255/2045 entability for PCT/DE2010/0750 13, Aug. 11, 2011. Vorlow, S. et al., “The catalytic activity and selectivity of supported (2013.01); B01D 2255/2092 (2013.01); B01D vanadia catalysts doped with alkali metal Sulphates. I. Structural 2255/30 (2013.01); B01D 2258/012 (2013.01) re-organisations during pre-treatment and use. Applied Catalysis, 17(1), pp. 87-101, CODEN: APCADI; ISSN: 0166-9834, 1985, (56) References Cited XP002592568. (ISR) (Spec, p. 1-see Preliminary Amendment). Vorlow, S. et al., “The catalytic activity and selectivity of supported U.S. PATENT DOCUMENTS vanadia catalysts doped with alkali metal sulphates. III. The effect of variation in the chemical nature of the alkali metal.” Applied Cataly 3.996,335 A * 12, 1976 Wolk ..................... BO1D 53/52 sis, 17(1), pp. 115-125, (1985). 423,210.5 Reddy et al., “Influence of alkaline earth metal on acid-base charac 4,939,310 A * 7/1990 Wade ............................ 585,500 teristics of VOs/Mo TiO, (M=Ca,Sr and Ba) catalysts,” Journal of 5,011,548 A 4, 1991 Dean ............................... 148.27 Molecular Catalysis. A. Chemical, Elsevier, Amsterdam, NL, 5,068.483. A 11, 1991 Barthomeufetal. LNKD-DOI: 10.1016/J.MOLCATA2007.07.018, vol. 276, No. 1-2, 5,478,672 A * 12/1995 Mitate ........................... 429,224 Sep. 14, 2007, pp. 197-204, XP022248081, ISSN: 1381-1169. (ISR) 5,739,076 A * 4/1998 Huybrechts et al. ....... 562,512.4 (Spec, p. 1-see Preliminary Amendment). 6,245.306 B1* 6/2001 Miyazaki ............. BO1D 53,945 Zhao et al., “Effect of alkaline earth metals on catalytic performance 423,213.5 of HY zeolite for alkylation of O-methylnaphthalene with long-chain 7,247,350 B2 7/2007 Sepeur et al. olefins.” Microporous and Mesoporous Materials, Elsevier Science 2003/O103886 A1* 6/2003 Dou ................... BOD 53,8628 Publishing, New York, US, LNKD-DOI: 10.1016/J.MICROMESO. 423,239.1 2006.03.028, vol. 94, No. 1-3, Sep. 8, 2006, pp. 105-112, 2005/O151278 A1 7/2005 Lefenfeld et al. XP00560 1295, ISSN: 1387-1811. (ISR). 2009, 0238986 A1 9, 2009 Gross et al. 2010.0081569 A1 4/2010 Sepeur et al. * cited by examiner U.S. Patent Feb. 2, 2016 US 9.249,480 B2 Surface (> 0.1 nm) Surface (~ 0.1 nm) C 1s 150 6OO b) 140 550 K2p 30 SOO 120 450 11 O 400 ( 90100. 350 80 3OO 70 250 60 200 SO 150 OO Sz 2O 50 10 O O 310 305 300 295 290 285 280 275 310 305 300 295 290 28S 280 275 Binding energy (eV) Binding energy (eV) (Si2p) Na2s (sl2p) (Na2s) 450 Surface (>0.1 nm) Surface (~ 0.1 nm) 90 120 110 100 90 BO 70 60 SO 120 110 100 90 80 70 60 50 Binding energy (eV) Binding energy (eV) Photoelectron spectroscopy for a catalytically active coating. US 9.249,480 B2 1. 2 METHOD FOR PRODUCING ALKALIAND mixing salts, hydroxides, alkoxides or oxides of alkali or ALKALINE EARTHALLOYS AND USE OF alkaline earth compounds with salts, hydroxides, alkoxides or THE ALKALIAND ALKALINE EARTH oxides of semi-metals, non-metals or metals and Subsequent ALLOYS heating. The salts, hydroxides or alkoxides of alkali and alkaline CROSS REFERENCE TO RELATED earth compounds are preferably selected from the group con APPLICATIONS sisting of lithium nitrate, lithium formiate, lithium carbonate, lithium oxalate, lithium oxide, lithium hydroxide, lithium This application is the National Stage of PCT/DE2010/ alkoxide, lithium fluoride, lithium chloride, lithium bromide, 075013 filed on Feb. 9, 2010, which claims priority under 35 10 lithium iodide, lithium sulphate, lithium sulphite, lithium U.S.C. S 119 of German Application No. 10 2009 008 144.5 Sulphonate, lithium nitrite, lithium phosphite, lithium phos filed on Feb. 9, 2009, the disclosure of which is incorporated phate, lithium acetate, sodium nitrate, sodium formiate, by reference. The international application under PCT article Sodium carbonate, Sodium oxalate, sodium oxide, Sodium 21(2) was not published in English. hydroxide, Sodium alkoxide, Sodium fluoride, sodium chlo The invention relates to a method for producing alkali and 15 ride, Sodium bromide, sodium iodide, sodium Sulphate, alkaline earth alloys. It also relates to the use of the alkali and Sodium Sulphite, Sodium Sulphonate, sodium nitrite, Sodium alkaline earth compositions. phosphite, sodium phosphate, sodium acetate, potassium WO 2007/095276 A1 describes a method of removing nitrate, potassium formiate, potassium carbonate; potassium protective alkyl- or arylsulfonyl groups from a primary or oxalate, potassium oxide, potassium hydroxide, potassium secondary amine, wherein an alkyl- or arylsulfonamide is 20 alkoxid, potassium fluoride, potassium chloride, potassium preferably contacted with Na, KNa or KNa in the presence bromide, potassium iodide, potassium Sulphate, potassium of a proton source and under conditions that suffice for the Sulphite, potassium Sulphonate, potassium nitrite, potassium formation of the corresponding amine. phosphite, potassium phosphate, potassium acetate, rubidium WO 2008/031101A2 relates to lithium metal-porous oxide nitrate, rubidium formiate, rubidium carbonate, rubidium compositions (also termed “Group I metal/porous oxide com- 25 oxalate, rubidium oxide, rubidium hydroxide, rubidium positions”) prepared by mixing liquid lithium metal with a alkoxide, rubidium fluoride, rubidium chloride, rubidium porous metal oxide in an inert atmosphere under Sufficiently bromide, rubidium iodide, rubidium sulphate, rubidium sul exothermic conditions to enable the liquid lithium metal to be phite, rubidium sulphonate, rubidium nitrite, rubidium phos absorbed into the pores of the porous metal oxide. These phite, rubidium phosphate, rubidium acetate, caesium nitrate, compositions are used in organic reactions such as the 0 30 caesium formiate, caesium carbonate, caesium oxalate, cae synthesis.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • United States Patent (19) 11) 4,080,491 Kobayashi Et Al
    United States Patent (19) 11) 4,080,491 Kobayashi et al. 45) Mar. 21, 1978 54) PROCESS OF PRODUCING RING-OPENING 56 References Cited POLYMERIZATION PRODUCTS U.S. PATENT DOCUMENTS (75) Inventors: Yukio Kobayashi; Takashi Ueshima; 3,798,175 3/1974 Streck .................................. 526/136 Shoichi Kobayashi, all of Yokohama, 3,856,758 - 12/1974 Ueshima ............................... 526/169 Japan 3,859,265 1/1975 Hepworth ............................ 526/281 3,959,234 5/1976 Kurosawa ............................ 526/281 Assignee: Showa Denko K.K., Tokyo, Japan (73) Primary Examiner-Paul R. Michl 21 Appl. No.: 714,833 Attorney, Agent, or Firm-Fitzpatrick, Cella, Harper & 22) Filed: Aug. 16, 1976 Scinto Foreign Application Priority Data 57 ABSTRACT (30) A process of producing a ring-opening polymerization Aug. 27, 1975 Japan ................................ 50-103060 product of a norbornene derivative containing at least Mar. 26, 1976 Japan .................................. 51-32464 one polar group or aromatic group, a norbornadiene Mar. 26, 1976 Japan .................................. 51-32465 derivative containing at least one of said groups or a Apr. 5, 1976 Japan .................................. 51-37274 cycloolefin using a catalyst system prepared from an Apr. 27, 1976 Japan .................................. 51-47268 organometallic compound and the reaction product of May 25, 1976 Japan .................................. 51-59642 tungsten oxide or molybdenum oxide and a phosphorus 51 Int. C.’................................................ C08F 4/78 pentahalide or phosphorus oxytrihalide or these com (52) U.S. C. ..... o e s p s 8 v 8 526/137; 526/113; pounds and other third components. The catalyst sys 526/127; 526/136; 526/169; 526/281; 526/308 temi possesses a high polymerization activity. (58) Field of Search ....................
    [Show full text]
  • Mineral Commodity Summareis 2013
    U.S. Department of the Interior U.S. Geological Survey MINERAL COMMODITY SUMMARIES 2013 Abrasives Fluorspar Mercury Silver Aluminum Gallium Mica Soda Ash Antimony Garnet Molybdenum Sodium Sulfate Arsenic Gemstones Nickel Stone Asbestos Germanium Niobium Strontium Barite Gold Nitrogen Sulfur Bauxite Graphite Peat Talc Beryllium Gypsum Perlite Tantalum Bismuth Hafnium Phosphate Rock Tellurium Boron Helium Platinum Thallium Bromine Indium Potash Thorium Cadmium Iodine Pumice Tin Cement Iron and Steel Quartz Crystal Titanium Cesium Iron Ore Rare Earths Tungsten Chromium Iron Oxide Pigments Rhenium Vanadium Clays Kyanite Rubidium Vermiculite Cobalt Lead Salt Wollastonite Copper Lime Sand and Gravel Yttrium Diamond Lithium Scandium Zeolites Diatomite Magnesium Selenium Zinc Feldspar Manganese Silicon Zirconium U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2013 Manuscript approved for publication January 24, 2013. For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment— visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod For sale by the Superintendent of Documents, U.S. Government Printing Office Mail: Stop IDCC; Washington, DC 20402–0001 Phone: (866) 512–1800 (toll-free); (202) 512–1800 (DC area) Fax: (202) 512–2104 Internet: bookstore.gpo.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • The Preparation and Identification of Rubidium
    THE PREPARATION AND IDENTIFICATION OF RUBIDIUM TELLURO-MOLYBDATE AND OF CESIIDl TELLURO- MOLYBDA.TE SEP ZI 193B THE PREPARATION AlJD IDENTIFICATION or :RUBIDIUM TELLURO-MOLYBDATE AND OF CESIUM '?ELLURO-MOLYBDATE By HENRY ARTHUR CARLSON \ \ Bachelor of Science Drury College Springfield. Missouri 1936 Submitted to the Department of Chemistry Oklahoma Agricultural and Meohanica.l College In Partial Fulfillment of the Requirements For the degree of MASTER OF SCIENCE 1938 . ... ... .. .. .. ... .. ' :· ·. : : . .. .. ii S£p C"·J"··} ;.;:{ I' ' """"''· APPROVED:- \ Head~~stry 108627 iii ACKNOWLEDGMENT The author wishes to acknowledge the valuabl e advice and assistance of Dr. Sylvan R~ Wood, under whose direction this work was done. Acknowledgment is also made of the many help­ ful suggestions and cordial cooperation of Dr. H. M. Trimble. The author wishes to express his sincere appreciation to the Oklahoma Agricultural and Mechanical College for financial assistance in the fonn of a graduate assistantship in the Depart­ ment of Chemistry during the school years 1936-37 and 1937-38. iv TABLE OF CONTENTS I. Introduction------------------------------ 1 II. Materials Used-------------"--------------- 3 III. Preparation of Rubidium Telluro-molybdate---- 5 IV. Methods of Analysis------------------------ 6 Telluriur a-"---------"----------------------- 6 Molybdenum•----------------------------- 8 Rubi di um------------------"-------------... 10 \Yater of Hydration---------------------- 11 v. Calculation of: Formula---------------------- 12 VI. Preparation
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • Peroxysalts of the Alkali Metals and Related Species
    PEROXYSALTS OF THE ALKALI METALS AND RELATED SPECIES. A Thesis Submitted for the Degree of DOCTOR OF PHILOSOPHY of the University of London BY DAVID PHILIP JONES, B.SC., A,R,C.S, Department of Chemistry, Imperial College of Science and Technology, London, SW7 2AY August, 1979. 2 ABSTRACT Peroxysalts of the Alkali Metals and Related Species. David Philip Jones The work described in this thesis is concerned mainly with the preparation, characterisation and physicochemical properties of a series of different inorganic peroxysalts, in particular the alkali metal percarbonates. Extensive use has been made of vibrational spectroscopy as a tool for obtaining structural information, with both 2H and 13C isotopic substitutions helping in the assignments of vibrational modes. All of the peroxysalts studied fall into either of two categories. The first are perhydrates, which contain hydrogen peroxide of crystallisation, such as sodium oxalate monoperhydrate, Na2C204.H202 and " sodium percarbonate", Na2CO3.11H2O2. The second group contain peroxo moieties bound to atoms other than hydrogen, e.g., boron in " sodium perborate" , Na2B2(02)2(OH)4.6H20 or carbon in potassium peroxydicarbonate, K2C206, these types of compounds being referred to as " true" peroxysalts. The structures of both of the commonly used bleaching agents " sodium percarbonate" and " sodium perborate" are described, full X-ray structural determinations having been carried out in the Chemical Crystallography Laboratories during the course of this work. 3 Due to particular interest in percarbonates, one of the very few known transition metal peroxycarbonato complexes, bistriphenyl- phosphine peroxycarbonato platinum(II) has been prepared and its structure also determined by X-ray crystallography.
    [Show full text]
  • Alkali Oxide-Tantalum, Niobium and Antimony Oxide Ionic Conductors, RASA CR-13^869, 76 Pages (National Technical Information Service
    - - J HPS' 3/3-6* dfo+t f NBSIR 75-754 NASA CR-1 34869 A Rota, R. 3., Brewer, 3., Parkier, H. 3., Minor, D. B., Waring, J. L., Alkali oxide-tantalum, niobium and antimony oxide ionic conductors, RASA CR-13^869, 76 pages (National Technical Information Service, Springfield, Va . 1975). ALKALI OXIDE-TANTALUM, NIOBIUM AND ANTIMONY OXIDE IONIC CONDUCTORS by R. S. Roth, W. S. Brower. H. S. Parker, D. B. Minor and J. L. Waring prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT C-50821-C U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, D. C. 20234 TABLE OF CONTENTS SUMMARY 3 1.0 INTRODUCTION 5 2.0 DISCUSSION OF RESULTS 6 2.1 The System Nb 0 -4Rb 0 : llNb^ 6 2 5 2 2.2 The System Ta 0 -4Rt> 0: llTa^ 6 2 5 2 2.3 The System Sb_0.-NaSbO_ 7 2 4 j 2.3.1 NaSb0 . 8 3 2.3.2 Pyrochlore Solid Solution 8 2.3.3 Polymorphism of Sb^ 10 2.4 The System Sb„0,-KSb0 o 11 2 4 3 2.4.1 Hydroxyl Ion Stabilization of Cubic Potassium Antimonate 11 2.5 The System Sb o0. -NaSbO„-NaF 13 2 4 3 2.5.1 The System NaSbO^NaF 13 2.5.2 The Ternary System 14 2.6 Other Systems 15 2.6.1 Alkali Bismuthates 15 2.6.2 Alkali-Rare Earth Systems 15 2.6.3 Further Studies in the System Nb 0 :KNb0 16 2 5 3 2.7 Pellet Fabrication 16 2.7.1 41K 0:59Nb 0 ("2:3"*, K Nb 0 ) 16 2 2 5 4 6 17 2.7.2 4Rb 0:llNb 0 (11-layer phase) 18 2 2 5 2.7.3 Large Pellets for Ionic Conductivity Measurements ...
    [Show full text]
  • Ara-A .4 H N U.S
    US006762424B2 (12) United States Patent (10) Patent N0.: US 6,762,424 B2 Wester (45) Date of Patent: Jul. 13, 2004 (54) PLASMA GENERATION (56) References Cited (75) Inventor: Neil Wester, Tempe, AZ (US) US. PATENT DOCUMENTS (73) AssigneeZ Intel Corporation, Santa Clara, CA 6,566,667 B1 * 5/2003 Partlo et al. .......... .. 250/504 R US ( ) * cited by examiner ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 Primary Examiner_Kiet T, Nguyen U.S.C. 154(1)) by 0 days. (74) Attorney, Agent, or Firm—Fish & Richardson PC. (21) App1.No.: 10/202,422 (57) ABSTRACT (22) Filed. JuL 23 2002 A photolithography tool includes an anode and a cathode ’ composed of a ?rst material and a second material. The (65) Prior Publication Data second material has a loWer Work function than the ?rst material. Electrons emitted from the cathode ioniZe a gas Us 2004/0016894 A1 Jan' 29’ 2004 into a plasma that generates EUV light. The EUV light is (51) Int. Cl.7 ................................................ .. H05H 1/34 focused on a mask to produce an image of a circuit pattern. (52) US, Cl, ____ __ 250/504 R; 250M931; The image is projected on a semiconductor Wafer to produce 378/119 a circuit. (58) Field of Search ........................ .. 250/504 R, 493.1; 378/119, 122 44 Claims, 3 Drawing Sheets 138 130 ~\\\\\\\\\\\ / n'x. ATTCL. / 140 7A ‘- 128 Ara-A .4 h N U.S. Patent Jul. 13, 2004 Sheet 1 of3 US 6,762,424 B2 emmm29..>5l Roz-on .EGEEE: sarcoma...“ xommurao U.S.
    [Show full text]
  • Solution Chemistry of Some Dicarboxylate Salts Of
    SOLUTION CHEMISTRY OF SOME DICARBOXYLATE SALTS OF RELEVANCE TO THE BAYER PROCESS Andrew John Tromans B.Sc. Hons (Edith Cowan University) This thesis is presented for the degree of Doctor of Philosophy of Murdoch University Western Australia November 2003 i I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Andrew John Tromans ii Abstract This thesis deals with certain aspects of the solution chemistry of the simple dicarboxylate anions: oxalate, malonate and succinate, up to high concentrations. These ions are either significant impurities in the concentrated alkaline aluminate solutions used in the Bayer process for the purification of alumina, or are useful models for degraded organic matter in industrial Bayer liquors. Such impurities are known to have important effects on the operation of the Bayer process. To develop a better understanding of the speciation of oxalate (the major organic impurity in Bayer liquors) in concentrated electrolyte solutions, the formation constant (Logβ) of the extremely weak ion pair formed between sodium (Na+) and oxalate (Ox2−) ions was determined at 25 oC as a function if ionic strength in TMACl media by titration using a Na+ ion selective electrode. Attempts to measure this constant in CsCl media were unsuccessful probably because of competition for Ox2− by Cs+. Aqueous solutions of sodium malonate (Na2Mal) and sodium succinate (Na2Suc) were studied up to high (saturation) concentrations at 25 oC by dielectric relaxation spectroscopy (DRS) over the approximate frequency range 0.1 ≤ ν/GHz ≤ 89.
    [Show full text]